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Actions on compact Riemann surfaces

G~ Dy=(rs:7% % (sr)%)

Signature
(0;2,2,2,4)

Geometric signature

(05 (s), (s7), (%), (r)

Generating vector
(s,s7,72,7)
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Actions on compact Riemann surfaces

Theorem 1
Let S be a compact Riemann surface of genus g > 2. A (finite) group G acts on S
with signature (y;mq, ..., my) if and only if the following conditions are satisfied:

1. (Riemann-Hurwitz)

9=1+1616-1) 'G’Z<1)

2. The group G has a generating vector of type (y;mi,...,my).
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Analytic and rational representation
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Analytic representation of a group action

A < QY(S)” A < QY(S)*
bbb bbb
; Pa(9) :
88— -0 -8--0--0 -
8- 8--0--0--- -0 8--0--0

o--- .- )

pa: G — GL(QY(S))
e: G — Aut(JS)
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Analytic representation of a group action

® pr® 1= pg @ pa
® Geometric signature — p,-.

® Chevalley-Weil formula: Generating vector — py.

(pa, V) =dv(y = 1)+ > _N(V,¢;)

=1



ral actions

Results: Dihedral actions
Geometric signature and analytic representation
Existence theorems
Group algebra decomposition



Preliminaries Results: Dihedral actions
000000 00000000000

Results: Dihedral actions
Geometric signature and analytic representation



Results: Dihedral actions
©0000

Notation

Consider the dihedral group
D, = (s,r: 7" 5% (s1)%).
If n is even then D,, has four C-representations of degree one:

Pr:re—=1, s—1; Yo :r—= 1, s —1;
Py ir = —1, s+—1; Ygir = —1, s— —1;

and (n — 2)/2 irreducible C-representations of degree two:

ot diag(wh,wh), s (9%),

where w = €2™/" and 1 < h < (n — 2)/2.
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Notation

Definition 2
Set G = D,,. Consider a G-action with geometric signature

(7 (), (s7)°, C1s - C)
where C; = <r"/mﬂ'> is a cyclic group of order m; > 2. Then the signature function is

Ug:Zy = Z, Yy(q)=#{1<j<v:m;=q}

Definition 3
Let ¥ :Z, — Z be a function. The divisor transform of ¥ is the function
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Analytic representation formula: D,, with n even

Theorem 4
Set G = D,, withm > 2 an even integer, and let S be a compact Riemann surface of
genus g > 2. If S has a G-action geometric signature (; ()%, (sr)?,C1,...,C,), then

(n-2)/2

pa = Y1 @ oy & psts & pabs & D e,
h=1
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Example: D, with p prime

Set G = D, with p > 3 a prime number. If G acts with signature (7; 2%, pl), then

(r—1)/2
Pa Y1 @[y — 1+ 3t @ [2(y — 1) + Lt + (] 6}p

The dihedral group D7 acts on genus g = 12 with signature (0;2,2,7,7,7). Its
analytical representation is

pa = 2(p" @ p* @ p°).
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Bijective correspondence

Theorem 5
Set G = D,,. There is a bijection between the geometric signatures and the analytic
representations of the G-actions.
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Existence of actions with a given signature

Theorem 6 (Bujalance et al, 2003)

Set G = D,, with n an even integer. Assume that v = 0. Then the necessary and
sufficient conditions for the existence of a compact Riemann surface (g > 2) with a

G-action of signature (v;2t,my, ..., m,) are:
1. t>2;
2. ift =2 then lem(my,...,my,) =n;

3. ift =3 then lem(2,mq,...,m,) = n.



Existence of actions with a given geometric signature

Theorem 7

Set G = D,, with n an even integer. Assume that v = 0. Then the necessary and
sufficient conditions for the existence of a compact Riemann surface (g > 2) with a
G-action of geometric signature

(3 ()% (s7)", O, Co)

are:
1. a and b have the same parity as A := #{1 < j <wv:n/m; is odd},
2. a+b>2iseven;
3. ifa+b=2 thenlem(myq,...,my) =n;
4. ifa+b>2anda=0o0orb=0 then A > 0.
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Analytic representation criteria

Theorem 8

Let V' be a C-representation of G = D,, with n even. Assume that (V,1¢1) =~ = 0.
Then the necessary and sufficient conditions for V' to be equivalent to the analytic
representation p, of a G-action are:

- (Vidbo) 2 [(Vit3) — (V,9ha)| — 1 and E’V(Q) > 0 for each divisor ¢ > 1 of n;
(Voo = (V, ph)) for 1 < h < (n—2)/2;

if (V,19) = 0 then lem(my,...,my) =n;

iF (Votia) 2 1 and |(V. ) = (V,0a)] = (Vyuia) + 1 then A > 0.

[y

W
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Decomposition theorems

Set Irrg(G) = {Wi,..., W, }.

Theorem 9

Let A be an abelian variety with a G-action. There are abelian subvarieties By, . . .

of A and a G-equivariant isogeny
A~ B x -+ x B,

where G acts on Bz-n 7 via the representation W.

For j = 2,...,v, the dimension of the group algebra component B; of JS is
dim B; = Sky, (pr ® 1, V),

where V; € Irrc(G) is Galois associated to W;.
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Ekedahl-Serre problem

Theorem 10
Set G = D,,. The group algebra decomposition of JS respect to a G-action is never
affordable by elliptic curves, unless n € {3,4,6}.

® An exhaustive list of geometric signatures is found for when JS is affordable by
elliptic curves.

® An exhaustive list of geometric signatures is found for when JS is d-affordable.
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