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introduction



the simple random walk

The one-dimensional simple random walk is defined by an
independent identically distributed sequence {X1, X2, . . .} where
Xi ∈ {−1,+1}. The main interest is the position of the walker at time
n, given by

Sn =
n∑
i=1

Xi,

and S0 = 0.
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the elephant random walk

The elephant random walk (ERW) introduced in 2004 can be
represented by a sequence {X1, X2, . . .} where Xi ∈ {−1,+1}.
Assuming that, at time n, the elephant remembers its full history
and chooses its next step in a strong dependent sense.

First, it selects randomly a step from the past, and then, with
probability p ∈ [0, 1], it repeats what it did at the remembered time,
whereas with the complementary probability 1− p, it makes a step in
the opposite direction.

In other words, at step n+ 1, it chooses t ∈ {1, ....n} uniformly at
random. Then

Xn+1 =

{
Xt with probability p
−Xt with probability 1− p

(1)
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the elephant random walk

The ERW shows a transition from diffusive to super-diffusive
behaviours for Sn, with critical pc =

3
4 . That is, the mean squared

displacement is a linear function of time in the diffusive case
(p < pc), but is given by a power law in the super-diffusive regime
(p > pc)

∙ Baur, E. and Bertoin, J. (2016) Elephant random walks and their
connection to Pólya-type urns. Phys. Rev. E 94, 052134.

and simultaneously in
∙ Coletti, C., Gava, R. and Schütz, G. (2017) Central limit theorem for
the elephant random walk. J. Math. Phys. 56, 05330.

∙ Bercu, B. (2018) A martingale approach for the elephant random
walk. J. Phys. A: Math. Theor. 51(1).
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Formulation of the model

6



original formulation

We are interested in the formulation of an ERW with delays as given
by Gut and Stadtmüller (2019). Let the first step given by

X1 =


+1 , with probability p,
−1 , with probability q,
0 , with probability r.

(2)

where p+ q+ r = 1.

The next steps are performed by the rule

Xn+1 =


Xt , with probability p,
−Xt , with probability q,
0 , with probability r,

(3)

where t is uniformly chosen from {1, . . . ,n}.
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our dynamics

Let a sequence {Xn}n≥1 and consider the position given by
Sn =

∑n
i=1 Xi. The random walk we are dealing with starts at the

origin, i.e., S0 = 0.

Then, for n ≥ 1, we use the random variables

αn =


1, with probability p,
−1, with probability q,
0, with probability r,

with p+ q+ r = 1, such that X1 = α1 and for each n ≥ 2 we set

Xn = YnαnXUn + (1− Yn)αn, (4)

where Yn posses the Bernoulli distribution with parameter θ ∈ [0, 1).
Un is a discrete uniform random variable on {1, 2, . . . ,n− 1}.
Moreover, αn and Un are independent and Yn is independent of the
RW’s past.
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main results



main results

We use the following notation

α = (p− q) · θ, ω = (p− q)(1− θ), τ = (1− θ)(p+ q),

γ = (p+ q) · θ and σ2 =
τ

1− γ
−
(

ω

1− α

)2
. (5)
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law of large numbers

Theorem (G-N et. al, 2024)

Let the RW given by (4), for all α ∈ [0, 1)

lim
n→∞

Sn − E(Sn)
n = 0 a.s (6)

and
lim
n→∞

Sn
n =

ω

1− α
a.s. (7)
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functional central limit theorem - diffusive regime

Let denote by D([0,∞[) the Skorokhod space of right-continuous
functions with left-hand limits.

Theorem (G-N et. al, 2024)

If α < 1/2, we have the distributional convergence in D([0,∞[),(√
n
(S⌊nt⌋
⌊nt⌋ − ω

1− α

)
, t ≥ 0

)
=⇒

(
Wt, t ≥ 0

)
(8)

where
(
Wt, t ≥ 0

)
is a real-valued centered Gaussian process

starting at the origin with covariance given, for all 0 < s ≤ t, by
E[WsWt] =

σ2

(1−2α)t

(
t
s

)α
. In particular, we have the asymptotic

normality.
√
n
(Sn
n − ω

1− α

)
d→ N

(
0, σ2

1− 2α

)
. (9)
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law of iterated logarithm and almost sure clt

Theorem (G-N et. al, 2024)

If α < 1/2, then

lim sup
n→∞

±
(

n
2 log log n

)(
Sn
n − ω

1− α

)2
=

σ2

1− 2α a.s.

Theorem (G-N et. al, 2024)

If α < 1/2 then we have the following almost sure convergence of
empirical measures

1
log n

n∑
k=1

1
k I

{√
k
( Sk

k − ω
1−α

)
≤x

} n→∞−−−→ FZ(x) a.s (10)

where FZ is the cumulative distribution function of
Z ∼ N(0, σ2/(1− 2α)).
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functional central limit theorem - critical regime

Theorem (G-N et. al, 2024)

If α = 1/2, we have the distributional convergence in D([0,∞[),(√
nt

log n

(S⌊nt⌋
⌊nt⌋

− 2ω
)
, t ≥ 0

)
=⇒

(
τ

1− γ
− 4ω2Bt, t ≥ 0

)
(11)

where
(
Bt, t ≥ 0

)
is a standard Brownian motion. In particular, we

have the asymptotic normality√
n

log n

(
Sn
n − 2ω

)
d→ N

(
0, τ

1− γ
− 4ω2

)
. (12)
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the superdiffusive case

Theorem (G-N et. al, 2024)

We have the almost sure convergence(
n1−α

(S⌊nt⌋
⌊nt⌋ − ω

1− α

)
, t > 0

)
−→

( 1
t1−a L, t > 0

)
(14)

where L is a non-degenerated random variable such that

E[L] = β(1− α)− ω

Γ(α+ 1)(1− α)
(15)

where β := p− q, and

E[L2] = ∇
Γ(2α+ 1) + 2ω

(
1

(1− α)Γ(α)

)2
(16)

where ∇ := p+ q+ τ
(1−γ)(2α−1) −

2αω2

(2α−1)(α−1)2 + 4
[
ωα(β−1)
(α−1)2

]
+ rγ2

2α−γ .
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gaussian fluctuations - superdiffusive case

Theorem (G-N et. al, 2024)

If α > 1/2, then

√
n2α−1

(
n1−α

(Sn
n − ω

1− α

)
− L
)

d→ N
(
0, σ2

2α− 1

)
as n → ∞ (17)

and

lim sup
n→∞

±

√
n2α−1

(
n1−α

(
Sn
n − ω

1−α

)
− L
)

√
log log n

=

√
2σ2

2α− 1 a.s (18)
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definitions

We base the asymptotic analysis of the RW on the sequence (Mn),
given by M0 = 0 and for n ≥ 1 by

Mn = anSn − ωAn, (19)

where; on the one hand, the sequence (an) is given by a1 = 1 and for
n ≥ 2 as

an =
n−1∏
k=1

γ−1
k =

Γ(n)Γ(α+ 1)
Γ(n+ α)

∼ Γ(1+ α)

nα
, (20)

where Γ stands for the Euler gamma function, and; on the other
hand, sequence (An) is given by A0 = 0 and for n ≥ 1 as

An =
n∑

k=1

an. (21)

19



some important quantities

Additionally, we observe that from (20) that almost surely

E[Mn+1|Fn] = an+1(γnSn + ω)− ωAn+1

= anSn − ωAn = Mn.

Thus, (Mn) is a discrete time martingale with respect to the filtration
(Fn).

In this sense, the asymptotic behaviour of the model is strictly
related with the sum:

vn =
n∑

k=1

1
a2k

(22)
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some important quantities

Now, note that by Stirling formula for the gamma function

an ∼
nα

Γ(α+ 1) as n → ∞ (23)

Therefore, in the diffusive region, where 0 ≤ α < 1/2, we have:

vn =
n∑

k=1

(
Γ(k)Γ(α+ 1)
Γ(k+ α)

)2
∼ (Γ(α+ 1))2

n∑
k=1

1
k2α (24)

as n → ∞. Then, by the p-series we know that

lim
n→∞

vn
n1−2α =

(Γ(α+ 1))2
1− 2α (25)
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some important quantities

In the critical region, where α = 1/2, we have

vn ∼ (Γ(3/2))2
n∑

k=1

1
k (26)

Then vn diverges with velocity log n and we obtain

lim
n→∞

vn
log n =

π

4 (27)

Finally, in the superdiffusive region, if 1/2 < α ≤ 1,

lim
n→∞

vn =
∞∑
k=0

(
Γ(k+ 1)Γ(α+ 1)
Γ(k+ α+ 1)

)2
= 3F2

(
1, 1, 1

(α+ 1), (α+ 1)
1
)
(28)

where 3F2 is the (finite) hypergeometric generalized function.
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some important quantities

Most of the asymptotic analysis will be conducted by the increasing
process of martingale (Mn); the predictable quadratic variation ⟨M⟩n
given, for all n ≥ 1, by

⟨M⟩n =
n∑

k=1

E[∆M2
k|Fk−1] = E

[
ξ21 |F0

]
+

n−1∑
k=1

a2k+1E
[
ξ2k+1|Fk

]
= 1− 2ω(2β − 1) + ω2 + γ

n−1∑
k=1

a2k+1
Zk
k + (τ − ω2)vn

− 2ωα
n−1∑
k=1

a2k+1
Sk
k − α2

n−1∑
k=1

a2k+1
S2k
k2 (29)
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some lemmas

Lemma

The martingale (Mn) can be written in the additive form

Mn =
n−1∑
k=1

∆Mk =
n−1∑
k=1

(Mk −Mk−1) =
n−1∑
k=1

Xk − E(Xk|Fk−1)

ak
(30)

Lemma

Let an defined in (20), then
n−1∑
l=1

1
al+1

∼ Γ(α+ 1)n1−α

(1− α)
.

Lemma

The series vn =
∑ 1

a2n
converges, if and only if, α > 1

2
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some lemmas

Lemma

Let ∆Mn = Mn −Mn−1, assume for all ε > 0

∞∑
n=1

1
vn

E
[
|∆Mn|2I{|∆Mn|≥ε

√vn}|Fn−1
]
< ∞ a.s (31)

and for some a > 0,
∞∑
n=1

1
van

E
[
|∆Mn|2aI{|∆Mn|≤

√vn}|Fn−1
]
< ∞ a.s (32)

Then, (Mn) satisfies that

1
log vn

n∑
k=1

(
vk − vk−1

vk

)
δMk/

√vk−1 ⇒ G a.s (33)

where G stands for the N(0, σ2) distribution.
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Proof of almost sure central limit
theorem

26



diffusive behaviours

The proof is essentially based on previous Lemma. Hence, we have
that

∞∑
k=1

1
vk
E
[
|∆Mk|2I|∆Mk|≥ε

√vk |Fk−1
]
≤ 1

ε2

∞∑
k=1

1
v2k
E
[
|∆Mk|4|Fk−1

]
≤ sup

k≥1
E
[
ξ4k |Fk−1

] 1
ε2

∞∑
k=1

a4k
v2k

≤ 16
ε2

∞∑
k=1

a4k
v2k

∼ 16
ε2

∞∑
k=1

(1− 2α)2
k2 < ∞

Where, last step is due to (20). Therefore (31) holds. To prove the
validity of (32) we follow analogous steps with a = 2. Then

1
log vn

n∑
k=1

(
vk − vk−1

vk

)
δMk/

√vk−1 ⇒ G a.s (34)
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diffusive behaviours

By recalling that, fk ∼ 1−2α
k , log vn ∼ (1− 2α) log n and

Mk√vk−1
∼
√

1−2α
k

(
Sk − k ω

1−α

)
, we conclude that

1
log n

n∑
k=1

1
kδ

√
k
( Sk

k − ω
1−α

) ⇒ G∗ a.s (35)

where G∗ ∼ N(0, σ2/(1− 2α)) is the re-scaled version of G ∼ N(0, σ2).
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Proof of functional central limit
theorem
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diffusive behaviours

Note that, using (29) and Toeplitz lemma, we have

lim
n→∞

1
n1−2α ⟨M⟩n =

Γ(α+ 1)2
1− 2α

(
γτ

1− γ
+ (τ − ω2)− 2ω2α

1− α
−
(

ωα

1− α

)2
)

= σ2 Γ
2(α+ 1)
1− 2α a.s.

Then, we apply the functional central limit theorem for martingales.
That is, consider the martingale difference array Dn,k =

1√
n1−2α (∆Mk),

which satisfies

lim
n→∞

1
n1−2α ⟨M⟩⌊nt⌋ = σ2 Γ

2(α+ 1)
1− 2α t1−2α a.s. (36)

In addition, we need to prove the Lindeberg’s condition.
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diffusive behaviours

1
n1−2α

n∑
k=1

E[∆M2
kI{|∆Mk|>ε

√
n1−2α}|Fk−1] ≤ 1

n2(1−2α)ε2

n∑
k=1

E[∆M4
k|Fk−1]

≤ 1
n2(1−2α)ε2

n∑
k=1

a4kE[ξ4k |Fk−1] ≤ 16
n2(1−2α)ε2

n∑
k=1

a4k,

Then, thanks to (20), we have that, as n → ∞

n2a4n
v2n

→ (1− 2α)2,

which implies that 1
n1−4α

∑n
k=1 a4k converges to

(1−2α)2ℓ2
1−4α .
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diffusive behaviours

Therefore,

1
n1−2α

n∑
k=1

E[∆M2
kI{|∆Mk|>ε

√
n1−2α}|Fk−1] → 0 as n → ∞ in probability,

which allows us to conclude that for all t ≥ 0 and for any ε > 0,

1
n1−2α

⌊nt⌋∑
k=1

E[∆M2
kI{|∆Mk|>ε

√
n1−2α}|Fk−1] → 0, (37)

as n → ∞ in probability.
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diffusive behaviours

By noticing that limn→∞
⌊nt⌋a⌊nt⌋
n1−2α = t1−αΓ(α+ 1) and that (20) implies

that

M⌊nt⌋√
n1−2α

=
⌊nt⌋a⌊nt⌋√

n1−2α

(S⌊nt⌋
⌊nt⌋ − ω

1− α

)
+

ωα

(1− α)
√
n1−2α

a.s.,

(38)

we conclude that

(√
n
(S⌊nt⌋
⌊nt⌋ − ω

1− α

)
, t ≥ 0

)
=⇒

(
Wt, t ≥ 0

)
,

where Wt = Bt/(t1−αΓ(α+ 1)), which completes the proof of the
theorem.
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Calculations in the superdiffusive
regime
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superdiffusive behaviours

In this case, the second moment of the position is calculated
recursively. That is,

E[S2n] =
Γ(n+ 2α)

Γ(n)Γ(2α+ 1)

(
p+ q+ Γ(2α+ 1)

n−1∑
k=1

hk
Γ(k+ 1)

Γ(k+ 1+ 2α)

)
,

(39)
where

hk
Γ(k+ 1)

Γ(k+ 1+ 2α) =
τ

1− γ

Γ(k+ 1)
Γ(k+ 1+ 2α) +

2ω2

1− α

kΓ(k+ 1)
Γ(k+ 1+ 2α)

− t1
Γ(k+ 1)

akΓ(k+ 1+ 2α) + γt2
Γ(k+ 1)

kbkΓ(k+ 1+ 2α)
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multidimensional walks with tendency



the dynamics

We define a discrete-time evolution (Xi)i≥1. The n-step denotes an
opinion (movement), given by Xn ∈ E = {1, 2, . . . , K} the set of
choices.

In the context of a random walk, we have K = 2d or 2d+ 1
with laziness, then, we denote the set of directions by

Ed =

{
(e1,−e1, . . . , ed,−ed) , if K is even,
(e1,−e1, . . . , ed,−ed,0) , if K is odd,

where (e1, . . . , ed) is the canonical basis of the Euclidean space Rd,
and 0 denotes not movement.
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the dynamics

Let Sn =
n∑
i=1

Xi the d-dimensional position of the walker at time n.

The (n+ 1)-step is obtained by flipping a coin with probability θ,
denoted Yn and then:

∙ If Yn = 1, we chose uniformly at random t ∈ {1, 2, . . . ,n}, then
Xn+1 is equal to Xt with probability p. Otherwise, Xn+1 follows any
other direction with uniform probability 1−p

K−1 .
∙ If Yn = 0, then Xn+1 = e1 with probability p or any other direction
with uniform probability 1−p

K−1 .

Note that, if θ = 1 we obtain an elephant-type dynamics. In case
θ = 0, the tendency with intensity p is given by direction e1, such
tendency is effective if p > 1/K.
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Main results
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law of large numbers

Theorem (G-N, 2020)

Let (Sn)n∈N the position of the walker, we get the following
almost-surely convergence

lim
n→∞

Sn
n =

(1− θ)(Kp− 1)
K− 1+ θ(1− Kp) (1, 0, . . . , 0)

T
.
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functional limit theorem - difussive case

Theorem (G-N, 2020)

If p < K+2θ−1
2θK then, for n → ∞, in D[0,∞)

1√
n

[
S⌊tn⌋ −

tn(1− θ)(Kp− 1)
K− 1+ θ(1− Kp) (1, 0, . . . , 0)

T
]

d−→ Wt,

where Wt is a continuous d-dimensional Gaussian process with
W0 = (0, . . . , 0)T, E(Wt) = (0, . . . , 0)T and, for 0 < s ≤ t,

E(WsWT
t ) = s

(
t
s

) θ(Kp−1)
(K−1)

ω


(K+ 1)α+ β + p− 1 0 . . . 0

0 2β . . . 0
...

... . . .
...

0 0 . . . 2β


where ω =

(K− 1)(1− p)
β2(K− 1+ 2θ(1− Kp)) , α = (K− 1)p+ θ(1− Kp) and

β = K− 1+ θ(1− Kp).
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functional limit theorem - critical case

Theorem (G-N, 2020)

If p = K+2θ−1
2θK then, for n → ∞, in D[0,∞)

1√
nt log(n)

[
S⌊nt⌋ − nt K(2p− 1)− 1

K− 1 (1, 0, . . . , 0)T
]

d−→ Wt,

where Wt as above and for 0 < s ≤ t,

E(WsWT
t ) = 4s 1− p

(K− 1)2

(
p+

K− 3
2

) 
(K+ 2) 0 . . . 0

0 2 . . . 0
...

... . . . ...
0 0 . . . 2


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functional limit theorem - critical case
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2
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

42



the superdiffusive case

Theorem (G-N, 2020)

Let denote Ŝn = Sn − E(Sn) and a = Kp−1
K−1 . If p > K+2θ−1

2θK , then we have
almost sure convergence

lim
n→∞

Ŝn
naθ = L,

where the limiting value L is a non-degenerated random vector. We
also have mean square convergence

lim
n→∞

E

(∥∥∥∥ Ŝn
naθ − L

∥∥∥∥2
)

= 0.
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the superdiffusive case

Theorem (G-N, 2020)

The expected value of L is E(L) = 0, while its covariance matrix is
obtained by

E(LLT) = lim
n→∞

Γ(n)2
Γ(aθ + n)2E(ŜnŜ

T
n),

where

E(ŜnŜTn) =
n−1∏
i=1

(
1+ 2aθ

i

)
E(Ŝ1ŜT1) +

n−2∑
i=1

n−i∏
k=1

(
1+ 2aθ

n+ 1− k

)[
θ

d Id + (1− θ)Mp

−

(
aθ
i

i−1∏
l=1

γi−lE(S1) + (1− θ)vp

)(
aθ
i

i−1∏
l=1

γi−lE(S1) + (1− θ)vp

)T
+ θ

d Id + (1− θ)Mp +
n∏

k=1

(
1+ 2aθ

n+ 1− k

)
E(X̂1X̂T1)

−

(
aθ

n− 1

n−2∏
l=1

γn−1−lE(S1) + (1− θ)vp

)(
aθ

n− 1

n−2∏
l=1

γn−1−lE(S1) + (1− θ)vp

)T

.
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Sketch of the proofs
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relation with an urn model

Let denote Fn = σ(X1, . . . , Xn) the σ-field generated by the sequence
X1, . . . , Xn.

Therefore, defining N(n, x) = |{i ∈ {1, . . . ,n} : Xi = x}|, the number of
steps in the direction x ∈ Ed until time n, we obtain

P(Xn+1 = x|Fn) =

 p+ θ
(
1−Kp
K−1

)(
1− N(n,e1)

n

)
, if x = e1,

1−p
K−1 + θ

(
1−Kp
K−1

)
N(n,x)

n , if x ̸= e1.

The position of the walker can be obtained by using an auxiliary
process, which evolves as an urn model with K colors.
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relation with an urn model

In this sense,

Sn =

 (U1,n − U2,n,U3,n − U4,n, . . . ,UK−1,n − UK,n) , if K is even,

(U1,n − U2,n,U3,n − U4,n, . . . ,UK−2,n − UK−1,n) , if K is odd,

where Un = (U1,n, . . . ,UK,n) is the vector that denotes the number of
balls of each of the K colors, at time n. Each color is associated to
the random variables N(n, x) above.
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relation with an urn model

Then, by defining the random replacement matrix as in Janson
(2004), we need to introduce the random vectors ξi, for i ∈ {1, . . . , K},
which represent a random number of balls to be added into the urn.
Essentially, these column vectors assume values on {e1, . . . , eK} the
canonical basis of the Euclidean space K. That is, these vectors
denote the color of the ball to be added.

In this sense, we obtain

A = (E(ξ1), . . . ,E(ξK)) =



p p+ θ 1−Kp
K−1 . . . p+ θ 1−Kp

K−1

1−p
K−1

1−p−θ(1−Kp)
K−1 . . . 1−p

K−1

...
... . . . ...

1−p
K−1

1−p
K−1 . . . 1−p−θ(1−Kp)

K−1


,
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
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diffusive behaviours

for this matrix, the largest eigenvalue is λ1 = 1, and for j = 2, . . . , K
we get

λj = θ

(
Kp− 1
K− 1

)
.

Moreover, u1 = (1, 1, · · · , 1)T, and

v1 = ((K− 1)(p− λ2), 1− p, . . . , 1− p)T 1
(K− 1)(1− λ2)

,

and, for j = 2, 3, . . . , K we obtain

uj = (1− p, · · · , (K− 1)λ2 − (K− 2)− p, · · · , 1− p)T 1
(K− 1)(1− λ2)

,

where the different value is at j-th position. Similarly,
vj = (1, 0, . . . ,−1, . . . , 0)T, with −1 occupying the j-th position.
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diffusive behaviours

We then use Theorem 3.21 from Janson (2004), which states that

n−1Un −→ λ1v1 .

and Theorem 3.22 of Janson (2004) to prove the functional limit
theorem. Then, let LI = {i : λi < λ1/2} and LII = {i : λi = λ1/2}. The
limiting covariance matrices are given by

ΣI =
∑
j,k∈LI

uTj Buk
λ1 − λj − λk

vjvTk ; ΣII =
∑
j∈LII

uTj BujvjvTj ,

where B =
K∑
i=1

v1iBi and Bi = E[ξiξTi ],
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diffusive behaviours

Therefore,

uTi Buj =
1− p

(K− 1)2(1− λ2)2
·

{
p− 1 , if i ̸= j,
p− 1+ (K− 1)(1− λ2) , if i = j,

and

vivTj =



1 0 · · · −1 · · · 0
0 0 · · · 0 · · · 0
...

... . . .
... . . .

...
−1 0 · · · 1 · · · 0
...

... . . . ... . . . ...
0 0 · · · 0 · · · 0


,

we highlighted j-column and i-row.
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diffusive behaviours
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superdiffusive behaviours

We define a locally square-integrable multidimensional martingale,
given by

Mn = anŜn =
n∑

k=1

ak
(
Ŝk −

(
1+ aθ

k− 1

)
Ŝk−1

)
=

n∑
k=1

akεk, (40)

where Ŝn = Sn − E(Sn), ak =
k−1∏
l=1

l
l+ aθ and a = Kp−1

K−1 .

Then, as in Theorem 3.7 in Bercu (2018), we need to prove that

lim
n→∞

Tr⟨M⟩n < ∞ a.s (41)

where TrA stands for the trace of matrix A and

⟨M⟩n =
n∑

k=1

E
[
(akεk)(akεk)T

∣∣Fk−1
]
. (42)
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n→∞

Tr⟨M⟩n < ∞ a.s (41)

where TrA stands for the trace of matrix A and

⟨M⟩n =
n∑

k=1

E
[
(akεk)(akεk)T

∣∣Fk−1
]
. (42)
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superdiffusive behaviours

Then,

Tr⟨M⟩n = a21E(ε1εT1) + α(p, θ, K)
n−1∑
l=1

a2l+1

(
1− 2θ(1− θ)

α(p, θ, K)
Tr(SlvTp)

l

)

−a2θ2
n−1∑
l=1

(al+1
l

)2
∥Sl∥2,

(43)
where α(p, θ, K) = 1− (1− θ)2

(
p (1−p)2

K−1

)
.

In addition, note that for all l ≥ 1 and for all p, K and θ,
−1 ≤ 2θ(1−θ)

α(p,θ,K)
Tr(SlvTp)

l ≤ 1. Then,

Tr⟨M⟩n ≤ a21E(ε1εT1) + 2α(p, θ, K)
n−1∑
l=1

a2l+1. (44)
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superdiffusive behaviours

Note that,
n∑
l=1

a2l =
n∑
l=1

(
Γ(aθ + 1)Γ(l)
Γ(aθ + l)

)2
, which in the superdiffusive

regime satisfies

lim
n→∞

n∑
l=1

a2l =
∞∑
l=1

(
Γ(aθ + 1)Γ(l)
Γ(aθ + l)

)2
= 3F2 (1, 1, 1; aθ + 1, aθ + 1; 1) ,

(45)
the finite confluent hypergeometric function. Therefore,

lim
n→∞

Tr⟨M⟩n < ∞ a.s . (46)
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