

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 吾 のへで 1/24

Representations of groups of automorphisms on compact Riemann surfaces

Pablo Alvarado Seguel Universidad de Chile

I Escuela de Postgrado en Matemáticas 30 May 2024

Results: Dihedral actions 00000000000

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Preliminaries

Results: Dihedral actions

Geometric signature and analytic representation

Existence theorems

Results: Dihedral actions

Preliminaries

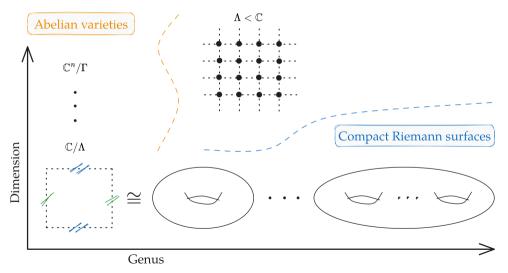
Results: Dihedral actions

Geometric signature and analytic representation

Existence theorems

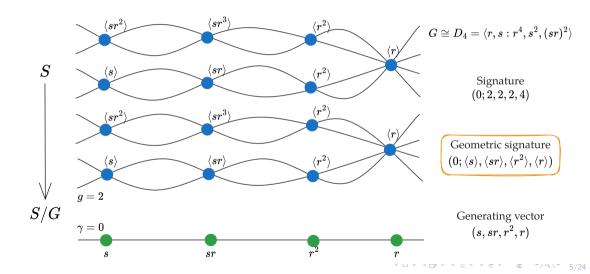
Results: Dihedral actions 0000000000

Geometric structures



Results: Dihedral actions

Actions on compact Riemann surfaces



6/24

Actions on compact Riemann surfaces

Theorem 1

Let S be a compact Riemann surface of genus $g \ge 2$. A (finite) group G acts on S with signature $(\gamma; m_1, \ldots, m_v)$ if and only if the following conditions are satisfied:

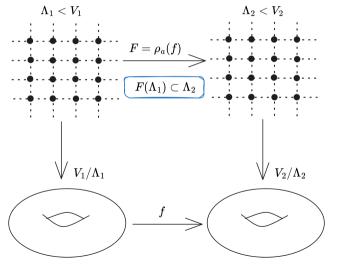
1. (Riemann-Hurwitz)

$$g = 1 + |G|(\gamma - 1) + \frac{|G|}{2} \sum_{j=1}^{v} \left(1 - \frac{1}{m_j}\right)$$

2. The group G has a generating vector of type $(\gamma; m_1, \ldots, m_v)$.

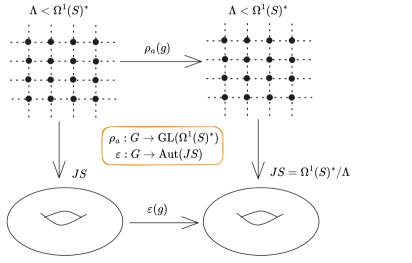
Results: Dihedral actions 0000000000

Analytic and rational representation



◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ○ Q ○ 7/24</p>

Analytic representation of a group action



<ロ > < 回 > < 画 > < 重 > < 重 > 三 の へ @ 8/24

Analytic representation of a group action

- $\rho_r \otimes 1 \cong \rho_a \oplus \overline{\rho_a}$
- Geometric signature $\rightarrow \rho_r$.
- Chevalley-Weil formula: Generating vector $\rightarrow \rho_a$.

$$\langle \rho_a, V \rangle = d_V(\gamma - 1) + \sum_{j=1}^{v} \mathcal{N}(V, c_j)$$

◆□▶ ◆■▶ ◆ ■▶ ◆ ■ ● ● ● 10/24

Preliminaries

Results: Dihedral actions

Geometric signature and analytic representation

Existence theorems

<□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 11/24

Preliminaries

Results: Dihedral actions

Geometric signature and analytic representation

Existence theorems

Notation

Consider the dihedral group

$$D_n = \langle s, r : r^n, s^2, (sr)^2 \rangle.$$

If n is even then D_n has four \mathbb{C} -representations of degree one:

$$\begin{array}{ll} \psi_1:r\mapsto 1,\ s\mapsto 1; & \psi_2:r\mapsto 1,\ s\mapsto -1; \\ \psi_3:r\mapsto -1,\ s\mapsto 1; & \psi_4:r\mapsto -1,\ s\mapsto -1; \end{array}$$

and (n-2)/2 irreducible \mathbb{C} -representations of degree two:

$$\rho^h : r \mapsto \operatorname{diag}(\omega^h, \overline{\omega}^h), \ s \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

where $\omega = e^{2\pi i/n}$ and $1 \le h \le (n-2)/2$.

Notation

Definition 2 Set $G = D_n$. Consider a G-action with geometric signature

 $(\gamma; \langle s \rangle^a, \langle sr \rangle^b, C_1, \dots, C_v)$

where $C_j = \langle r^{n/m_j} \rangle$ is a cyclic group of order $m_j \geq 2$. Then the signature function is

$$\Psi_{\theta} : \mathbb{Z}_+ \to \mathbb{Z}, \quad \Psi_{\theta}(q) = \#\{1 \le j \le v : m_j = q\}.$$

Definition 3

Let $\Psi: \mathbb{Z}_+ \to \mathbb{Z}$ be a function. The *divisor transform* of Ψ is the function

$$\widehat{\Psi}:\mathbb{Z}_+\to\mathbb{Z},\quad \widehat{\Psi}(n)=\sum_{q\mid n}\Psi(q).$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ へ ○ 13/24

Analytic representation formula: D_n with n even

Theorem 4

Set $G = D_n$ with $n \ge 2$ an even integer, and let S be a compact Riemann surface of genus $g \ge 2$. If S has a G-action geometric signature $(\gamma; \langle s \rangle^a, \langle sr \rangle^b, C_1, \ldots, C_v)$, then

$$\rho_a \cong \gamma \psi_1 \oplus \mu_2 \psi_2 \oplus \mu_3 \psi_3 \oplus \mu_4 \psi_4 \oplus \bigoplus_{h=1}^{(n-2)/2} \nu_h \rho^h,$$

where

$$\begin{split} \mu_2 &= \langle \rho_a, \psi_2 \rangle = \gamma - 1 + \frac{1}{2}[a+b], \\ \mu_3 &= \langle \rho_a, \psi_3 \rangle = \gamma - 1 + \frac{1}{2}[b + \widehat{\Psi}_{\theta}(n) - \widehat{\Psi}_{\theta}(\frac{n}{2})], \\ \mu_4 &= \langle \rho_a, \psi_4 \rangle = \gamma - 1 + \frac{1}{2}[a + \widehat{\Psi}_{\theta}(n) - \widehat{\Psi}_{\theta}(\frac{n}{2})], \\ \nu_h &= \langle \rho_a, \rho^h \rangle = 2(\gamma - 1) + \frac{1}{2}[a+b] + \widehat{\Psi}_{\theta}(n) - \widehat{\Psi}_{\theta}(h), \quad 1 \le h \le (n-2)/2. \end{split}$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の Q @ 14/24

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ○ 15/24</p>

Example: D_p with p prime

Set $G = D_p$ with $p \ge 3$ a prime number. If G acts with signature $(\gamma; 2^t, p^l)$, then

$$\rho_a \cong \gamma \psi_1 \oplus [\gamma - 1 + \frac{1}{2}t] \psi_2 \oplus [2(\gamma - 1) + \frac{1}{2}t + l] \left(\bigoplus_{h=1}^{(p-1)/2} \rho^h \right).$$

The dihedral group D_7 acts on genus g = 12 with signature (0; 2, 2, 7, 7, 7). Its analytical representation is

$$\rho_a \cong 2(\rho^1 \oplus \rho^2 \oplus \rho^3).$$

Results: Dihedral actions

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ へ ○ 16/24

Bijective correspondence

Theorem 5

Set $G = D_n$. There is a bijection between the geometric signatures and the analytic representations of the G-actions.

<□ ▶ < @ ▶ < \ = ▶ < \ = り < C 17/24

Preliminaries

Results: Dihedral actions

Geometric signature and analytic representation

Existence theorems

◆□▶ ◆圖▶ ◆필▶ ◆필▶ - 夏 - のへで 18/24

Existence of actions with a given signature

Theorem 6 (Bujalance et al, 2003)

Set $G = D_n$ with n an even integer. Assume that $\gamma = 0$. Then the necessary and sufficient conditions for the existence of a compact Riemann surface $(g \ge 2)$ with a G-action of signature $(\gamma; 2^t, m_1, \ldots, m_v)$ are:

1.
$$t \ge 2$$
;

- 2. *if* t = 2 *then* $lcm(m_1, ..., m_v) = n$;
- 3. if t = 3 then $lcm(2, m_1, \ldots, m_v) = n$.

Existence of actions with a given geometric signature

Theorem 7

Set $G = D_n$ with n an even integer. Assume that $\gamma = 0$. Then the necessary and sufficient conditions for the existence of a compact Riemann surface $(g \ge 2)$ with a G-action of geometric signature

$$(\gamma; \langle s \rangle^a, \langle sr \rangle^b, C_1, \dots, C_v)$$

are:

- 1. a and b have the same parity as $A := \#\{1 \le j \le v : n/m_j \text{ is odd}\};$
- 2. $a+b \ge 2$ is even;
- 3. if a + b = 2 then $lcm(m_1, ..., m_v) = n$;
- 4. if a + b > 2 and a = 0 or b = 0 then A > 0.

Analytic representation criteria

Theorem 8

Let V be a \mathbb{C} -representation of $G = D_n$ with n even. Assume that $\langle V, \psi_1 \rangle = \gamma = 0$. Then the necessary and sufficient conditions for V to be equivalent to the analytic representation ρ_a of a G-action are:

1.
$$\langle V, \psi_2 \rangle \ge |\langle V, \psi_3 \rangle - \langle V, \psi_4 \rangle| - 1$$
 and $\widetilde{\Phi}_V(q) \ge 0$ for each divisor $q > 1$ of n ;
2. $\langle V, \rho^h \rangle = \langle V, \rho^{(n,h)} \rangle$ for $1 \le h \le (n-2)/2$;
3. if $\langle V, \psi_2 \rangle = 0$ then $\operatorname{lcm}(m_1, \dots, m_v) = n$;
4. if $\langle V, \psi_2 \rangle \ge 1$ and $|\langle V, \psi_3 \rangle - \langle V, \psi_4 \rangle| = \langle V, \psi_2 \rangle + 1$ then $A > 0$.

<□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 21/24

Preliminaries

Results: Dihedral actions

Geometric signature and analytic representation Existence theorems

Decomposition theorems

Set $\operatorname{Irr}_{\mathbb{Q}}(G) = \{W_1, \ldots, W_v\}.$

Theorem 9

Let A be an abelian variety with a G-action. There are abelian subvarieties B_1, \ldots, B_v of A and a G-equivariant isogeny

$$A \sim B_1^{n_1} \times \cdots \times B_v^{n_v},$$

where G acts on $B_i^{n_j}$ via the representation W_j . For j = 2, ..., v, the dimension of the group algebra component B_j of JS is

$$\dim B_j = \frac{1}{2} k_{V_j} \langle \rho_r \otimes 1, V_j \rangle,$$

where $V_j \in \operatorname{Irr}_{\mathbb{C}}(G)$ is Galois associated to W_j .

Ekedahl-Serre problem

Theorem 10

Set $G = D_n$. The group algebra decomposition of JS respect to a G-action is never affordable by elliptic curves, unless $n \in \{3, 4, 6\}$.

- An exhaustive list of geometric signatures is found for when JS is affordable by elliptic curves.
- An exhaustive list of geometric signatures is found for when JS is d-affordable.

References

- E. Bujalance et al. On compact Riemann surfaces with dihedral groups of automorphisms. Math. Proc. Camb. Philos. Soc. **134**.3 (2003), pp. 465-477.
- Angel Carocca and Rubí E. Rodríguez. *Jacobians with group actions and rational idempotents*. Journal of Algebra **306**.2 (2006), pp. 322-343.
- Ruben Naeff. *The Chevalley-Weil formula: On the Galois module structure of the space of regular differentials of a curve in case it is semi-simple.* University of Amsterdam, 2005.
- Anita M. Rojas. *Group actions on Jacobian varieties*. Revista Matematica Iberoamericana **23**.2 (2007), pp. 397-420.