ON THE ASYMPTOTIC OF A LAZY REINFORCED RANDOM WALK

Manuel González-Navarrete (Universidad de La Frontera, Temuco, Chile) Joint work with R. Lambert (UFU, Brazil) and V. Vázquez (BUAP, Mexico)

I Escuela de Postgrado en Matemática - Universidad de La Frontera, Lican Ray, Chile.

SUMMARY

(A) Introduction

SUMMARY

(A) Introduction
(B) Main results

SUMMARY

(A) Introduction
(B) Main results
(C) Sketch of the proofs

SUMMARY

(A) Introduction
(B) Main results
(C) Sketch of the proofs
(D) Bonus: a multidimensional example

SUMMARY

(A) Introduction
(B) Main results
(C) Sketch of the proofs
(D) Bonus: a multidimensional example
(E) References

INTRODUCTION

THE SIMPLE RANDOM WALK

The one-dimensional simple random walk is defined by an independent identically distributed sequence $\left\{X_{1}, X_{2}, \ldots\right\}$ where $X_{i} \in\{-1,+1\}$. The main interest is the position of the walker at time n, given by

$$
S_{n}=\sum_{i=1}^{n} x_{i},
$$

and $S_{0}=0$.

THE SIMPLE RANDOM WALK

The one-dimensional simple random walk is defined by an independent identically distributed sequence $\left\{X_{1}, X_{2}, \ldots\right\}$ where $X_{i} \in\{-1,+1\}$. The main interest is the position of the walker at time n, given by

$$
S_{n}=\sum_{i=1}^{n} X_{i},
$$

and $S_{0}=0$.

THE ELEPHANT RANDOM WALK

The elephant random walk (ERW) introduced in 2004 can be represented by a sequence $\left\{X_{1}, X_{2}, \ldots\right\}$ where $X_{i} \in\{-1,+1\}$. Assuming that, at time n, the elephant remembers its full history and chooses its next step in a strong dependent sense.

THE ELEPHANT RANDOM WALK

The elephant random walk (ERW) introduced in 2004 can be represented by a sequence $\left\{X_{1}, X_{2}, \ldots\right\}$ where $X_{i} \in\{-1,+1\}$. Assuming that, at time n, the elephant remembers its full history and chooses its next step in a strong dependent sense.

First, it selects randomly a step from the past, and then, with probability $p \in[0,1]$, it repeats what it did at the remembered time, whereas with the complementary probability $1-\mathrm{p}$, it makes a step in the opposite direction.

THE ELEPHANT RANDOM WALK

The elephant random walk (ERW) introduced in 2004 can be represented by a sequence $\left\{X_{1}, X_{2}, \ldots\right\}$ where $X_{i} \in\{-1,+1\}$. Assuming that, at time n, the elephant remembers its full history and chooses its next step in a strong dependent sense.

First, it selects randomly a step from the past, and then, with probability $p \in[0,1]$, it repeats what it did at the remembered time, whereas with the complementary probability $1-\mathrm{p}$, it makes a step in the opposite direction.

In other words, at step $n+1$, it chooses $t \in\{1, \ldots . n\}$ uniformly at random. Then

$$
X_{n+1}= \begin{cases}X_{t} & \text { with probability } p \tag{1}\\ -X_{t} & \text { with probability } 1-p\end{cases}
$$

THE ELEPHANT RANDOM WALK

The ERW shows a transition from diffusive to super-diffusive behaviours for S_{n}, with critical $p_{c}=\frac{3}{4}$. That is, the mean squared displacement is a linear function of time in the diffusive case ($\mathrm{p}<\mathrm{p}_{\mathrm{c}}$), but is given by a power law in the super-diffusive regime ($p>p_{c}$)

- Baur, E. and Bertoin, J. (2016) Elephant random walks and their connection to Pólya-type urns. Phys. Rev. E 94, 052134.

THE ELEPHANT RANDOM WALK

The ERW shows a transition from diffusive to super-diffusive behaviours for S_{n}, with critical $p_{c}=\frac{3}{4}$. That is, the mean squared displacement is a linear function of time in the diffusive case ($\mathrm{p}<\mathrm{p}_{\mathrm{c}}$), but is given by a power law in the super-diffusive regime ($p>p_{c}$)

- Baur, E. and Bertoin, J. (2016) Elephant random walks and their connection to Pólya-type urns. Phys. Rev. E 94, 052134. and simultaneously in
- Coletti, C., Gava, R. and Schütz, G. (2017) Central limit theorem for the elephant random walk. J. Math. Phys. 56, 05330.
- Bercu, B. (2018) A martingale approach for the elephant random walk. J. Phys. A: Math. Theor. 51(1).

FORMULATION OF THE MODEL

ORIGINAL FORMULATION

We are interested in the formulation of an ERW with delays as given by Gut and Stadtmüller (2019). Let the first step given by

$$
X_{1}= \begin{cases}+1 & , \text { with probability } p \tag{2}\\ -1 & , \text { with probability } q \\ 0 & , \text { with probability } r\end{cases}
$$

where $\mathrm{p}+\mathrm{q}+\mathrm{r}=1$.

ORIGINAL FORMULATION

We are interested in the formulation of an ERW with delays as given by Gut and Stadtmüller (2019). Let the first step given by

$$
X_{1}= \begin{cases}+1 & , \text { with probability } p \tag{2}\\ -1 & , \text { with probability } q \\ 0 & , \text { with probability } r\end{cases}
$$

where $\mathrm{p}+\mathrm{q}+\mathrm{r}=1$.
The next steps are performed by the rule

$$
X_{n+1}= \begin{cases}X_{t} & , \text { with probability } p \tag{3}\\ -X_{t} & \text {, with probability } q \\ 0 & , \text { with probability } r\end{cases}
$$

where t is uniformly chosen from $\{1, \ldots, n\}$.

OUR DYNAMICS

Let a sequence $\left\{X_{n}\right\}_{n \geq 1}$ and consider the position given by $S_{n}=\sum_{i=1}^{n} X_{i}$. The random walk we are dealing with starts at the origin, i.e., $S_{0}=0$.

OUR DYNAMICS

Let a sequence $\left\{X_{n}\right\}_{n \geq 1}$ and consider the position given by $S_{n}=\sum_{i=1}^{n} X_{i}$. The random walk we are dealing with starts at the origin, i.e., $S_{0}=0$. Then, for $n \geq 1$, we use the random variables

$$
\alpha_{\mathrm{n}}=\left\{\begin{array}{cl}
1, & \text { with probability } \mathrm{p} \\
-1, & \text { with probability } \mathrm{q} \\
0, & \text { with probability } \mathrm{r}
\end{array}\right.
$$

with $\mathrm{p}+\mathrm{q}+\mathrm{r}=1$, such that $\mathrm{X}_{1}=\alpha_{1}$ and for each $\mathrm{n} \geq 2$ we set

$$
\begin{equation*}
X_{n}=Y_{n} \alpha_{n} X_{U_{n}}+\left(1-Y_{n}\right) \alpha_{n}, \tag{4}
\end{equation*}
$$

OUR DYNAMICS

Let a sequence $\left\{X_{n}\right\}_{n \geq 1}$ and consider the position given by $S_{n}=\sum_{i=1}^{n} X_{i}$. The random walk we are dealing with starts at the origin, i.e., $S_{0}=0$. Then, for $n \geq 1$, we use the random variables

$$
\alpha_{\mathrm{n}}=\left\{\begin{array}{cl}
1, & \text { with probability } \mathrm{p} \\
-1, & \text { with probability } \mathrm{q} \\
0, & \text { with probability } \mathrm{r}
\end{array}\right.
$$

with $\mathrm{p}+\mathrm{q}+\mathrm{r}=1$, such that $\mathrm{X}_{1}=\alpha_{1}$ and for each $\mathrm{n} \geq 2$ we set

$$
\begin{equation*}
X_{n}=Y_{n} \alpha_{n} X_{U_{n}}+\left(1-Y_{n}\right) \alpha_{n}, \tag{4}
\end{equation*}
$$

where Y_{n} posses the Bernoulli distribution with parameter $\theta \in[0,1)$.

OUR DYNAMICS

Let a sequence $\left\{X_{n}\right\}_{n \geq 1}$ and consider the position given by $S_{n}=\sum_{i=1}^{n} X_{i}$. The random walk we are dealing with starts at the origin, i.e., $S_{0}=0$. Then, for $n \geq 1$, we use the random variables

$$
\alpha_{\mathrm{n}}=\left\{\begin{array}{cl}
1, & \text { with probability } \mathrm{p} \\
-1, & \text { with probability } \mathrm{q} \\
0, & \text { with probability } \mathrm{r}
\end{array}\right.
$$

with $\mathrm{p}+\mathrm{q}+\mathrm{r}=1$, such that $\mathrm{X}_{1}=\alpha_{1}$ and for each $\mathrm{n} \geq 2$ we set

$$
\begin{equation*}
X_{n}=Y_{n} \alpha_{n} X_{U_{n}}+\left(1-Y_{n}\right) \alpha_{n}, \tag{4}
\end{equation*}
$$

where Y_{n} posses the Bernoulli distribution with parameter $\theta \in[0,1)$. U_{n} is a discrete uniform random variable on $\{1,2, \ldots, n-1\}$. Moreover, α_{n} and U_{n} are independent and Y_{n} is independent of the RW's past.

MAIN RESULTS

MAIN RESULTS

We use the following notation

$$
\begin{gather*}
\alpha=(\mathrm{p}-\mathrm{q}) \cdot \theta, \omega=(\mathrm{p}-\mathrm{q})(1-\theta), \tau=(1-\theta)(\mathrm{p}+\mathrm{q}), \\
\gamma=(\mathrm{p}+\mathrm{q}) \cdot \theta \text { and } \sigma^{2}=\frac{\tau}{1-\gamma}-\left(\frac{\omega}{1-\alpha}\right)^{2} . \tag{5}
\end{gather*}
$$

LAW OF LARGE NUMBERS

Theorem (G-N et. al, 2024)
Let the RW given by (4), for all $\alpha \in[0,1)$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S_{n}-\mathbb{E}\left(S_{n}\right)}{n}=0 \quad \text { a.s } \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=\frac{\omega}{1-\alpha} \quad \text { a.s. } \tag{7}
\end{equation*}
$$

FUNCTIONAL CENTRAL LIMIT THEOREM - DIFFUSIVE REGIME

Let denote by $\mathrm{D}([0, \infty[)$ the Skorokhod space of right-continuous functions with left-hand limits.

FUNCTIONAL CENTRAL LIMIT THEOREM - DIFFUSIVE REGIME

Let denote by $\mathrm{D}([0, \infty[)$ the Skorokhod space of right-continuous functions with left-hand limits.

Theorem (G-N et. al, 2024)
If $\alpha<1 / 2$, we have the distributional convergence in $\mathrm{D}([0, \infty[)$,

$$
\begin{equation*}
\left(\sqrt { n } \left(\frac{\left.\left.\left.S_{\lfloor n t\rfloor}^{\lfloor n t\rfloor}-\frac{\omega}{1-\alpha}\right), t \geq 0\right) \Longrightarrow\left(W_{t}, t \geq 0\right)\right), ~(1)}{}\right.\right. \tag{8}
\end{equation*}
$$

where $\left(W_{t}, t \geq 0\right)$ is a real-valued centered Gaussian process starting at the origin with covariance given, for all $0<\mathrm{s} \leq \mathrm{t}$, by $\mathbb{E}\left[\mathrm{W}_{\mathrm{s}} \mathrm{W}_{\mathrm{t}}\right]=\frac{\sigma^{2}}{(1-2 \alpha) \mathrm{t}}\left(\frac{\mathrm{t}}{\mathrm{s}}\right)^{\alpha}$.

FUNCTIONAL CENTRAL LIMIT THEOREM - DIFFUSIVE REGIME

Let denote by $\mathrm{D}([0, \infty[)$ the Skorokhod space of right-continuous functions with left-hand limits.

Theorem (G-N et. al, 2024)
If $\alpha<1 / 2$, we have the distributional convergence in $\mathrm{D}([0, \infty[)$,
where $\left(W_{t}, t \geq 0\right)$ is a real-valued centered Gaussian process starting at the origin with covariance given, for all $0<\mathrm{s} \leq \mathrm{t}$, by $\mathbb{E}\left[\mathrm{W}_{\mathrm{s}} \mathrm{W}_{\mathrm{t}}\right]=\frac{\sigma^{2}}{(1-2 \alpha) \mathrm{t}}\left(\frac{\mathrm{t}}{\mathrm{s}}\right)^{\alpha}$. In particular, we have the asymptotic normality.

$$
\begin{equation*}
\sqrt{n}\left(\frac{S_{n}}{n}-\frac{\omega}{1-\alpha}\right) \xrightarrow{d} N\left(0, \frac{\sigma^{2}}{1-2 \alpha}\right) . \tag{9}
\end{equation*}
$$

LAW OF ITERATED LOGARITHM AND ALMOST SURE CLT

Theorem (G-N et. al, 2024)
If $\alpha<1 / 2$, then

$$
\limsup _{n \rightarrow \infty} \pm\left(\frac{n}{2 \log \log n}\right)\left(\frac{S_{n}}{n}-\frac{\omega}{1-\alpha}\right)^{2}=\frac{\sigma^{2}}{1-2 \alpha} \quad \text { a.s. }
$$

LAW OF ITERATED LOGARITHM AND ALMOST SURE CLT

Theorem (G-N et. al, 2024)
If $\alpha<1 / 2$, then

$$
\limsup _{n \rightarrow \infty} \pm\left(\frac{n}{2 \log \log n}\right)\left(\frac{S_{n}}{n}-\frac{\omega}{1-\alpha}\right)^{2}=\frac{\sigma^{2}}{1-2 \alpha} \quad \text { a.s. }
$$

Theorem (G-N et. al, 2024)
If $\alpha<1 / 2$ then we have the following almost sure convergence of empirical measures

$$
\begin{equation*}
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{I}_{\left\{\sqrt{k}\left(\frac{s_{k}}{k}-\frac{\omega}{1-\alpha}\right) \leq x\right\}} \xrightarrow{n \rightarrow \infty} F_{Z}(x) \quad \text { a.s } \tag{10}
\end{equation*}
$$

where F_{Z} is the cumulative distribution function of
$\mathrm{Z} \sim \mathrm{N}\left(0, \sigma^{2} /(1-2 \alpha)\right)$.

FUNCTIONAL CENTRAL LIMIT THEOREM - CRITICAL REGIME

Theorem (G-N et. al, 2024)
If $\alpha=1 / 2$, we have the distributional convergence in $\mathrm{D}([0, \infty[)$,
where $\left(B_{t}, t \geq 0\right)$ is a standard Brownian motion. In particular, we have the asymptotic normality

$$
\begin{equation*}
\sqrt{\frac{n}{\log n}}\left(\frac{S_{n}}{n}-2 \omega\right) \xrightarrow{d} N\left(0, \frac{\tau}{1-\gamma}-4 \omega^{2}\right) . \tag{12}
\end{equation*}
$$

LAW OF ITERATED LOGARITHM AND ALMOST SURE CLT

Theorem (G-N et. al, 2024)
If $\alpha=1 / 2$, then

$$
\limsup _{n \rightarrow \infty} \pm\left(\frac{n}{2 \log n \log \log \log n}\right)\left(\frac{S_{n}}{n}-2 \omega\right)^{2}=\frac{\tau}{1-\gamma}-4 \omega^{2} \quad \text { a.s. }
$$

LAW OF ITERATED LOGARITHM AND ALMOST SURE CLT

Theorem (G-N et. al, 2024)
If $\alpha=1 / 2$, then

$$
\limsup _{n \rightarrow \infty} \pm\left(\frac{n}{2 \log n \log \log \log n}\right)\left(\frac{S_{n}}{n}-2 \omega\right)^{2}=\frac{\tau}{1-\gamma}-4 \omega^{2} \quad \text { a.s. }
$$

Theorem (G-N et. al, 2024)
If $\alpha=1 / 2$ we have the almost sure convergence

$$
\begin{equation*}
\frac{1}{\log \log n} \sum_{k=1}^{n} \frac{1}{k \log k} \mathbb{I}_{\left\{\sqrt{\frac{k}{\log k}}\left(\frac{s_{k}}{k}-2 \omega\right) \leq x\right\}} \xrightarrow{n \rightarrow \infty} F_{Z}(x) \quad \text { a.s } \tag{13}
\end{equation*}
$$

where F_{Z} is the cumulative distribution function of $Z \sim N\left(0, \sigma^{2}\right)$.

THE SUPERDIFFUSIVE CASE

Theorem (G-N et. al, 2024)
We have the almost sure convergence
where L is a non-degenerated random variable such that

$$
\begin{equation*}
\mathbb{E}[L]=\frac{\beta(1-\alpha)-\omega}{\Gamma(\alpha+1)(1-\alpha)} \tag{15}
\end{equation*}
$$

where $\beta:=\mathrm{p}-\mathrm{q}$, and

$$
\begin{equation*}
\mathbb{E}\left[L^{2}\right]=\frac{\nabla}{\Gamma(2 \alpha+1)}+2 \omega\left(\frac{1}{(1-\alpha) \Gamma(\alpha)}\right)^{2} \tag{16}
\end{equation*}
$$

where $\nabla:=\mathrm{p}+\mathrm{q}+\frac{\tau}{(1-\gamma)(2 \alpha-1)}-\frac{2 \alpha \omega^{2}}{(2 \alpha-1)(\alpha-1)^{2}}+4\left[\frac{\omega \alpha(\beta-1)}{(\alpha-1)^{2}}\right]+\frac{\mathrm{r} \gamma^{2}}{2 \alpha-\gamma}$.

GAUSSIAN FLUCTUATIONS - SUPERDIFFUSIVE CASE

Theorem (G-N et. al, 2024)
If $\alpha>1 / 2$, then

$$
\begin{equation*}
\sqrt{n^{2 \alpha-1}}\left(n^{1-\alpha}\left(\frac{S_{n}}{n}-\frac{\omega}{1-\alpha}\right)-L\right) \xrightarrow{d} N\left(0, \frac{\sigma^{2}}{2 \alpha-1}\right) \text { as } n \rightarrow \infty \tag{17}
\end{equation*}
$$

GAUSSIAN FLUCTUATIONS - SUPERDIFFUSIVE CASE

Theorem (G-N et. al, 2024)
If $\alpha>1 / 2$, then

$$
\begin{equation*}
\sqrt{n^{2 \alpha-1}}\left(n^{1-\alpha}\left(\frac{S_{n}}{n}-\frac{\omega}{1-\alpha}\right)-L\right) \xrightarrow{d} N\left(0, \frac{\sigma^{2}}{2 \alpha-1}\right) \text { as } n \rightarrow \infty \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \pm \frac{\sqrt{n^{2 \alpha-1}}\left(n^{1-\alpha}\left(\frac{S_{n}}{n}-\frac{\omega}{1-\alpha}\right)-L\right)}{\sqrt{\log \log n}}=\sqrt{\frac{2 \sigma^{2}}{2 \alpha-1}} \text { a.s } \tag{18}
\end{equation*}
$$

SKETCH OF THE PROOFS

DEFINITIONS

We base the asymptotic analysis of the RW on the sequence $\left(M_{n}\right)$, given by $M_{0}=0$ and for $\mathrm{n} \geq 1$ by

$$
\begin{equation*}
M_{n}=a_{n} S_{n}-\omega A_{n}, \tag{19}
\end{equation*}
$$

where; on the one hand, the sequence $\left(a_{n}\right)$ is given by $a_{1}=1$ and for $n \geq 2$ as

$$
\begin{equation*}
\mathrm{a}_{\mathrm{n}}=\prod_{\mathrm{k}=1}^{\mathrm{n}-1} \gamma_{\mathrm{k}}^{-1}=\frac{\Gamma(\mathrm{n}) \Gamma(\alpha+1)}{\Gamma(\mathrm{n}+\alpha)} \sim \frac{\Gamma(1+\alpha)}{\mathrm{n}^{\alpha}}, \tag{20}
\end{equation*}
$$

where Γ stands for the Euler gamma function, and; on the other hand, sequence $\left(A_{n}\right)$ is given by $A_{0}=0$ and for $n \geq 1$ as

$$
\begin{equation*}
A_{n}=\sum_{k=1}^{n} a_{n} . \tag{21}
\end{equation*}
$$

SOME IMPORTANT QUANTITIES

Additionally, we observe that from (20) that almost surely

$$
\begin{aligned}
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right] & =a_{n+1}\left(\gamma_{n} S_{n}+\omega\right)-\omega A_{n+1} \\
& =a_{n} S_{n}-\omega A_{n}=M_{n} .
\end{aligned}
$$

Thus, $\left(M_{n}\right)$ is a discrete time martingale with respect to the filtration $\left(\mathcal{F}_{\mathrm{n}}\right)$.

SOME IMPORTANT QUANTITIES

Additionally, we observe that from (20) that almost surely

$$
\begin{aligned}
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right] & =a_{n+1}\left(\gamma_{n} S_{n}+\omega\right)-\omega A_{n+1} \\
& =a_{n} S_{n}-\omega A_{n}=M_{n} .
\end{aligned}
$$

Thus, $\left(M_{n}\right)$ is a discrete time martingale with respect to the filtration $\left(\mathcal{F}_{\mathrm{n}}\right)$.

In this sense, the asymptotic behaviour of the model is strictly related with the sum:

$$
\begin{equation*}
v_{n}=\sum_{k=1}^{n} \frac{1}{a_{k}^{2}} \tag{22}
\end{equation*}
$$

SOME IMPORTANT QUANTITIES

Now, note that by Stirling formula for the gamma function

$$
\begin{equation*}
\mathrm{a}_{\mathrm{n}} \sim \frac{\mathrm{n}^{\alpha}}{\Gamma(\alpha+1)} \quad \text { as } \quad \mathrm{n} \rightarrow \infty \tag{23}
\end{equation*}
$$

SOME IMPORTANT QUANTITIES

Now, note that by Stirling formula for the gamma function

$$
\begin{equation*}
\mathrm{a}_{\mathrm{n}} \sim \frac{\mathrm{n}^{\alpha}}{\Gamma(\alpha+1)} \quad \text { as } \quad \mathrm{n} \rightarrow \infty \tag{23}
\end{equation*}
$$

Therefore, in the diffusive region, where $0 \leq \alpha<1 / 2$, we have:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{n}}=\sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\frac{\Gamma(\mathrm{k}) \Gamma(\alpha+1)}{\Gamma(\mathrm{k}+\alpha)}\right)^{2} \sim(\Gamma(\alpha+1))^{2} \sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{1}{\mathrm{k}^{2 \alpha}} \tag{24}
\end{equation*}
$$

as $n \rightarrow \infty$. Then, by the p -series we know that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{v_{n}}{n^{1-2 \alpha}}=\frac{(\Gamma(\alpha+1))^{2}}{1-2 \alpha} \tag{25}
\end{equation*}
$$

SOME IMPORTANT QUANTITIES

In the critical region, where $\alpha=1 / 2$, we have

$$
\begin{equation*}
v_{n} \sim(\Gamma(3 / 2))^{2} \sum_{k=1}^{n} \frac{1}{k} \tag{26}
\end{equation*}
$$

Then v_{n} diverges with velocity $\log n$ and we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{v_{n}}{\log n}=\frac{\pi}{4} \tag{27}
\end{equation*}
$$

SOME IMPORTANT QUANTITIES

In the critical region, where $\alpha=1 / 2$, we have

$$
\begin{equation*}
v_{n} \sim(\Gamma(3 / 2))^{2} \sum_{k=1}^{n} \frac{1}{k} \tag{26}
\end{equation*}
$$

Then v_{n} diverges with velocity $\log n$ and we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{v_{n}}{\log n}=\frac{\pi}{4} \tag{27}
\end{equation*}
$$

Finally, in the superdiffusive region, if $1 / 2<\alpha \leq 1$,

$$
\lim _{n \rightarrow \infty} v_{n}=\sum_{k=0}^{\infty}\left(\frac{\Gamma(k+1) \Gamma(\alpha+1)}{\Gamma(\mathrm{k}+\alpha+1)}\right)^{2}={ }_{3} F_{2}\left(\begin{array}{c|c}
1,1,1 \tag{28}\\
(\alpha+1),(\alpha+1) & 1
\end{array}\right)
$$

where ${ }_{3} F_{2}$ is the (finite) hypergeometric generalized function.

SOME IMPORTANT QUANTITIES

Most of the asymptotic analysis will be conducted by the increasing process of martingale $\left(M_{n}\right)$; the predictable quadratic variation $\langle M\rangle_{n}$ given, for all $n \geq 1$, by

$$
\begin{align*}
\langle\mathrm{M}\rangle_{\mathrm{n}} & =\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbb{E}\left[\Delta \mathrm{M}_{\mathrm{k}}^{2} \mid \mathcal{F}_{\mathrm{k}-1}\right]=\mathbb{E}\left[\xi_{1}^{2} \mid \mathcal{F}_{0}\right]+\sum_{\mathrm{k}=1}^{\mathrm{n}-1} \mathrm{a}_{\mathrm{k}+1}^{2} \mathbb{E}\left[\xi_{k+1}^{2} \mid \mathcal{F}_{\mathrm{k}}\right] \\
& =1-2 \omega(2 \beta-1)+\omega^{2}+\gamma \sum_{k=1}^{n-1} a_{k+1}^{2} \frac{Z_{k}}{k}+\left(\tau-\omega^{2}\right) v_{n} \\
& -2 \omega \alpha \sum_{\mathrm{k}=1}^{\mathrm{n}-1} a_{k+1}^{2} \frac{\mathrm{~S}_{\mathrm{k}}}{\mathrm{k}}-\alpha^{2} \sum_{\mathrm{k}=1}^{\mathrm{n}-1} a_{k+1}^{2} \frac{\mathrm{~S}_{\mathrm{k}}^{2}}{\mathrm{k}^{2}} \tag{29}
\end{align*}
$$

SOME LEMMAS

Lemma

The martingale $\left(M_{n}\right)$ can be written in the additive form

$$
\begin{equation*}
M_{n}=\sum_{k=1}^{n-1} \Delta M_{k}=\sum_{k=1}^{n-1}\left(M_{k}-M_{k-1}\right)=\sum_{k=1}^{n-1} \frac{X_{k}-\mathbb{E}\left(X_{k} \mid \mathcal{F}_{k-1}\right)}{a_{k}} \tag{30}
\end{equation*}
$$

SOME LEMMAS

Lemma

The martingale $\left(M_{n}\right)$ can be written in the additive form

$$
\begin{equation*}
M_{n}=\sum_{k=1}^{n-1} \Delta M_{k}=\sum_{k=1}^{n-1}\left(M_{k}-M_{k-1}\right)=\sum_{k=1}^{n-1} \frac{X_{k}-\mathbb{E}\left(X_{k} \mid \mathcal{F}_{k-1}\right)}{a_{k}} \tag{30}
\end{equation*}
$$

Lemma

Let a_{n} defined in (20), then $\sum_{l=1}^{n-1} \frac{1}{a_{l+1}} \sim \frac{\Gamma(\alpha+1) n^{1-\alpha}}{(1-\alpha)}$.

SOME LEMMAS

Lemma

The martingale $\left(M_{n}\right)$ can be written in the additive form

$$
\begin{equation*}
M_{n}=\sum_{k=1}^{n-1} \Delta M_{k}=\sum_{k=1}^{n-1}\left(M_{k}-M_{k-1}\right)=\sum_{k=1}^{n-1} \frac{X_{k}-\mathbb{E}\left(X_{k} \mid \mathcal{F}_{k-1}\right)}{a_{k}} \tag{30}
\end{equation*}
$$

Lemma

Let a_{n} defined in (20), then $\sum_{l=1}^{n-1} \frac{1}{a_{l+1}} \sim \frac{\Gamma(\alpha+1) n^{1-\alpha}}{(1-\alpha)}$.

Lemma

The series $\mathrm{v}_{\mathrm{n}}=\sum \frac{1}{\mathrm{a}_{n}^{2}}$ converges, if and only if, $\alpha>\frac{1}{2}$

SOME LEMMAS

Lemma

Let $\Delta M_{n}=M_{n}-M_{n-1}$, assume for all $\varepsilon>0$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{v_{n}} \mathbb{E}\left[\left|\Delta M_{n}\right|^{2} \mathbb{I}_{\left\{\left|\Delta M_{n}\right| \geq \varepsilon \sqrt{v_{n}}\right\}} \mid \mathcal{F}_{n-1}\right]<\infty \text { a.s } \tag{31}
\end{equation*}
$$

and for some a >0,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{v_{n}^{a}} \mathbb{E}\left[\left|\Delta M_{n}\right|^{2 a} \mathbb{I}_{\left\{\left|\Delta M_{n}\right| \leq \sqrt{v_{n}}\right\}} \mid \mathcal{F}_{n-1}\right]<\infty \text { a.s } \tag{32}
\end{equation*}
$$

Then, $\left(M_{n}\right)$ satisfies that

$$
\begin{equation*}
\frac{1}{\log v_{n}} \sum_{k=1}^{n}\left(\frac{v_{k}-v_{k-1}}{v_{k}}\right) \delta_{M_{k} / \sqrt{v_{k-1}}} \Rightarrow G \text { a.s } \tag{33}
\end{equation*}
$$

where G stands for the $N\left(0, \sigma^{2}\right)$ distribution.

PROOF OF ALMOST SURE CENTRAL LIMIT THEOREM

DIFFUSIVE BEHAVIOURS

The proof is essentially based on previous Lemma. Hence, we have that

$$
\begin{aligned}
& \sum_{\mathrm{k}=1}^{\infty} \frac{1}{v_{k}} \mathbb{E}\left[\left|\Delta M_{\mathrm{k}}\right|^{2} \mathbb{I}_{\left|\Delta M_{k}\right| \geq \varepsilon \sqrt{v_{k}}} \mid \mathcal{F}_{\mathrm{k}-1}\right] \leq \frac{1}{\varepsilon^{2}} \sum_{\mathrm{k}=1}^{\infty} \frac{1}{\mathrm{v}_{\mathrm{k}}^{2}} \mathbb{E}\left[\left|\Delta M_{\mathrm{k}}\right|^{4} \mid \mathcal{F}_{\mathrm{k}-1}\right] \\
& \leq \sup _{\mathrm{k} \geq 1} \mathbb{E}\left[\xi_{\mathrm{k}}^{4} \mid \mathcal{F}_{\mathrm{k}-1}\right] \frac{1}{\varepsilon^{2}} \sum_{\mathrm{k}=1}^{\infty} \frac{a_{k}^{4}}{v_{k}^{2}} \leq \frac{16}{\varepsilon^{2}} \sum_{\mathrm{k}=1}^{\infty} \frac{a_{k}^{4}}{v_{k}^{2}} \sim \frac{16}{\varepsilon^{2}} \sum_{\mathrm{k}=1}^{\infty} \frac{(1-2 \alpha)^{2}}{k^{2}}<\infty
\end{aligned}
$$

Where, last step is due to (20). Therefore (31) holds. To prove the validity of (32) we follow analogous steps with $a=2$. Then

$$
\begin{equation*}
\frac{1}{\log v_{n}} \sum_{k=1}^{n}\left(\frac{v_{k}-v_{k-1}}{v_{k}}\right) \delta_{M_{k} / \sqrt{v_{k-1}}} \Rightarrow G \text { a.s } \tag{34}
\end{equation*}
$$

DIFFUSIVE BEHAVIOURS

By recalling that, $\mathrm{f}_{\mathrm{k}} \sim \frac{1-2 \alpha}{\mathrm{k}}, \log \mathrm{v}_{\mathrm{n}} \sim(1-2 \alpha) \log \mathrm{n}$ and
$\frac{M_{k}}{\sqrt{V_{k-1}}} \sim \sqrt{\frac{1-2 \alpha}{k}}\left(S_{k}-k_{\frac{\omega}{1-\alpha}}\right)$, we conclude that

$$
\begin{equation*}
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \delta_{\sqrt{k}\left(\frac{s_{k}}{k}-\frac{\omega}{1-\alpha}\right)} \Rightarrow G^{*} \text { a.s } \tag{35}
\end{equation*}
$$

where $\mathrm{G}^{*} \sim \mathrm{~N}\left(0, \sigma^{2} /(1-2 \alpha)\right)$ is the re-scaled version of $\mathrm{G} \sim \mathrm{N}\left(0, \sigma^{2}\right)$.

PROOF OF FUNCTIONAL CENTRAL LIMIT THEOREM

DIFFUSIVE BEHAVIOURS

Note that, using (29) and Toeplitz lemma, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n^{1-2 \alpha}}\langle M\rangle_{n} & =\frac{\Gamma(\alpha+1)^{2}}{1-2 \alpha}\left(\frac{\gamma \tau}{1-\gamma}+\left(\tau-\omega^{2}\right)-\frac{2 \omega^{2} \alpha}{1-\alpha}-\left(\frac{\omega \alpha}{1-\alpha}\right)^{2}\right) \\
& =\sigma^{2} \frac{\Gamma^{2}(\alpha+1)}{1-2 \alpha} \quad \text { a.s. }
\end{aligned}
$$

Then, we apply the functional central limit theorem for martingales. That is, consider the martingale difference array $D_{n, k}=\frac{1}{\sqrt{n^{1-2 \alpha}}}\left(\Delta M_{k}\right)$, which satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{1-2 \alpha}}\langle M\rangle_{\lfloor n t\rfloor}=\sigma^{2} \frac{\Gamma^{2}(\alpha+1)}{1-2 \alpha} t^{1-2 \alpha} \quad \text { a.s. } \tag{36}
\end{equation*}
$$

In addition, we need to prove the Lindeberg's condition.

DIFFUSIVE BEHAVIOURS

$$
\begin{aligned}
\frac{1}{\mathrm{n}^{1-2 \alpha}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbb{E}\left[\Delta M_{k}^{2} \mathbb{I}_{\left\{\left|\Delta M_{k}\right|>\varepsilon \sqrt{n^{1-2 \alpha}}\right\}} \mid \mathcal{F}_{\mathrm{k}-1}\right] & \leq \frac{1}{\mathrm{n}^{2(1-2 \alpha)} \varepsilon^{2}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbb{E}\left[\Delta M_{k}^{4} \mid \mathcal{F}_{\mathrm{k}-1}\right] \\
\leq \frac{1}{\mathrm{n}^{2(1-2 \alpha)} \varepsilon^{2}} \sum_{\mathrm{k}=1}^{\mathrm{n}} a_{k}^{4} \mathbb{E}\left[\xi_{k}^{4} \mid \mathcal{F}_{\mathrm{k}-1}\right] & \leq \frac{16}{n^{2(1-2 \alpha)} \varepsilon^{2}} \sum_{\mathrm{k}=1}^{n} a_{k}^{4},
\end{aligned}
$$

Then, thanks to (20), we have that, as $n \rightarrow \infty$

$$
\frac{n^{2} a_{n}^{4}}{v_{n}^{2}} \rightarrow(1-2 \alpha)^{2},
$$

which implies that $\frac{1}{n^{1-4 \alpha}} \sum_{k=1}^{n} a_{k}^{4}$ converges to $\frac{(1-2 \alpha)^{2} \ell^{2}}{1-4 \alpha}$.

DIFFUSIVE BEHAVIOURS

Therefore,

$$
\frac{1}{\mathrm{n}^{1-2 \alpha}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbb{E}\left[\Delta \mathrm{M}_{\mathrm{k}}^{2} \mathbb{I}_{\left\{\left|\Delta M_{\mathrm{k}}\right|>\varepsilon \sqrt{n^{1-2 \alpha}}\right\}} \mid \mathcal{F}_{\mathrm{k}-1}\right] \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \text { in probability, }
$$

which allows us to conclude that for all $\mathrm{t} \geq 0$ and for any $\varepsilon>0$,

$$
\begin{equation*}
\frac{1}{n^{1-2 \alpha}} \sum_{k=1}^{\lfloor n t\rfloor} \mathbb{E}\left[\Delta M_{k}^{2} \mathbb{I}_{\left\{\left|\Delta M_{k}\right|>\varepsilon \sqrt{n^{1-2 \alpha}}\right\}} \mid \mathcal{F}_{k-1}\right] \rightarrow 0 \tag{37}
\end{equation*}
$$

as $n \rightarrow \infty$ in probability.

DIFFUSIVE BEHAVIOURS

By noticing that $\lim _{n \rightarrow \infty} \frac{\lfloor\text { nnt }\rfloor\lfloor n t\rfloor}{n^{1-2 \alpha}}=\mathrm{t}^{1-\alpha} \Gamma(\alpha+1)$ and that (20) implies that

$$
\begin{equation*}
\frac{M_{\lfloor n t\rfloor}}{\sqrt{n^{1-2 \alpha}}}=\frac{\lfloor n t\rfloor a_{\lfloor n t\rfloor}}{\sqrt{n^{1-2 \alpha}}}\left(\frac{S_{\lfloor n t\rfloor}}{\lfloor n t\rfloor}-\frac{\omega}{1-\alpha}\right)+\frac{\omega \alpha}{(1-\alpha) \sqrt{n^{1-2 \alpha}}} \quad \text { a.s., } \tag{38}
\end{equation*}
$$

we conclude that
where $W_{t}=B_{t} /\left(t^{1-\alpha} \Gamma(\alpha+1)\right)$, which completes the proof of the theorem.

CALCULATIONS IN THE SUPERDIFFUSIVE REGIME

SUPERDIFFUSIVE BEHAVIOURS

In this case, the second moment of the position is calculated recursively. That is,

SUPERDIFFUSIVE BEHAVIOURS

In this case, the second moment of the position is calculated recursively. That is,

$$
\begin{equation*}
\mathbb{E}\left[S_{n}^{2}\right]=\frac{\Gamma(n+2 \alpha)}{\Gamma(n) \Gamma(2 \alpha+1)}\left(p+q+\Gamma(2 \alpha+1) \sum_{k=1}^{n-1} h_{k} \frac{\Gamma(k+1)}{\Gamma(k+1+2 \alpha)}\right), \tag{39}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{h}_{\mathrm{k}} \frac{\Gamma(\mathrm{k}+1)}{\Gamma(\mathrm{k}+1+2 \alpha)} & =\frac{\tau}{1-\gamma} \frac{\Gamma(\mathrm{k}+1)}{\Gamma(\mathrm{k}+1+2 \alpha)}+\frac{2 \omega^{2}}{1-\alpha} \frac{\mathrm{k} \Gamma(\mathrm{k}+1)}{\Gamma(\mathrm{k}+1+2 \alpha)} \\
& -\mathrm{t}_{1} \frac{\Gamma(\mathrm{k}+1)}{\mathrm{a}_{\mathrm{k}} \Gamma(\mathrm{k}+1+2 \alpha)}+\gamma \mathrm{t}_{2} \frac{\Gamma(\mathrm{k}+1)}{{ }_{k b_{k}} \Gamma(\mathrm{k}+1+2 \alpha)}
\end{aligned}
$$

MULTIDIMENSIONAL WALKS WITH TENDENCY

THE DYNAMICS

We define a discrete-time evolution $\left(X_{i}\right)_{i \geq 1}$. The n-step denotes an opinion (movement), given by $X_{n} \in E=\{1,2, \ldots, K\}$ the set of choices.

THE DYNAMICS

We define a discrete-time evolution $\left(X_{i}\right)_{i \geq 1}$. The n-step denotes an opinion (movement), given by $X_{n} \in E=\{1,2, \ldots, K\}$ the set of choices. In the context of a random walk, we have $K=2 d$ or $2 d+1$ with laziness, then, we denote the set of directions by

$$
E_{d}= \begin{cases}\left(e_{1},-e_{1}, \ldots, e_{d},-e_{d}\right) & , \text { if } K \text { is even, } \\ \left(e_{1},-e_{1}, \ldots, e_{d},-e_{d}, 0\right) & \text { if } K \text { is odd, }\end{cases}
$$

where $\left(e_{1}, \ldots, e_{d}\right)$ is the canonical basis of the Euclidean space \mathbb{R}^{d}, and 0 denotes not movement.

THE DYNAMICS

Let $S_{n}=\sum_{i=1}^{n} X_{i}$ the d-dimensional position of the walker at time n.
The $(\mathrm{n}+1)$-step is obtained by flipping a coin with probability θ, denoted Y_{n} and then:

THE DYNAMICS

Let $S_{n}=\sum_{i=1}^{n} X_{i}$ the d-dimensional position of the walker at time n.
The $(n+1)$-step is obtained by flipping a coin with probability θ, denoted Y_{n} and then:

- If $Y_{n}=1$, we chose uniformly at random $t \in\{1,2, \ldots, n\}$, then X_{n+1} is equal to X_{t} with probability p. Otherwise, X_{n+1} follows any other direction with uniform probability $\frac{1-\mathrm{p}}{\mathrm{K}-1}$.

THE DYNAMICS

Let $S_{n}=\sum_{i=1}^{n} x_{i}$ the d-dimensional position of the walker at time n.
The $(n+1)$-step is obtained by flipping a coin with probability θ, denoted Y_{n} and then:

- If $Y_{n}=1$, we chose uniformly at random $t \in\{1,2, \ldots, n\}$, then X_{n+1} is equal to X_{t} with probability p. Otherwise, X_{n+1} follows any other direction with uniform probability $\frac{1-\mathrm{p}}{\mathrm{K}-1}$.
- If $Y_{n}=0$, then $X_{n+1}=e_{1}$ with probability p or any other direction with uniform probability $\frac{1-\mathrm{p}}{\mathrm{K}-1}$.

Note that, if $\theta=1$ we obtain an elephant-type dynamics. In case $\theta=0$, the tendency with intensity p is given by direction e_{1}, such tendency is effective if $p>1 / K$.

MAIN RESULTS

LAW OF LARGE NUMBERS

Theorem (G-N, 2020)

Let $\left(S_{n}\right)_{n \in \mathbb{N}}$ the position of the walker, we get the following almost-surely convergence

$$
\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=\frac{(1-\theta)(K p-1)}{K-1+\theta(1-K p)}(1,0, \ldots, 0)^{\top} .
$$

FUNCTIONAL LIMIT THEOREM - DIFUSSIVE CASE

Theorem (G-N, 2020)
If $\mathrm{p}<\frac{\mathrm{K}+2 \theta-1}{2 \theta \mathrm{~K}}$ then, for $\mathrm{n} \rightarrow \infty$, in $\mathrm{D}[0, \infty)$

$$
\frac{1}{\sqrt{n}}\left[S_{\lfloor\text {tn }\rfloor}-\frac{\operatorname{tn}(1-\theta)(K p-1)}{K-1+\theta(1-K p)}(1,0, \ldots, 0)^{\top}\right] \xrightarrow{d} W_{t},
$$

FUNCTIONAL LIMIT THEOREM - DIFUSSIVE CASE

Theorem (G-N, 2020)
If $\mathrm{p}<\frac{\mathrm{K}+2 \theta-1}{2 \theta \mathrm{~K}}$ then, for $\mathrm{n} \rightarrow \infty$, in $\mathrm{D}[0, \infty)$

$$
\frac{1}{\sqrt{n}}\left[S_{\lfloor\text {tn }\rfloor}-\frac{\operatorname{tn}(1-\theta)(K p-1)}{K-1+\theta(1-K p)}(1,0, \ldots, 0)^{\top}\right] \xrightarrow{d} W_{t},
$$

where W_{t} is a continuous d-dimensional Gaussian process with $\mathrm{W}_{0}=(0, \ldots, 0)^{\top}, \mathbb{E}\left(\mathrm{W}_{\mathrm{t}}\right)=(0, \ldots, 0)^{\top}$ and, for $0<\mathrm{s} \leq \mathrm{t}$,
$\mathbb{E}\left(\mathrm{W}_{\mathrm{s}} \mathrm{W}_{\mathrm{t}}^{\top}\right)=\mathrm{s}\left(\frac{\mathrm{t}}{\mathrm{s}}\right)^{\frac{\theta(\mathrm{Kp}-1)}{(\mathrm{K}-1)}} \omega\left(\begin{array}{cccc}(\mathrm{K}+1) \alpha+\beta+\mathrm{p}-1 & 0 & \cdots & 0 \\ 0 & 2 \beta & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 2 \beta\end{array}\right)$
where $\omega=\frac{(\mathrm{K}-1)(1-\mathrm{p})}{\beta^{2}(\mathrm{~K}-1+2 \theta(1-\mathrm{Kp}))}, \alpha=(\mathrm{K}-1) \mathrm{p}+\theta(1-\mathrm{Kp})$ and $\beta=K-1+\theta(1-K p)$.

FUNCTIONAL LIMIT THEOREM - CRITICAL CASE

Theorem (G-N, 2020)
If $p=\frac{\mathrm{K}+2 \theta-1}{2 \theta \mathrm{~K}}$ then, for $\mathrm{n} \rightarrow \infty$, in $\mathrm{D}[0, \infty)$

$$
\frac{1}{\sqrt{n^{t} \log (n)}}\left[S_{\left\lfloor n^{t}\right\rfloor}-n^{t} \frac{K(2 p-1)-1}{K-1}(1,0, \ldots, 0)^{\top}\right] \xrightarrow{d} W_{t},
$$

where W_{t} as above and for $0<\mathrm{s} \leq \mathrm{t}$,

FUNCTIONAL LIMIT THEOREM - CRITICAL CASE

Theorem (G-N, 2020)
If $p=\frac{\mathrm{K}+2 \theta-1}{2 \theta \mathrm{~K}}$ then, for $\mathrm{n} \rightarrow \infty$, in $\mathrm{D}[0, \infty)$

$$
\frac{1}{\sqrt{n^{t} \log (n)}}\left[S_{\left\lfloor n^{t}\right\rfloor}-n^{t} \frac{K(2 p-1)-1}{K-1}(1,0, \ldots, 0)^{\top}\right] \xrightarrow{d} W_{t},
$$

where W_{t} as above and for $0<\mathrm{s} \leq \mathrm{t}$,

$$
\mathbb{E}\left(W_{s} W_{t}^{\top}\right)=4 s \frac{1-p}{(K-1)^{2}}\left(p+\frac{K-3}{2}\right)\left(\begin{array}{cccc}
(K+2) & 0 & \cdots & 0 \\
0 & 2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 2
\end{array}\right)
$$

THE SUPERDIFFUSIVE CASE

Theorem (G-N, 2020)

Let denote $\widehat{S}_{n}=S_{n}-\mathbb{E}\left(S_{n}\right)$ and $a=\frac{K p-1}{K-1}$. If $p>\frac{K+2 \theta-1}{2 \theta K}$, then we have almost sure convergence

$$
\lim _{n \rightarrow \infty} \frac{\widehat{S}_{n}}{n^{\alpha \theta}}=L
$$

where the limiting value L is a non-degenerated random vector. We also have mean square convergence

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(\left\|\frac{\widehat{S}_{n}}{n^{2 \theta}}-L\right\|^{2}\right)=0
$$

THE SUPERDIFFUSIVE CASE

Theorem (G-N, 2020)
The expected value of L is $\mathbb{E}(L)=0$, while its covariance matrix is obtained by

$$
\mathbb{E}\left(L L^{\top}\right)=\lim _{n \rightarrow \infty} \frac{\Gamma(n)^{2}}{\Gamma(a \theta+n)^{2}} \mathbb{E}\left(\widehat{S}_{n} \hat{S}_{n}^{\top}\right),
$$

THE SUPERDIFFUSIVE CASE

Theorem (G-N, 2020)
The expected value of L is $\mathbb{E}(L)=0$, while its covariance matrix is obtained by

$$
\mathbb{E}\left(L L^{\top}\right)=\lim _{n \rightarrow \infty} \frac{\Gamma(n)^{2}}{\Gamma(a \theta+n)^{2}} \mathbb{E}\left(\widehat{S}_{n} \widehat{S}_{n}^{\top}\right),
$$

where

$$
\begin{aligned}
& \mathbb{E}\left(\widehat{S}_{n} \widehat{S}_{n}^{\top}\right)=\prod_{i=1}^{n-1}\left(1+\frac{2 a \theta}{i}\right) \mathbb{E}\left(\widehat{S_{1}} \widehat{S}_{1}^{\top}\right)+\sum_{i=1}^{n-2} \prod_{k=1}^{n-i}\left(1+\frac{2 a \theta}{n+1-k}\right)\left[\frac{\theta}{d} l_{d}+(1-\theta) M_{p}\right. \\
& \left.-\left(\frac{a \theta}{i} \prod_{l=1}^{i-1} \gamma_{i-l} \mathbb{E}\left(S_{1}\right)+(1-\theta) v_{p}\right)\left(\frac{a \theta}{i} \prod_{l=1}^{i-1} \gamma_{i-l} \mathbb{E}\left(S_{1}\right)+(1-\theta) v_{p}\right)^{\top}\right] \\
& +\frac{\theta}{d} l_{d}+(1-\theta) M_{p}+\prod_{k=1}^{n}\left(1+\frac{2 a \theta}{n+1-k}\right) \mathbb{E}\left(\widehat{X}_{1} \widehat{X}_{l}^{\top}\right) \\
& -\left(\frac{a \theta}{n-1} \prod_{l=1}^{n-2} \gamma_{n-1-l} \mathbb{E}\left(S_{1}\right)+(1-\theta) v_{p}\right)\left(\frac{a \theta}{n-1} \prod_{l=1}^{n-2} \gamma_{n-1-l} \mathbb{E}\left(S_{1}\right)+(1-\theta) v_{p}\right)^{\top} .
\end{aligned}
$$

SKETCH OF THE PROOFS

RELATION WITH AN URN MODEL

Let denote $\mathcal{F}_{\mathrm{n}}=\sigma\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$ the σ-field generated by the sequence X_{1}, \ldots, X_{n}.

RELATION WITH AN URN MODEL

Let denote $\mathcal{F}_{\mathrm{n}}=\sigma\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$ the σ-field generated by the sequence X_{1}, \ldots, X_{n}.

Therefore, defining $N(n, x)=\left|\left\{i \in\{1, \ldots, n\}: X_{i}=x\right\}\right|$, the number of steps in the direction $x \in E_{d}$ until time n, we obtain

$$
P\left(X_{n+1}=x \mid \mathcal{F}_{n}\right)= \begin{cases}p+\theta\left(\frac{1-K p}{K-1}\right)\left(1-\frac{N\left(n, e_{1}\right)}{n}\right) & , \text { if } x=e_{1}, \\ \frac{1-p}{K-1}+\theta\left(\frac{1-K p}{K-1}\right) \frac{N(n, x)}{n} & , \text { if } x \neq e_{1} .\end{cases}
$$

The position of the walker can be obtained by using an auxiliary process, which evolves as an urn model with K colors.

RELATION WITH AN URN MODEL

In this sense,
$S_{n}= \begin{cases}\left(U_{1, n}-U_{2, n}, U_{3, n}-U_{4, n}, \ldots, U_{K-1, n}-U_{K, n}\right) & , \text { if } K \text { is even, } \\ \left(U_{1, n}-U_{2, n}, U_{3, n}-U_{4, n}, \ldots, U_{K-2, n}-U_{K-1, n}\right) & , \text { if } K \text { is odd, }\end{cases}$
where $U_{n}=\left(U_{1, n}, \ldots, U_{K, n}\right)$ is the vector that denotes the number of balls of each of the K colors, at time n . Each color is associated to the random variables $\mathrm{N}(\mathrm{n}, \mathrm{x})$ above.

RELATION WITH AN URN MODEL

Then, by defining the random replacement matrix as in Janson (2004), we need to introduce the random vectors ξ_{i}, for $\mathrm{i} \in\{1, \ldots, K\}$, which represent a random number of balls to be added into the urn. Essentially, these column vectors assume values on $\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{K}}\right\}$ the canonical basis of the Euclidean space ${ }^{k}$. That is, these vectors denote the color of the ball to be added.

RELATION WITH AN URN MODEL

Then, by defining the random replacement matrix as in Janson (2004), we need to introduce the random vectors ξ_{i}, for $\mathrm{i} \in\{1, \ldots, \mathrm{~K}\}$, which represent a random number of balls to be added into the urn. Essentially, these column vectors assume values on $\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{k}\right\}$ the canonical basis of the Euclidean space ${ }^{\mathrm{K}}$. That is, these vectors denote the color of the ball to be added.

In this sense, we obtain

$$
A=\left(\mathbb{E}\left(\xi_{1}\right), \ldots, \mathbb{E}\left(\xi_{K}\right)\right)=\left(\begin{array}{cccc}
p & p+\theta \frac{1-K p}{K-1} & \cdots & p+\theta \frac{1-K p}{K-1} \\
\frac{1-p}{K-1} & \frac{1-p-\theta(1-K p)}{K-1} & \cdots & \frac{1-p}{K-1} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1-p}{K-1} & \frac{1-p}{K-1} & \cdots & \frac{1-p-\theta(1-K p)}{K-1}
\end{array}\right)
$$

DIFFUSIVE BEHAVIOURS

for this matrix, the largest eigenvalue is $\lambda_{1}=1$, and for $\mathrm{j}=2, \ldots, \mathrm{~K}$ we get

$$
\lambda_{\mathrm{j}}=\theta\left(\frac{\mathrm{Kp}-1}{\mathrm{~K}-1}\right) .
$$

Moreover, $u_{1}=(1,1, \cdots, 1)^{\top}$, and

$$
v_{1}=\left((K-1)\left(p-\lambda_{2}\right), 1-p, \ldots, 1-p\right)^{\top} \frac{1}{(K-1)\left(1-\lambda_{2}\right)},
$$

and, for $\mathrm{j}=2,3, \ldots, \mathrm{~K}$ we obtain

$$
u_{j}=\left(1-p, \cdots,(K-1) \lambda_{2}-(K-2)-p, \cdots, 1-p\right)^{\top} \frac{1}{(K-1)\left(1-\lambda_{2}\right)},
$$

where the different value is at j-th position. Similarly, $v_{j}=(1,0, \ldots,-1, \ldots, 0)^{\top}$, with -1 occupying the j-th position.

DIFFUSIVE BEHAVIOURS

We then use Theorem 3.21 from Janson (2004), which states that

$$
\mathrm{n}^{-1} \mathrm{U}_{\mathrm{n}} \longrightarrow \lambda_{1} \mathrm{~V}_{1}
$$

and Theorem 3.22 of Janson (2004) to prove the functional limit theorem. Then, let $L_{I}=\left\{i: \lambda_{i}<\lambda_{1} / 2\right\}$ and $L_{\|}=\left\{i: \lambda_{i}=\lambda_{1} / 2\right\}$. The limiting covariance matrices are given by

$$
\Sigma_{\mid}=\sum_{j, k \in L_{1}} \frac{u_{j}^{\top} B u_{k}}{\lambda_{1}-\lambda_{j}-\lambda_{k}} v_{j} v_{k}^{\top} \quad ; \quad \Sigma_{\|}=\sum_{j \in L_{\|}} u_{j}^{\top} B u_{j} v_{j} v_{j}^{\top},
$$

where $\mathrm{B}=\sum_{\mathrm{i}=1}^{\mathrm{K}} \mathrm{v}_{1 \mathrm{i}} \mathrm{B}_{\mathrm{i}}$ and $\mathrm{B}_{\mathrm{i}}=\mathbb{E}\left[\xi_{i} \xi_{\mathrm{i}}^{\top}\right]$,

DIFFUSIVE BEHAVIOURS

Therefore,

$$
u_{i}^{\top} B u_{j}=\frac{1-p}{(K-1)^{2}\left(1-\lambda_{2}\right)^{2}} \cdot \begin{cases}p-1 & , \text { if } i \neq j, \\ p-1+(K-1)\left(1-\lambda_{2}\right) & , \text { if } i=j,\end{cases}
$$

DIFFUSIVE BEHAVIOURS

Therefore,

$$
u_{i}^{\top} B u_{j}=\frac{1-p}{(K-1)^{2}\left(1-\lambda_{2}\right)^{2}} \cdot \begin{cases}p-1 & , \text { if } i \neq j, \\ p-1+(K-1)\left(1-\lambda_{2}\right) & , \text { if } i=j,\end{cases}
$$

and

$$
\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}^{\top}=\left(\begin{array}{cccccc}
1 & 0 & \cdots & -1 & \cdots & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
-1 & 0 & \cdots & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0
\end{array}\right)
$$

we highlighted j -column and i -row.

SUPERDIFFUSIVE BEHAVIOURS

We define a locally square-integrable multidimensional martingale, given by

$$
\begin{equation*}
M_{n}=a_{n} \widehat{S}_{n}=\sum_{k=1}^{n} a_{k}\left(\widehat{S}_{k}-\left(1+\frac{a \theta}{k-1}\right) \widehat{S}_{k-1}\right)=\sum_{k=1}^{n} a_{k} \varepsilon_{k}, \tag{40}
\end{equation*}
$$

where $\widehat{S}_{n}=S_{n}-\mathbb{E}\left(S_{n}\right), a_{k}=\prod_{l=1}^{k-1} \frac{l}{l+a \theta}$ and $a=\frac{K p-1}{K-1}$.

SUPERDIFFUSIVE BEHAVIOURS

We define a locally square-integrable multidimensional martingale, given by

$$
\begin{equation*}
M_{n}=a_{n} \widehat{S}_{n}=\sum_{k=1}^{n} a_{k}\left(\widehat{S}_{k}-\left(1+\frac{a \theta}{k-1}\right) \widehat{S}_{k-1}\right)=\sum_{k=1}^{n} a_{k} \varepsilon_{k}, \tag{40}
\end{equation*}
$$

where $\widehat{S}_{n}=S_{n}-\mathbb{E}\left(S_{n}\right), a_{k}=\prod_{l=1}^{k-1} \frac{l}{l+a \theta}$ and $a=\frac{k p-1}{k-1}$.
Then, as in Theorem 3.7 in Bercu (2018), we need to prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Tr}\langle M\rangle_{n}<\infty \quad \text { a.s } \tag{41}
\end{equation*}
$$

where TrA stands for the trace of matrix A and

$$
\begin{equation*}
\langle M\rangle_{n}=\sum_{k=1}^{n} \mathbb{E}\left[\left(a_{k} \varepsilon_{k}\right)\left(a_{k} \varepsilon_{k}\right)^{\top} \mid \mathcal{F}_{k-1}\right] . \tag{42}
\end{equation*}
$$

SUPERDIFFUSIVE BEHAVIOURS

Then,

$$
\begin{align*}
\operatorname{Tr}\langle M\rangle_{n}= & a_{1}^{2} \mathbb{E}\left(\varepsilon_{1} \varepsilon_{1}^{\top}\right)+\alpha(p, \theta, K) \sum_{l=1}^{n-1} a_{l+1}^{2}\left(1-\frac{2 \theta(1-\theta)}{\alpha(p, \theta, K)} \frac{\operatorname{Tr}\left(S_{l} V_{p}^{\top}\right)}{l}\right) \\
& -a^{2} \theta^{2} \sum_{l=1}^{n-1}\left(\frac{a_{l+1}}{l}\right)^{2}\left\|S_{l}\right\|^{2}, \tag{43}
\end{align*}
$$

where $\alpha(\mathrm{p}, \theta, \mathrm{K})=1-(1-\theta)^{2}\left(\mathrm{p} \frac{(1-\mathrm{p})^{2}}{\mathrm{~K}-1}\right)$.

SUPERDIFFUSIVE BEHAVIOURS

Then,

$$
\begin{align*}
\operatorname{Tr}\langle M\rangle_{n}= & a_{1}^{2} \mathbb{E}\left(\varepsilon_{1} \varepsilon_{1}^{\top}\right)+\alpha(p, \theta, K) \sum_{l=1}^{n-1} a_{l+1}^{2}\left(1-\frac{2 \theta(1-\theta)}{\alpha(p, \theta, K)} \frac{\operatorname{Tr}\left(S_{l} v_{p}^{\top}\right)}{l}\right) \\
& -a^{2} \theta^{2} \sum_{l=1}^{n-1}\left(\frac{a_{l+1}}{l}\right)^{2}\left\|S_{l}\right\|^{2}, \tag{43}
\end{align*}
$$

where $\alpha(\mathrm{p}, \theta, \mathrm{K})=1-(1-\theta)^{2}\left(\mathrm{p} \frac{(1-\mathrm{p})^{2}}{\mathrm{~K}-1}\right)$.
In addition, note that for all $\mathrm{L} \geq 1$ and for all p, K and θ,
$-1 \leq \frac{2 \theta(1-\theta)}{\alpha(\mathrm{p}, \theta, \mathrm{K})} \frac{\operatorname{Tr}\left(\mathrm{S}_{\mathrm{L}} \mathrm{V}_{\mathrm{p}}^{\top}\right)}{l} \leq 1$. Then,

$$
\begin{equation*}
\operatorname{Tr}\langle\mathrm{M}\rangle_{\mathrm{n}} \leq \mathrm{a}_{1}^{2} \mathbb{E}\left(\varepsilon_{1} \varepsilon_{1}^{\top}\right)+2 \alpha(\mathrm{p}, \theta, \mathrm{~K}) \sum_{\mathrm{l}=1}^{\mathrm{n}-1} \mathrm{a}_{\mathrm{l}+1}^{2} . \tag{44}
\end{equation*}
$$

SUPERDIFFUSIVE BEHAVIOURS

Note that, $\sum_{l=1}^{n} a_{l}^{2}=\sum_{l=1}^{n}\left(\frac{\Gamma(a \theta+1) \Gamma(l)}{\Gamma(a \theta+l)}\right)^{2}$, which in the superdiffusive regime satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{l=1}^{n} a_{l}^{2}=\sum_{l=1}^{\infty}\left(\frac{\Gamma(a \theta+1) \Gamma(l)}{\Gamma(a \theta+l)}\right)^{2}={ }_{3} F_{2}(1,1,1 ; a \theta+1, a \theta+1 ; 1), \tag{45}
\end{equation*}
$$

the finite confluent hypergeometric function. Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Tr}\langle M\rangle_{n}<\infty \text { a.s. } \tag{46}
\end{equation*}
$$

REFERENCES

REFERENCES

- González-Navarrete, M. (2020) Multidimensional walks with random tendency. J. Stat. Phys. 181, 1138-1148.
- González-Navarrete, M. and Hernández, R. (2021) Reinforced random walks under memory lapses. J. Stat. Phys. 185 (3).
- González-Navarrete, M. and Lambert, R. (2018) Non-Markovian random walks with memory lapses. J. Math. Phys. 59, 113301.
- González-Navarrete, M. and Lambert, R. (2019) The diffusion of opposite opinions in a randomly biased environment, J. Math. Phys. 60, 113301.
- González-Navarrete, M., Lambert, R. and Vázquez, V.H. (2024) A complete characterization of a correlated Bernoulli process. Preprint arXiv:2404.07370.
- González-Navarrete, M., Lambert, R. and Vázquez, V.h. (2024) On the asymptotics of a lazy reinforced random walk. Preprint arXiv:2402.08033.

MUCHAS GRACIAS!

