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Introduction

In the moduli space A𝑔 of isomorphism classes of principally polarized abelian varieties
of dimension 𝑔, the subspace of isomorphism classes of Jacobian varieties deserve special
attention. Due to Torelli’s theorem, to each curve 𝑋 of genus 𝑔we can biunivocally associate
a principally polarized abelian variety Jac(𝑋) of dimension 𝑔; in this manner, we can think
the moduli space M𝑔 of Riemann surfaces of genus 𝑔 as a special subspace of A𝑔, the
subspace of the Jacobian varieties. This particular kind of principally polarized abelian
varieties were the first ones to be studied and they are still the best known among the latter
ones due to the information we can naturally get from their associated curve.

Smooth projective algebraic curves overℂ (or, equivalently, compact Riemann surfaces)
and rational (equivalently, holomorphic) maps between them are one of the first, simplest
and most interesting objects of study in algebraic geometry. This is not only for their self
charm, but from the direct implications their properties have in other areas of geometry, in
particular, and mathematics, in general. As said before, abelian varieties first arose in the
study of curves.

The decomposition of abelian varieties into simple abelian subvarieties is archived by
the Poincare’s complete reducibility theorem (see [2]), and it is unique up to isomorphism;
however, there is no easy manner to make that decomposition explicit. Decomposable
abelian varieties are an old and studied topic (see [27]). When we have a group action
on an abelian variety, we have its isotypical decomposition, which is usually coarser than
the former one, into 𝐺-invariant abelian sub-varieties and the, slightly finer, group algebra
decomposition. Moreover, in a Jacobian variety Jac(𝑋), when this action is inherited by
an action on 𝑋 , we can express the pieces of the group algebra decomposition as Prym
varieties of intermediate coverings of the Galois covering induced by the group action on
𝑋 . The first and founder example of this phenomena is the Recillas trigonal construction
(see [19]) that shows that the Jacobian of a tetragonal curve is isomorphic to the Prym
variety of a double cover of a trigonal curve. Later, in [20] and [21], Recillas and Rodriguez
generalized these results for curve coverings of degree 3 and 4, respectively. They also
analyze the polarization types of the isogenies involved. In this article we study analogous
results for the case of degree 5 coverings in the light of the more general results of [7]. It
also should be mentioned that actions of 𝔄5 and 𝔖5 on Jacobian varieties are also studied
on [15,24] and actions of dihedral groups on [6].

Throughout this article, let 𝑓 : 𝑋 → 𝑌 denote a ramified covering of degree 5 between
compact Riemann surfaces with branch locus 𝐵 and monodromy representation 𝜌 : π1(𝑌 −
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2 CHAPTER . INTRODUCTION

𝐵) → 𝔖5. Although 𝑓 is not necessarily Galois (that is, the quotient of 𝑋 by a group
action), its Galois closure 𝑓 : �̂� → 𝑌 is. This action induces another one on the Jacobian
variety Jac( �̂�); hence, we can decompose Jac( �̂�) into smaller abelian varieties through the
group algebra decomposition (see [7]). Since the automorphism group Aut( 𝑓 ) is naturally
isomorphic to the monodromy group Mon( 𝑓 ), the geometric signature (see [23]) of 𝑓 is
determined by the ramification data of 𝑓 ; hence, the group algebra decomposition of Jac( �̂�)
depends on the ramification data of 𝑓 .

There are two main results in this article: in Theorems IV.10 and IV.12, we enumerate
each possible monodromy group Mon( 𝑓 ), up to conjugacy in𝔖5, in terms of the ramification
data of 𝑓 ; we also give explicit generating vectors for each possible case. Then, and as a
application, in Theorems V.1, V.2, V.4, V.6 and V.8, we give the group algebra decomposition
of Jac( �̂�) for each possible Mon( 𝑓 ). Additionally, in Theorems V.3, V.5 and V.7 we study
some special cases where we can explicitly compute the polarization induced by Jac( �̂�) in
each piece of its group algebra decomposition.



CHAPTER I

Monodromy Representation and Galois Closure of a Covering

1. Covering maps and their automorphisms

Let (𝑀,𝑚) be a pointed topological surface and let 𝐹0 : (𝑈0, 𝑢0) → (𝑀,𝑚) be its,
unique up to isomorphism, universal covering (see [18, sections 80 and 82]). The funda-
mental group π1(𝑀,𝑚) (see [18, section 52]) acts on𝑈0 as follows: Choose a loop 𝛾 on 𝑀
based at 𝑚 and a point 𝑣 ∈ 𝑈0. Let 𝛼 be a path on 𝑈0 starting at 𝑣 and ending at 𝑢0, then
(𝐹0)∗𝛼 is a path on 𝑀 starting at 𝐹0(𝑣) and ending at 𝑚. Let �̃� denote the unique lift of the
loop 𝛾 that starts at 𝑢0, and then lift the reverse path (𝐹0)∗𝛼 starting at �̃�(1) to a path 𝛽. The
endpoint of 𝛽, which lies over 𝐹0(𝑣), depends only on 𝑣 and the homotopy class [𝛾]; see
[16, section V.7] and [17, section III.4] for further details. Therefore, [𝛾] · 𝑣 = 𝛽(1) is well
defined and yields an action of π1(𝑀,𝑚) on 𝑈0 (see Figure 1). Since this action preserves
every fiber of 𝐹0, it is not just an action on the space 𝑈0 but on the covering map 𝐹0 (see
[16, section V.6]).

The above action may be restricted to any subgroup 𝐻 of the fundamental group
π1(𝑀,𝑚), and from this restricted action arises a quotient space, namely 𝑈0/𝐻, and a
covering map 𝜋𝐻 : (𝑈0, 𝑢0) → (𝑈0/𝐻, [𝑢0]), which we call quotient map associated to 𝐻,
given by the natural projection (see [16, Lemma 10.1 on p. 173]). Since 𝐹0 respect the
fibers of 𝜋𝐻 , it naturally induces a covering map 𝜋𝐻 : (𝑈0/𝐻, [𝑢0]) → (𝑀,𝑚), which we
call induced map associated to 𝐻, such that the following diagram commutes:

(I.1)

(𝑈0, 𝑢0)

(
𝑈0
𝐻
, [𝑢0]

)

(𝑀,𝑚)

𝜋𝐻

𝐹0

𝜋𝐻

Conversely, the induced homomorphism 𝐹∗ : π1(𝑈, 𝑢) → π1(𝑀,𝑚) (see [18, p. 333])
is injective for any covering map 𝐹 : (𝑈, 𝑢) → (𝑀,𝑚), and two of them are related by the
following result.
Proposition I.1 ([16, Theorem 6.6 on p. 159]). Two covering spaces 𝐹1 : 𝑈1 → 𝑀 and
𝐹2 : 𝑈2 → 𝑀 are isomorphic if and only if, for any two points 𝑢1 ∈ 𝑈1 and 𝑢2 ∈ 𝑈2 such
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4 CHAPTER I. MONODROMY REPRESENTATION AND GALOIS CLOSURE OF A COVERING

(𝐹0)∗𝛼

𝛼

𝛽

𝛾

�̃�

𝑚

𝑢0

�̃�(1)

𝐹0(𝑣)

𝑣

[𝛾] · 𝑣

𝐹0

Figure 1. Action of the fundamental group π1(𝑀,𝑚) on the universal cov-
ering 𝐹0 : (𝑈0, 𝑢0) → (𝑀,𝑚)

that 𝐹1(𝑢1) = 𝐹2(𝑢2) = 𝑚, the subgroups (𝐹1)∗ π1(𝑈1, 𝑢1) and (𝐹2)∗ π1(𝑈2, 𝑢2) belong to
the same conjugacy class in π1(𝑀,𝑚).

In particular, Theorem I.1 implies that the induced covering map 𝜋𝐹∗ π1 (𝑈,𝑢) is isomorphic
to 𝐹 : (𝑈, 𝑢) → (𝑀,𝑚). Summarizing, and according to [16, Lemma 6.3 on p. 159], we
get the following result.

Proposition I.2. There is a one-to-one correspondence between:
(1) isomorphism classes of connected coverings 𝐹 : (𝑈, 𝑢) → (𝑀,𝑚); and
(2) conjugacy classes of subgroups 𝐻 of π1(𝑀,𝑚).

Moreover, the degree of such a covering 𝐹 is exactly the index in π1(𝑀,𝑚) of the corre-
sponding subgroup 𝐻 whenever one of them is finite.

In the rest of this section, we deal with Galois coverings; that is, covering maps whose
automorphism group acts transitively on its fibers. Let𝐻 be a subgroup of π1(𝑀,𝑚) associ-
ated by Theorem I.2 to a covering map 𝐹 : 𝑈 → 𝑀 . Consider the normalizer Nπ1 (𝑀,𝑚) (𝐻)
of 𝐻 in π1(𝑀,𝑚); in the same manner that π1(𝑀,𝑚) acts on the universal covering 𝑈0
of 𝑀 , an automorphism of 𝐹 arises from each homotopy class [𝛾] ∈ Nπ1 (𝑀,𝑚) (𝐻). This
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association is not injective but, according to [16, Corollary 7.3 on p. 163], yields an iso-
morphism

Aut(𝐹) � Nπ1 (𝑀,𝑚) (𝐻)
𝐻

,

where Aut(𝐹) denotes the automorphism group of the covering map 𝐹 : 𝑈 → 𝑀 (see
[16, pp. 158–159]).

In the special case where 𝐻 is normal in π1(𝑀,𝑚), the associated covering is called
Galois (or regular) and the latter equation simplifies to

Aut(𝐹) � π1(𝑀,𝑚)
𝐻

.

Moreover, as stated in [16, Lemma 8.1 on p. 164], the covering 𝐹 : 𝑈 → 𝑀 is Galois if
and only if Aut(𝐹) operates transitively on any of its fibers; the latter condition may be
rephrased as𝑈/Aut(𝐹) � 𝑀 .

Conversely, if a group 𝐺 acts properly discontinuously on a surface 𝑍 , then the natural
projection 𝜋𝐺 : 𝑍 → 𝑍/𝐺 is a Galois covering and Aut(𝜋𝐺) = 𝐺 (see [16, Proposition 8.2
on p. 165]). Thereby, a covering map is Galois if and only if it is a quotient by a properly
discontinuous group action.

Definition I.1. An intermediate cover of a covering map 𝐹 : 𝑈 → 𝑀 is a space 𝑉 for
which exists two covering maps 𝜙 : 𝑈 → 𝑉 and 𝜓 : 𝑉 → 𝑀 such that 𝐹 = 𝜓 ◦ 𝜙. The maps
𝜙 and 𝜓 are called intermediate coverings.

Proposition I.3. Let 𝐹 : 𝑈 → 𝑀 be a Galois covering. Then, for every intermediate cover
as in the following diagram:

𝑈

𝑉

𝑀

𝜙

𝐹

𝜓

the map 𝜙 is also Galois.

Proof. The subgroup 𝐻 = 𝐹∗ π1(𝑈, 𝑢) = 𝜓∗𝜙∗ π1(𝑈, 𝑢), associated to 𝐹 by Theo-
rem I.2, is normal in π1(𝑀,𝑚) and then, according to [22, 1.4.6 on p. 20], the group
𝜙∗ π1(𝑈, 𝑢) is normal in 𝜓−1∗ π1(𝑀,𝑚), which is precisely π1(𝑉, 𝑣). □

2. Galois closure of a covering map

Let (𝑀,𝑚) be a pointed surface and let 𝐹 : (𝑈, 𝑢) → (𝑀,𝑚) be a connected covering
of finite degree 𝑑 with associated subgroup 𝐻, then [π1(𝑀,𝑚) : 𝐻] = 𝑑.

Following [17, section III.4], we define a homomorphism 𝜌 : π1(𝑀,𝑚) → 𝔖𝑑 , called
monodromy representation, as follows: Fix an enumeration 𝑢1, . . . , 𝑢𝑑 for the fiber 𝐹−1(𝑚);
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then, for every loop 𝛾 in 𝑀 based at 𝑚 and for each 𝑖 ∈ {1, . . . , 𝑑}, there is a lifted path
�̃�𝑖 starting at 𝑢𝑖. Since each endpoint �̃�𝑖 (1) lies on the fiber 𝐹−1(𝑚), there is an index
𝜎𝛾 (𝑖) ∈ {1, . . . , 𝑑} such that �̃�𝑖 (1) = 𝑢𝜎𝛾 (𝑖); in this manner, a function 𝜎𝛾 : {1, . . . , 𝑑} →
{1, . . . , 𝑑} is defined. Repeating this procedure with the reverse path 𝛾 yields the inverse
of the map 𝜎𝛾, thus 𝜎𝛾 is a permutation of {1, . . . , 𝑑} and, according to [16, Lemma 3.3 on
p. 152], this permutation depends only on the homotopy class [𝛾]. Besides, this procedure
clearly respects the concatenation of paths; that is, 𝜎𝛾∗𝛿 = 𝜎𝛾𝜎𝛿. Therefore, the assignment
𝜌( [𝛾]) = 𝜎𝛾 defines the desired homomorphism. Although 𝜌 depends on the chosen
enumeration of 𝐹−1(𝑚), a different choice gives a conjugate representation; therefore 𝜌 is
unique up to conjugation in 𝔖𝑑 . Its image is called the monodromy group of 𝐹, which
we will denote by Mon(𝐹). The connectedness of 𝑈 implies that Mon(𝐹) is a transitive
subgroup of 𝔖𝑑 , the symmetric group of degree 𝑑 (see [17, Lemma 4.4 on p. 87]).

Conversely, given a homomorphism 𝜌 : π1(𝑀,𝑚) → 𝔖𝑑 with transitive image 𝐺,
consider the subgroup Stab𝐺 (1) of 𝐺. According to [22, 1.6.1.i on p. 31], we have that
[𝐺 : Stab𝐺 (1)] = #{1, . . . , 𝑑} = 𝑑; thus, if 𝐻 denotes 𝜌−1 Stab𝐺 (1), then

[π1(𝑀,𝑚) : 𝐻] = [π1(𝑀,𝑚) : ker 𝜌]
[𝐻 : ker 𝜌] = [𝐺 : Stab𝐺 (1)] = 𝑑.

Therefore, in the notation of section 1, the map 𝐹𝐻 : 𝑈0/𝐻 → 𝑀 is a covering of degree
𝑑. Moreover, a direct computation shows that the Mon(𝐹𝐻) is conjugate to 𝐺 itself (see
[17, p. 89]).

Summarizing, we get the following result.
Proposition I.4. There is a one-to-one correspondence between:

(1) isomorphism classes of connected coverings 𝐹 : (𝑈, 𝑢) → (𝑀,𝑚) of degree 𝑑;
and

(2) group homomorphisms 𝜌 : π1(𝑀,𝑚) → 𝔖𝑑 with transitive image up to conjugacy
in 𝔖𝑑 .

Definition I.2. The Galois closure of a covering map 𝐹 : 𝑈 → 𝑀 with monodromy
representation 𝜌 : π1(𝑀,𝑚) → 𝔖𝑑 is the map associated to ker 𝜌 by Theorem I.2, and is
denoted by �̂� : �̂� → 𝑀 .

Since ker 𝜌 is a normal subgroup of π1(𝑀,𝑚), the covering map �̂� is Galois; this fact
justifies Definition I.2. Moreover, according to Theorem I.3, every intermediate covering
of �̂� is also Galois. Since π1(𝑀,𝑚)/ker 𝜌 � Mon(𝐹), we get the following result, which
relates Mon(𝐹) with �̂�.
Proposition I.5. For every covering map 𝐹 : 𝑈 → 𝑀 , we have Aut(�̂�) � Mon(𝐹).

On the minimality of the Galois closure, we know the following result.
Theorem I.6. Given a covering map 𝐹 : 𝑈 → 𝑀 , its Galois closure �̂� : �̂� → 𝑀 is the
minimal Galois covering that factors through 𝐹; that is, every Galois covering that factors
through 𝐹 also factors through �̂�.
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Proof. If 𝜌 : π1(𝑀,𝑚) → 𝔖𝑑 denotes the monodromy representation of 𝐹, then
ker 𝜌 = Coreπ1 (𝑀,𝑚) (𝐹∗ π1(𝑈, 𝑢)), see [22, p. 16]. Indeed, we have [𝛾] ∈ ker 𝜌 if and only
if every lift of 𝛾 is a loop in 𝑈; that is, we have [𝛾] ∈ 𝐹∗ π1(𝑈, 𝜐) for each 𝜐 ∈ 𝐹−1(𝑚).
But, according to [16, Theorem 4.2 on p. 155], the family { 𝐹∗ π1(𝑈, 𝜐) : 𝜐 ∈ 𝐹−1(𝑚) } is
a whole conjugacy class in π1(𝑀,𝑚); more precisely, the conjugacy class of 𝐹∗ π1(𝑈, 𝑢).
That is, in turn, equivalent to [𝛾] ∈ Coreπ1 (𝑀,𝑚) 𝐹∗ π1(𝑈, 𝑢).

Let �̃� : (�̃�, �̃�) → (𝑀,𝑚) be a Galois covering which factors through 𝐹. Recall that
the correspondence in Theorem I.2 is order-reversing, so �̃�∗ π1(�̃�, �̃�) ⊆ 𝐹∗ π1(𝑈, 𝑢). Since
�̃�∗ π1(�̃�, �̃�) is normal in π1(𝑀,𝑚), we have �̃�∗ π1(�̃�, �̃�) ⊆ Coreπ1 (𝑀,𝑚) (𝐹∗ π1(𝑈, 𝑢)) =

ker 𝜌. Therefore, Theorem I.2 yields the existence of a covering map 𝜓 such that the
following diagram commutes:

�̃�

�̂�

𝑈

𝑀

𝜓

�̃� 𝜙

�̂�

𝐹

□

Before ending this section, it should be noted that the Galois closure �̂� of a degree 𝑑
covering map 𝐹 is also of finite degree; indeed, we have that deg �̂� = [π1(𝑀,𝑚) : ker 𝜌] =
|Mon(𝐹) | ≤ 𝑑!.

Now we carry the theory of topological coverings to the context of holomorphic maps
between compact Riemann surfaces. Let 𝑓 : 𝑋 → 𝑌 be a nonconstant holomorphic map
between compact Riemann surfaces (see [17, section II.3]). The set 𝐵 of branch values of 𝑓 ,
namely the branch locus of 𝑓 , is a discrete subset of 𝑌 ; thus, it is a finite set. The restriction
of 𝑓 to 𝑋 − 𝑓 −1(𝐵) is a covering map in the topological sense, and it will be denoted by 𝑓
while its domain and image by �̃� and 𝑌 , respectively. The original map 𝑓 is often called a
ramified covering map (see [1, subsection I.3.20]) (or just covering map, when there is no
room for confusion). The degree of 𝑓 as a covering map clearly coincides with the degree
of 𝑓 as a holomorphic map (see [17, Proposition 4.8 on p. 47]) and it will be denoted by 𝑑.

Choose a base point 𝑦 ∈ 𝑌 . The monodromy representation 𝜌 : π1
(
𝑌, 𝑦

) → 𝔖𝑑 of the
covering 𝑓 will be also called the monodromy representation of 𝑓 and im 𝜌 its monodromy
group, denoted also by Mon( 𝑓 ). Since 𝑌 is connected, we have that Mon( 𝑓 ) is a transitive
subgroup of 𝔖𝑑 . Although Mon( 𝑓 ) depends on the base point 𝑦 ∈ 𝑌 , a different choice
yields a conjugate monodromy group.

Following the construction in [17, p. 88], a special kind of loop will be defined for each
branch value 𝑏 ∈ 𝐵. Let𝑊 be an open neighborhood of 𝑏 such that 𝑓 −1(𝑊−𝑏) decomposes
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𝑦

𝑏
𝑤

𝛼

𝛽

Figure 2. Small loop around 𝑏 on the Riemann surface 𝑌

as a disjoint union of punctured discs. Fix a point 𝑤 ∈ 𝑊 − {𝑏}, then choose a path 𝛼 from
𝑦 to 𝑤 and a loop 𝛽 in𝑊 − {𝑏} based at 𝑤 with winding number 1 around 𝑏, see Figure 2.

Definition I.3. In the previous notation, the loop 𝛼−1 ∗ 𝛽 ∗ 𝛼 on 𝑌 based at 𝑦 is called
a small loop around 𝑏 and it will be denoted by 𝛾𝑏.

Note that neither 𝛾𝑏 nor its homotopy class [𝛾𝑏] are determined just by 𝑏 but also by the
choice of 𝛼; however, different paths 𝛼 yields π1(𝑌, 𝑦)-conjugate homotopy classes. The
following result concerning small loops will be very useful.

Theorem I.7 ([17, Lemma 4.6 on p. 88]). Suppose that above the branch value 𝑏 ∈ 𝑌 there
are 𝑘 preimages 𝑥1, . . . , 𝑥𝑘 , and that mult𝑥 𝑗 ( 𝑓 ) = 𝜈 𝑗 . The cycle structure of the permutation
𝜌(𝛾𝑏) representing the class of a small loop around 𝑏 is [𝜈1, . . . , 𝜈𝑘 ].

In the same way as in section 2, coverings onto a given Riemann surface may be
classified in terms of their monodromy representation. For this purpose, fix a compact
Riemann surface 𝑌 . According to [17, Lemma 4.7 on p. 89], for any topological covering
𝜙 : 𝑊 → 𝑌 there is a unique complex structure on 𝑊 such that 𝜙 is a holomorphic map.
Thereby, Theorem I.4 directly extend to ramified coverings.

Furthermore, given a finite subset 𝐵 of 𝑌 , Theorem I.2 remains true for the Riemann
surface𝑌 −𝐵, and, according to [10, Lemma 1.80 on p. 64], each map 𝑓 : �̃� → 𝑌 −𝐵 of this
correspondence can be holomorphically extended in an (up to isomorphism) unique manner
to a map 𝑓 : 𝑋 → 𝑌 , where 𝑋 is a compact Riemann surface. These facts summarize in the
following theorem.

Theorem I.8 ([17, Proposition 4.9 on p. 91]). Let 𝑌 be a compact Riemann surface, let
𝐵 be a finite subset of 𝑌 , and let 𝑦 be a base point of 𝑌 − 𝐵. Then there is a one-to-one
correspondence between:
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(1) isomorphism classes of holomorphic maps 𝑓 : 𝑋 → 𝑌 of degree 𝑑 whose branch
points lie in 𝐵; and

(2) group homomorphisms 𝜌 : π1(𝑌 − 𝐵, 𝑦) → 𝔖𝑑 with transitive image up to conju-
gacy in 𝔖𝑑 .

For each point 𝑏 ∈ 𝐵, let 𝛾𝑏 be the class of a small loop on 𝑌 − 𝐵 around 𝑏 based at 𝑦.
If 𝜌(𝛾𝑏) has cycle structure [𝜈1, . . . , 𝜈𝑘 ], then there are 𝑘 preimages 𝑥1, . . . , 𝑥𝑘 of 𝑏 in the
corresponding cover 𝑓 : 𝑋 → 𝑌 with mult𝑥 𝑗 ( 𝑓 ) = 𝜈 𝑗 for each 𝑗 ∈ {1, . . . , 𝑘}.

Given a holomorphic map 𝑓 : 𝑋 → 𝑌 of degree 𝑑 and a branch value 𝑏 in 𝑌 , there is
an enumeration 𝑥1, . . . , 𝑥𝑘 of the fiber 𝑓 −1(𝑏) such that mult𝑥1 ( 𝑓 ) ≥ · · · ≥ mult𝑥𝑘 ( 𝑓 ). This
enumeration is not unique but the tuple [mult𝑥1 ( 𝑓 ), . . . ,mult𝑥𝑘 ( 𝑓 )] is.

Definition I.4. With the notation of Theorem I.8, the type of a branch value 𝑏 is the
tuple of integers [mult𝑥1 ( 𝑓 ), . . . ,mult𝑥𝑘 ( 𝑓 )].

Note that, although the class 𝛾𝑏 of a small loop around 𝑏 is defined only up to conjugacy,
the cycle structure of 𝜌(𝛾𝑏) is well defined; moreover, according to Theorem I.7, it coincides
with the type of the branch value 𝑏. The branch value 𝑏 will be called odd or even according
to the parity of 𝜌(𝛾𝑏).

Definition I.5. The ramification data of 𝑓 is the set of branch values of 𝑓 and their
respective types. We also call ramification data, when there is no place for ambiguity, to
the tuple of ramification types of the branch values of 𝑓 .

Let 𝑔𝑍 denote the genus of a compact Riemann surface 𝑍 . Note that the ramification
data is just a way of organizing the information given by the ramification divisor of 𝑓 ,
denoted by 𝑅 𝑓 (see [17, Definition 1.18 on p. 134]); the genus of 𝑋 can be computed from
the ramification data of 𝑓 and the genus of 𝑌 through Riemann–Hurwitz formula, stated in
the following proposition.

Proposition I.9 ([17, Theorem 4.16 on p. 52]). Let 𝑓 : 𝑋 → 𝑌 be a nonconstant holomor-
phic map between compact Riemann surfaces. Then

2𝑔𝑋 − 2 = deg( 𝑓 ) (𝑔𝑌 − 2) +
∑︁
𝑝∈𝑋

[mult𝑝 ( 𝑓 ) − 1] .

We call ∑𝑝∈𝑋 [mult𝑝 ( 𝑓 ) − 1] the total ramification of 𝑓 and denote it by deg(𝑅 𝑓 ), see
also [17, Definition 1.2 on p. 129].

As for topological coverings, the map 𝑓 : 𝑋 → 𝑌 is called Galois or regular if its associ-
ated subgroup 𝐻 is normal in π1(𝑌, 𝑦). According to [10, Lemma 1.80 and Proposition 1.81
on p. 64], each automorphism of 𝑓 can be uniquely extended to an automorphism of 𝑓 ;
thus, we have the following isomorphism:

(I.2) Aut( 𝑓 ) �
Nπ1 (𝑌,𝑦) (𝐻)

𝐻
.
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Thereby, Aut( 𝑓 ) � π1(𝑌, 𝑦)/𝐻 if and only if 𝑓 is Galois. A holomorphic map is Galois
if and only if it is induced by a properly discontinuous holomorphic group action, see
[17, Definition 3.10 on p. 83].

Following Definition I.2, denote the Galois closure of 𝑓 by 𝜑 : 𝑊 → 𝑌 − 𝐵. As before,
𝑊 can be considered as a Riemann surface and 𝜑 as a holomorphic map in a unique manner;
moreover, according to [10, Lemma 1.80 on p. 84], the map 𝜑 can be uniquely extended
to a holomorphic map 𝑓 : �̂� → 𝑌 between compact Riemann surfaces. This map 𝑓 is
called Galois closure of 𝑓 and it is, indeed, Galois. Also the previous remarks on the
automorphisms of a holomorphic implies that Theorem I.5 and Theorem I.6 are also valid
for compact Riemann surfaces and (ramified) coverings.

Note that, by construction, every ramification point of 𝑓 is a preimage of a branch
value of the original map 𝑓 . Moreover, according to [17, pp. 75–76], the stabilizers of the
preimages of a fixed branch value 𝑏 ∈ 𝐵 are a full conjugate class of cyclic subgroups of
Aut( 𝑓 ) of order mult𝑝 ( 𝑓 ) where 𝑝 ∈ 𝑓 −1(𝑏).

3. Geometric signature of a Galois covering

Throughout this section, let 𝐺 be a finite group that acts holomorphically and ef-
fectively on a compact Riemann surface 𝑍 (see [17, section III.3]). The stabilizer and
orbit of a point 𝑝 ∈ 𝑍 are denoted by Stab𝐺 (𝑝) and 𝐺 · 𝑝, respectively. According to
[17, Propositions 3.1 and 3.2], the points with non trivial stabilizers are discrete (so finite)
and each stabilizer is a cyclic subgroup of 𝐺. Moreover, the quotient map 𝜋𝐺 : 𝑍 → 𝑍/𝐺
has degree |𝐺 | and mult𝑝 (𝜋𝐺) = |Stab𝐺 (𝑝) | for each 𝑝 ∈ 𝑍 (see [17, Theorem 3.4 on
p. 78]).

When 𝐺 is the automorphism group of the Galois closure of a covering 𝑓 : 𝑋 → 𝑌 ,
Theorem I.5 states that𝐺 � Mon( 𝑓 ); in that notation, we have the following characterization
of the stabilizer of a point 𝑝 ∈ 𝑍 , which will be very useful.
Theorem I.10. Consider a covering map 𝑓 : 𝑋 → 𝑌 with Galois closure 𝑓 : �̂� → 𝑌 . For
each ramification point 𝑝 ∈ �̂� of 𝑓 , there is a small loop 𝛾 𝑓 (𝑝) around 𝑓 (𝑝) such that the
group isomorphism of Theorem I.5 restricts to

StabAut( 𝑓 ) (𝑝) � ⟨𝜌( [𝛾 𝑓 (𝑝)])⟩,
where 𝜌 is the monodromy representation of 𝑓 .

Proof. According to [17, Corollary 3.5 on p. 79], there is a generator 𝑔 in StabAut( 𝑓 ) (𝑝)
and a local coordinate 𝑧 on �̂� centered at 𝑝 such that 𝑔(𝑧) = e2πi/𝑚𝑧 where 𝑚 = mult𝑝 ( 𝑓 ).
Assume that the range of 𝑧 contains the closed disc 𝐷 of radius 1 centered at 0 and that its
domain 𝑈 is sufficiently small such that 𝑈 ∩ 𝑔𝑈 = ∅ for each 𝑔 ∈ Aut( 𝑓 ) − StabAut( 𝑓 ) (𝑝)
and that no point of the (topological) punctured disc 𝑈 − {𝑝} is fixed by any element of
StabAut( 𝑓 ) (𝑝) (see [17, Proposition 3.3 on p. 77]).

Set a path 𝛼 : [0, 1] → �̂� such that 𝑧(𝛼(𝑡)) = e2πi𝑡/𝑚; thus range(𝛼) ⊂ 𝑈. As in the
proof of [17, Corollary 3.5], we can choose a local coordinate 𝑤 near 𝑓 (𝑝) such that the
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formula of 𝑓 is 𝑤 = 𝑧𝑚 it these coordinates. Set 𝛾 𝑓 (𝑝) = 𝑓∗𝛼, then 𝛾 𝑓 (𝑝) is a loop in 𝑌 and
𝑤(𝛾(𝑡)) = e2πi𝑡 ; so it is a small loop around 𝑓 (𝑝). If ℎ is the automorphism of 𝑓 associated
to 𝜌( [𝛾 𝑓 (𝑝)]) by Theorem I.5, then, in the local coordinate 𝑧, the point ℎ(1) is the end of
the unique lift of 𝛾 𝑓 (𝑝) starting at 𝑧 = 1, namely 𝛼; so ℎ(1) = 𝑧(𝛼(1)) = e2πi/𝑚. Since
ℎ(1) ∈ 𝐷, we have that ℎ ∈ StabAut( 𝑓 ) (𝑝). Since ℎ(1) = 𝑔(1) and no point of𝑈 except 𝑝 is
fixed by any element of StabAut( 𝑓 ) (𝑝), we conclude that 𝑔 = ℎ. But ⟨𝑔⟩ = StabAut( 𝑓 ) (𝑝), so
we are done. □

Since the number of points in the orbit of a point 𝑝 ∈ 𝑍 is given by |𝐺 · 𝑝 | =

|𝐺 |/|Stab𝐺 (𝑝) | and if 𝑞 = 𝜎(𝑝) for some 𝜎 ∈ 𝐺, then Stab𝐺 (𝑞) = Stab𝐺 (𝑝)𝜎; the
branch value 𝜋𝐺 (𝑝) is of type [|Stab𝐺 (𝑝) |, . . . , |Stab𝐺 (𝑝) |︸                             ︷︷                             ︸

[𝐺 : Stab𝐺 (𝑝)] times

]
.

Therefore, if {𝑝1, . . . , 𝑝𝑘 } is a set with exactly one point in 𝑍 from each orbit with non-
trivial stabilizer, then the total ramification deg(𝑅𝜋𝐺 ) can be computed from the tuple(|Stab𝐺 (𝑝) |

) 𝑘
𝑝=1; indeed,

deg(𝑅𝜋𝐺 ) =
𝑘∑︁
𝑖=1

|𝐺 |
|Stab𝐺 (𝑝𝑖) |

( |Stab𝐺 (𝑝𝑖) | − 1
)

= |𝐺 |
𝑘∑︁
𝑖=1

(
1 − 1

|Stab𝐺 (𝑝𝑖) |

)
.

With this notation, the genus 𝑔𝑍 can be computed in terms of the tuple
( |Stab𝐺 (𝑝) |

) 𝑘
𝑝=1 and

𝑔𝑍/𝐺 as in the following result.

Theorem I.11 ([17, Corollary 3.7 on p. 80]). Let𝐺 be a finite group acting holomorphically
and effectively on a compact Riemann surface 𝑍 , with quotient map 𝜋𝐺 : 𝑍 → 𝑍/𝐺.
Suppose {𝑝1, . . . , 𝑝𝑘 } is a set with exactly one point in 𝑍 from each 𝐺-orbit with nontrivial
stabilizer. Then

2𝑔𝑍 − 2 = |𝐺 |
[
2𝑔𝑍/𝐺 − 2 +

𝑘∑︁
𝑖=1

(
1 − 1

|Stab𝐺 (𝑝𝑖) |

)]
.

This motivate the following definition.

Definition I.6. For a branched covering 𝜋𝐺 : 𝑍 → 𝑍/𝐺 and a subset {𝑝1, . . . , 𝑝𝑘 } of
𝑍 with a single point from each orbit with nontrivial stabilizer the vector of numbers(

𝑔𝑍/𝐺 ; |Stab𝐺 (𝑝1) |, . . . , |Stab𝐺 (𝑝𝑘 ) |
)

is called the signature of 𝐺 on 𝑍 .
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As points in the same orbit has conjugate stabilizers, the signature of𝐺 does not depend
on the choice of {𝑝1, . . . , 𝑝𝑘 } up to a re-enumeration of the orbits. If we rearrange the
orbits in such a way that |Stab𝐺 (𝑝𝑖) | ≤ |Stab𝐺 (𝑝 𝑗 ) | for 𝑖 < 𝑗 , then the signature of 𝜋𝐺 is
uniquely determined; thereby, in order to get a well-defined signature, we will impose this
additional condition. The following definition, taken from [23, Definition 3.1.1], refines
Definition I.6.

Definition I.7. Consider a branched covering 𝜋𝐺 : 𝑍 → 𝑍/𝐺 and a subset {𝑝1, . . . , 𝑝𝑘 }
of 𝑍 with a single point from each 𝐺-orbit with nontrivial stabilizer. Let 𝐶𝑖 denote the
conjugacy class of Stab𝐺 (𝑝𝑖) into 𝐺. Then the vector(

𝑔𝑍/𝐺 ;𝐶1, . . . , 𝐶𝑘
)

is called the geometric signature of 𝐺 on 𝑍 .
Notation I.1. The conujgacy class of a subgroup 𝐻 of a group 𝐺 will be denoted by

Class𝐺 (𝐻), or just by Class(𝐻) if there is no place to confusion about 𝐺.
As points in the same orbit has conjugate stabilizers, the geometric signature is also

independent of the chosen {𝑝1, . . . , 𝑝𝑘 } up to a re-enumeration of the orbits; but unlike the
previous case, there is no standard manner to order two different classes of stabilizers with
the same order, so it is more suitable to think the geometric signature as a multiset than a
tuple.

The following definition and theorem state precisely when a group𝐺 acts on a Riemann
surface of a given genus. The theorem is also known as the Riemann’s Existence Theorem.

Definition I.8 ([4, Definition 2.2]). A (2𝑔+𝑟) tuple (𝑎1, . . . , 𝑎𝑔, 𝑏1, . . . , 𝑏𝑔, 𝑐1, . . . , 𝑐𝑟)
of elements of a group 𝐺 is called a (𝑔;𝑚1, . . . , 𝑚𝑟)-vector if

𝑔∏
𝑖=1

[𝑎𝑖, 𝑏𝑖]
𝑟∏
𝑖=1

𝑐𝑖 = 1

and |𝑐𝑖 | = 𝑚𝑖 for each 𝑖 = 1, . . . , 𝑟 . The vector is called generating (𝑔;𝑚1, . . . , 𝑚𝑟)-vector
if 𝐺 is generated by

{
𝑎𝑖, 𝑏 𝑗 , 𝑐𝑘 : 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, 𝑘 ∈ {1, . . . , 𝑟} }

.
Theorem I.12 ([4, Proposition 2.1]). The group 𝐺 acts on a Riemann surface 𝑍 of genus
𝑔𝑍 with signature (𝑔;𝑚1, . . . , 𝑚𝑟) if and only if

2𝑔𝑍 − 2 = |𝐺 |
[
2𝑔 − 2 +

𝑘∑︁
𝑖=1

(
1 − 1

𝑚𝑖

)]
and 𝐺 has a generating (𝑔;𝑚1, . . . , 𝑚𝑟)-vector.

We now give an application of the preceding theorem to the existence of holomorphic
maps with prescribed ramification data (or, equivalently, ramification divisor).
Theorem I.13. Let 𝑌 be a compact Riemann surface of genus 𝑔, and let {𝑦1, . . . , 𝑦𝑟} be
a finite subset of 𝑌 . Fix a transitive subgroup 𝐺 of 𝔖𝑑 . The following statements are
equivalent:
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(1) There is a compact Riemann surface 𝑋 and a holomorphic map 𝑓 : 𝑋 → 𝑌 of
degree 𝑑 and branch locus {𝑦1, . . . , 𝑦𝑟} such that Mon( 𝑓 ) = 𝐺 and 𝑦𝑖 is of type
[𝜈𝑖,1, . . . , 𝜈𝑖,𝑘𝑖 ] for each 𝑖 ∈ {1, . . . , 𝑟}.

(2) The group 𝐺 has a generating (𝑔;𝑚1, . . . , 𝑚𝑟)-vector

(𝑎1, . . . , 𝑎𝑔, 𝑏1, . . . , 𝑏𝑔, 𝑐1, . . . , 𝑐𝑟)
such that 𝑐𝑖 has cycle structure [𝜈𝑖,1, . . . , 𝜈𝑖,𝑘𝑖 ] with 𝑚𝑖 = lcm{ 𝜈𝑖, 𝑗 : 1 ≤ 𝑗 ≤ 𝑘𝑖 }
for each 𝑖 = 1, . . . , 𝑟 .

Proof. We first prove that item (2) implies item (1), so let us assume that item (2) is
fulfilled. Theorem I.12 implies the existence of a compact Riemann surface 𝑍 where𝐺 acts
with signature (𝑔;𝑚1, . . . , 𝑚𝑟). According to [4, Equations (2.2) and (2.5)], the elements
𝑐𝑖 ∈ 𝐺 are the corresponding images of torsion elements 𝛾1, . . . , 𝛾𝑟 of a group 𝐺∗ that
acts on the uniformization of 𝑍 , the action that induces that of 𝐺 on 𝑍 . The elements 𝛾𝑖
generate all the torsion groups of𝐺∗ up to conjugacy, hence the cyclic groups ⟨𝛾𝑖⟩ (and their
conjugates) are the only subgroups of 𝐺∗ that fix points; correspondingly, the subgroups
⟨𝑐𝑖⟩ of 𝐺 (and their conjugates) are the stabilizers of the ramification points of the quotient
map 𝜋𝐺 . Therefore, if we denote by 𝐶𝑖 the conjugacy class of ⟨𝑐𝑖⟩ in 𝐺, then the geometric
signature of 𝐺 is (𝑔;𝐶1, . . . , 𝐶𝑟).

Set 𝐻 B Stab𝐺 (1). According to Theorem I.4, the induced map 𝜋𝐻 : 𝑊/𝐻 → 𝑊/𝐺
satisfy Mon

(
𝜋𝐻

)
= 𝐺 and deg 𝜋𝐻 = |𝐻 | = 𝑑. Moreover, since 𝜋𝐺 is the Galois closure

of 𝜋𝐻 , the isomorphism of Theorem I.5 becomes an equality. Set 𝑝𝑖 ∈ 𝑍 such that
Stab𝐺 (𝑝𝑖) = ⟨𝑐𝑖⟩, and denote 𝑞𝑖 B 𝜋𝐺 (𝑝𝑖) for each 𝑖 = 1, . . . , 𝑟 . Theorem I.10 implies that
there is a small loop 𝛼𝑖 around 𝑞𝑖 such that Stab𝐺 (𝑝𝑖) = ⟨𝜌(𝛼𝑖)⟩ for each 𝑖 = 1, . . . , 𝑟 , where
𝜌 : π1(𝑍/𝐺−{𝑞1, . . . , 𝑞𝑟}) → 𝔖𝑑 is the monodromy representation of 𝜋𝐻 . Moreover, since
both 𝑐𝑖 and 𝜌(𝛼𝑖) generate the same cyclic permutation group, they have the same cycle
structure, namely [𝜈𝑖,1, . . . , 𝜈𝑖,𝑘𝑖 ]; thereby, Theorem I.8 implies that if we set 𝑋 B 𝑍/𝐻
and 𝑓 B 𝜋𝐻 , then item (1) is fulfilled.

Now we prove that item (1) implies item (2). Assume item (1), then, according to
Theorem I.5, the Galois closure of 𝑓 , namely 𝑓 : �̂� → 𝑌 , verifies that Aut( 𝑓 ) � 𝐺. So
𝐺 acts on �̂� and each nontrivial stabilizer correspond to a branch value 𝑦𝑖. According
to Theorem I.10, those stabilizers, namely 𝑆𝑖, are respectively generated by elements with
cycle structure [𝜈𝑖,1, . . . , 𝜈𝑖,𝑘𝑖 ], hence of order 𝑚𝑖 = lcm{ 𝜈𝑖, 𝑗 : 𝑗 = 1, . . . , 𝑘𝑖 }; therefore, by
Theorem I.12, the group 𝐺 has a generating (𝑔;𝑚1, . . . , 𝑚𝑟)-vector

(𝑎1, . . . , 𝑎𝑔, 𝑏1, . . . , 𝑏𝑔, 𝑐1, . . . , 𝑐𝑟).
Moreover, the elements 𝑐𝑖 are generators of the stabilizers 𝑆𝑖, and hence of cycle structure
[𝜈𝑖,1, . . . , 𝜈𝑖,𝑘𝑖 ]. □

Corollary I.14. Consider a covering map 𝑓 : 𝑋 → 𝑌 between compact Riemann surfaces.
Let 𝑓 : �̂� → 𝑌 be its Galois closure. Suppose the branch values of 𝑓 are of types 𝑡1, . . . , 𝑡𝑘
and there are exactly 𝑛𝑖 branch values of type 𝑡𝑖 for each 𝑖 ∈ {1, . . . , 𝑘}; then the geometric
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signature of the action of Mon( 𝑓 ) on �̂� is

(𝑔𝑌 ;𝐶1,1, . . . , 𝐶1,𝑛1 , . . . , 𝐶𝑘,1, . . . , 𝐶𝑘,𝑛𝑘 ),
where 𝐶𝑖, 𝑗 is a cyclic group generated by a permutation of type 𝑡𝑖 for each 𝑖 ∈ {1, . . . , 𝑘}
and 𝑗 ∈ {1, . . . , 𝑛𝑘 }.

Proof. Follows directly from item (1) implying item (2) in Theorem I.13, considering
that conjugacy classes in the geometric signature of Mon( 𝑓 ) on �̂� are in one to one
relation with the 𝑐𝑖 permutations in the generating (𝑔;𝑚1, . . . , 𝑚𝑟)-vector of item (2) of the
theorem. □

4. Intermediate coverings of a Galois covering

In this section, we give some useful results regarding intermediate coverings of a Galois
covering; more precisely, we give computations, which can be found at [23, Chapter 3],
of the ramification data of the intermediate coverings and the genera of the respective
intermediate covers in group-theoretic terms.

Consider a finite group 𝐺 acting holomorphically and effectively on compact Riemann
surface 𝑍 and denote the quotient map by 𝜋𝐺 : 𝑍 → 𝑍/𝐺; also let 𝐵 denote the branch
locus of 𝜋𝐺 . For each subgroup 𝐻 of 𝐺 there is a quotient map 𝜋𝐻 : 𝑍 → 𝑍/𝐻, which also
induces a (non-necessarily Galois) holomorphic map 𝜋𝐻 : 𝑍/𝐻 → 𝑍/𝐺 : [𝑧]𝐻 ↦→ [𝑧]𝐺
such that the following diagram (on the right side) commutes:

{1𝐺} 𝑍

𝐻 𝑍/𝐻

𝐺 𝑍/𝐺

𝜋𝐻

𝜋𝐺

𝜋𝐻

According to Theorem I.6, we must have Mon(𝜋𝐺) � 𝐺; therefore, since the correspondence
in Theorem I.2 is one-to-one and order reversing, every intermediate covering of 𝜋𝐺 is
given as above; compare with equation (I.1). If we denote the isomorphic copy of 𝐻 into
Mon(𝜋𝐺) by 𝐻Mon(𝜋𝐺) and the monodromy representation of 𝜋𝐺 by 𝜌, then equation (I.2)
and [22, 1.4.6] imply the following sequence of isomorphisms

Aut
(
𝜋𝐻

)
�

N𝜌−1 Mon(𝜋𝐺)
(
𝜌−1𝐻Mon(𝜋𝐺)

)
𝜌−1𝐻Mon(𝜋𝐺)

(I.3)

�
NMon(𝜋𝐺)

(
𝐻Mon(𝜋𝐺)

)
𝐻Mon(𝜋𝐺)

�
N𝐺 (𝐻)
𝐻

.
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Hence we can determine if the induced map 𝜋𝐻 is Galois in terms of just 𝐻 and 𝐺. Also,
if there are two subgroups 𝐻 and 𝑁 of 𝐺 with 𝐻 ⊂ 𝑁 , we denote by 𝜋𝐻𝑁 the intermediate
covering of 𝜋𝑁 induced by the action of 𝐻 on 𝑍 as in the following diagram:

{1𝐺} 𝑍

𝐻 𝑍/𝐻

𝑁 𝑍/𝑁

𝐺 𝑍/𝐺

𝜋𝐻

𝜋𝐺 𝜋𝐻
𝑁

𝜋𝑁

We summarize some direct consequences of these correspondences as follows.
Proposition I.15. Given a Galois covering 𝜋𝐺 : 𝑍 → 𝑍/𝐺 and subgroups 𝐻 and 𝑁 of 𝐺
with 𝐻 ⊂ 𝑁 , we have that:

(1) The maps 𝜋𝐻 and 𝜋𝐻 have intermediate coverings if and only if there is a subgroup
𝐾 of 𝐺 with 𝐻 ⊊ 𝐾 ⊊ 𝐺 and {1𝐺} ⊊ 𝐾 ⊊ 𝐻, respectively.

(2) The map 𝜋𝐻 is Galois.
(3) The maps 𝜋𝐻 and 𝜋𝐻𝑁 are Galois if and only if 𝐻 is normal in 𝐺 and 𝐻 is normal

in 𝑁 , respectively; in the case these maps are Galois, they are given by the action
of 𝐺/𝐻 and 𝑁/𝐻, respectively.

If we know the genus 𝑔𝑍/𝐺 , then Theorem I.11 yields the genus of 𝑍; the following
theorem gives a manner to compute the genus 𝑔𝑍/𝐻 of each intermediate covering of 𝜋𝐺 in
terms of its geometric signature.
Proposition I.16 ([23, Proposition 3.2.3]). Let 𝑍 be a curve with 𝐺 action and geometric
signature (𝑔;𝐶1, . . . , 𝐶𝑟). For each subgroup 𝐻 of 𝐺, the genus of 𝑍/𝐻 is given by

𝑔𝑍/𝐻 = [𝐺 : 𝐻] (𝑔 − 1) + 1 + 1
2

𝑟∑︁
𝑖=1

∑︁
𝑙∈Ω𝑖

[N𝐺 (𝐺𝑖) : 𝐺𝑖] |𝐺 𝑙
𝑖 ∩ 𝐻 |

|𝐻 |

(
|𝐺 𝑙

𝑖 |
|𝐺 𝑙

𝑖 ∩ 𝐻 | − 1

)
,

where 𝐺𝑖 is a representative of 𝐶𝑖 and Ω𝑖 is a transversal of the normalizer of 𝐺𝑖 in 𝐺 for
each 𝑖 = 1, . . . , 𝑟 .

In order to determine the geometric signature of the quotient 𝜋𝐻 we just need the stabi-
lizer of each ramification point; them can be easily obtained from Stab𝐻 (𝑝) = Stab𝐺 (𝑝)∩𝐻.

The following theorem gives a manner to compute the ramification data of 𝜋𝐻 in terms
of 𝐻 and the geometric signature of the action of 𝐺.
Proposition I.17 ([23, Proposition 3.2.5]). Let 𝑍 be a curve with 𝐺 action and geometric
signature (𝑔;𝐶1, . . . , 𝐶𝑟) and𝐻 a subgroup of𝐺. If𝐺𝑖 is a representative of𝐶𝑖 and 𝑝 ∈ 𝑍/𝐺
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is the image of the points of 𝑍 associated to 𝐶𝑖, then there are [N𝐺 (𝐺𝑖) : 𝐺𝑖] |𝐺 𝑙
𝑖 ∩ 𝐻 |/|𝐻 |

points above 𝑝 of multiplicity |𝐺𝑖 |/|𝐺 𝑙
𝑖 ∩ 𝐻 | for each 𝑙 in a transversal of N𝐺 (𝐺𝑖) in 𝐺.

Thereby, the ramification data of each intermediate covering and the genera of their
respective Riemann surfaces can be computed in a group-theoretical manner in terms of
the geometric signature of the action of 𝐺 on 𝑍 . All these computations were implemented
into a SageMath [26] class, namely GaloisCovering, using mostly GAP [11] functions,
its source code is given in appendix A and https://bit.ly/3wDmLiL. There is also a
previous (although non object-oriented) implementation through GAP [11], which can be
found in [23, appendix A].

https://bit.ly/3wDmLiL


CHAPTER II

Representation Theory

In this chapter we will introduce some results on representation theory that will be
needed and fix the corresponding notation. Throughout this chapter 𝐺 denotes a finite
group. For any field 𝑘 , we will denote the set of irreducible representations of 𝐺 over 𝑘
modulo isomorphism, as defined in [8, (10.2) Definition], by Irr𝑘 (𝐺). We will only consider
fields of characteristic 0.

1. Complex and rational irreducible representations

As it is usually done, a complex representation 𝜌 : 𝐺 → GL(𝑉) will be denoted
just by 𝑉 , its character by 𝜒𝑉 and its Schur index by 𝑚𝑉 (see [8, (30.3) Definition and
(41.4) Definition] for the respective definitions). As stated in [9, Proposition 2.30], the
number of irreducible complex representations of 𝐺 modulo isomorphism is equal to the
number of conjugacy classes of 𝐺. Moreover, if ℂclass(𝐺) denotes the space of class
functions on 𝐺, its irreducible characters form an orthonormal basis for ℂclass(𝐺) with
respect to the usual inner product

⟨𝜒, 𝜉⟩𝐺 =
1
|𝐺 |

∑︁
𝑔∈𝐺

𝜒(𝑔)𝜉 (𝑔)

for 𝜒, 𝜉 ∈ ℂclass(𝐺). Let Irrℂ(𝐺) = {𝑉1, . . . , 𝑉𝑛} with𝑉1 the trivial representation. Choose
a complete set of representatives {𝑐1, . . . , 𝑐𝑛} of the conjugacy classes of 𝐺; without loss
of generality, we can set 𝑐1 = Id𝐺 . Let 𝑎 𝑗 be the cardinality of the conjugacy class of 𝑐 𝑗 for
each 𝑗 ∈ {1, . . . , 𝑛}. Then:

• 𝜒𝑉1 (𝑐 𝑗 ) = 1 for each 𝑗 ∈ {1, . . . , 𝑛}, and
• 𝜒𝑉 𝑗

(Id𝐺) = dim𝑉 𝑗 for each 𝑗 ∈ {1, . . . , 𝑛}.
We call Table 1 the character table of 𝐺 (see [9, p. 14]).

Because in chapter V we deal with group actions on Jacobian varieties, we are more
interested in Irrℚ(𝐺) than in Irrℂ(𝐺). According to [8, Theorem 70.12], for each 𝑉 ∈
Irrℂ(𝐺) there is a minimal algebraic extension ℚ[𝑉]/ℚ in which 𝑉 is realizable and such
that [ℚ[𝑉] : ℚ[𝜒𝑉 ]] = 𝑚𝑉 , where ℚ[𝜒𝑉 ] denotes the extension of ℚ by the values of
𝜒𝑉 . The fields ℚ[𝑉] and ℚ[𝜒𝑉 ] are called definition field and field of characters of 𝑉 ,
respectively.

Now let Gal
(
𝑘′/𝑘 ) denote the Galois group of a field extension 𝑘′/𝑘 (see [13, p. 252]).

For each𝑉 ∈ Irrℂ(𝐺) and𝜎 ∈ Gal(ℚ[𝑉]/ℚ), we denote by𝑉𝜎 the conjugate representation
of 𝑉 by 𝜎 as defined on [8, p. 471]; the representation 𝑉𝜎 is also in Irrℂ(𝐺) and both

17
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Table 1. Character table of a group 𝐺

1 𝑎2
. . .

𝑎𝑛
𝐺 Id𝐺 𝑐2 𝑐𝑛

𝑉1 1 1 . . . 1
𝑉2 dim(𝑉2) 𝜒𝑉2 (𝑐2) . . . 𝜒𝑉2 (𝑐𝑛)

...

𝑉𝑛 dim(𝑉𝑛) 𝜒𝑉𝑛 (𝑐2) . . . 𝜒𝑉𝑛 (𝑐𝑛)

representations, 𝑉 and 𝑉𝜎, share the same definition field. Moreover, they are isomorphic
if and only if 𝜎 ∈ Gal(ℚ[𝑉]/ℚ[𝜒𝑉 ]). As stated in [8, (70.15) Theorem], for each rational
irreducible representation𝑊 , there is a complex irreducible representation 𝑉 such that

𝑊 ⊗ ℂ �
⊕
𝜎

𝑚𝑉𝑉
𝜎,

where 𝜎 runs over Gal(ℚ[𝜒𝑉 ]/ℚ); we say that 𝑉 is Galois associated to𝑊 . We also have
that dimℚ𝑊 = 𝑚𝑉 · |Gal(ℚ[𝜒𝑉/ℚ]) | · dimℂ𝑉 and

(II.1) 𝜒𝑊 = 𝑚𝑉
∑︁
𝜎

𝜒𝜎𝑉 ,

where 𝜒𝜎𝑉 = 𝜎 ◦ 𝜒𝑉 for each 𝜎 ∈ Gal(ℚ[𝜒𝑉 ]/ℚ). We will usually refer to the rational
representation𝑊 and its complex realization𝑊 ⊗ ℂ interchangeably.

According to [25, Corollary 1 on p. 103], the number of rational irreducible representa-
tions of𝐺 is equal to the number of conjugacy classes of its cyclic subgroups; this motivates
the following definition.

Definition II.1 (Rational conjugacy classes). Two elements 𝑥, 𝑦 ∈ 𝐺 are rational
conjugates if ⟨𝑥⟩ = ⟨𝑦⟩𝑧 for some 𝑧 ∈ 𝐺. Rational conjugacy is a equivalence relation and
each class is called a rational conjugacy class.

Each rational character is constant in each rational conjugacy class (see [25, Theorem 29
part (b)]). Suppose that:

• We have Irrℚ(𝐺) = {𝑊1, . . . ,𝑊𝑟} with𝑊1 trivial.
• The set {𝑐1, . . . , 𝑐𝑟} is a complete set of representatives of rational conjugacy

classes of 𝐺 with 𝑐1 = Id𝐺 .
• The class of each 𝑐𝑖 has exactly �̃�𝑖 elements.

Then we can compute Table 2, called the rational character table of 𝐺, from Table 1 and
equation (II.1).

There is a unique decomposition

(II.2) ℚ[𝐺] = ℚ[𝐺]𝑒1 ⊕ · · · ⊕ ℚ[𝐺]𝑒𝑟
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Table 2. Rational character table of a group 𝐺

1 �̃�2
. . .

�̃�𝑟
𝐺 Id𝐺 𝑐2 𝑐𝑟

𝑊1 1 1 . . . 1
𝑊2 dim(𝑊2) 𝜒𝑊2 (𝑐2) . . . 𝜒𝑊2 (𝑐𝑟)

...

𝑊𝑟 dim(𝑊𝑟) 𝜒𝑊𝑟
(𝑐2) . . . 𝜒𝑊𝑟

(𝑐𝑟)

of the group algebra ℚ[𝐺] into simple ℚ[𝐺]-algebras where the 𝑒𝑖 are mutually orthogonal
central idempotents respectively associated to the irreducible rational representations𝑊𝑖 of
𝐺 (see [8, §33]). Moreover, according to [2, equation (13.6) on p. 433], if 𝑉 𝑗 ∈ Irrℂ(𝐺) is
Galois associated to𝑊 𝑗 , then

𝑒 𝑗 =
dim𝑉 𝑗

|𝐺 |
∑︁
𝑔∈𝐺

tr
(
𝜒𝑉 𝑗

(𝑔))𝑔,
where tr

(
𝜒𝑉 𝑗

(𝑔)) denotes the trace of 𝜒𝑉 𝑗
(𝑔) viewed as an element of Gal(ℚ[𝜒𝑉 𝑗

]/ℚ).
Equation (II.2) is called the rational isotypical decomposition of ℚ[𝐺]. Furthermore, for
each 𝑒 𝑗 there are primitive orthogonal idempotents 𝑞 𝑗 ,1, . . . , 𝑞 𝑗 ,𝑙 𝑗 ∈ ℚ[𝐺]𝑒 𝑗 such that

(II.3) ℚ[𝐺]𝑒 𝑗 = ℚ[𝐺]𝑞 𝑗 ,1 ⊕ · · · ⊕ ℚ[𝐺]𝑞 𝑗 ,𝑙 𝑗
is a decomposition of ℚ[𝐺]𝑒 𝑗 into minimal right ideals (see [2, equation (13.8)]). This
decomposition is not unique but, according to Wedderburn’s theorem (see [8, (26.8)]), the
module ℚ[𝐺]𝑒 𝑗 is isomorphic to End

(
𝐷
𝑙 𝑗
𝑗

)
, where 𝐷 𝑗 is the (uniquely determined up to

isomorphism) skew-field 𝑞 𝑗ℚ[𝐺]𝑞 𝑗 for any primitive idempotent 𝑞 𝑗 of ℚ[𝐺]𝑒 𝑗 ; so 𝑙 𝑗 is
uniquely determined. Moreover, according to [7, equation (2.4)],

(II.4) 𝑙 𝑗 =
dim𝑉 𝑗

𝑚𝑉 𝑗

;

note that 𝑚𝑉 𝑗
depends only on𝑊 𝑗 (so we can denote the Schur index just by 𝑚𝑊 𝑗

), and that
|Gal(ℚ[𝜒𝑉 𝑗

/ℚ]) | is the number of complex irreducible representations Galois associated
to the rational representation 𝑊 𝑗 . In [7, Theorem 3.3, Corollary 3.5 and Corollary 3.6], a
method for explicitly constructing the primitive idempotents 𝑞 𝑗 ,𝑖 is given. The (non-unique)
decomposition

(II.5) ℚ[𝐺] =
𝑟⊕
𝑗=1

𝑙 𝑗⊕
𝑖=1

ℚ[𝐺]𝑞 𝑗 ,𝑖

will be called group algebra decomposition.
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2. Representations induced by a trivial representation

In this section, we study representations of 𝐺 induced by the trivial representation of a
subgroup 𝐻. Chapter V deals with Prym varieties and, in order to decompose the Jacobian
variety of a Riemann surface into Prym varieties, the following type of representations will
be especially useful.

For a subgroup 𝐻 of 𝐺, we set

𝜌𝐻 B Ind𝐺𝐻 (1𝐻),
where 1𝐻 denotes the trivial representation of 𝐻 and Ind𝐺𝐻 (𝑊) the𝐺-representation induced
by an 𝐻-representation𝑊 (see [25, subsection 3.3 and Chapter 7]); since 1𝐻 is rational, so
it is 𝜌𝐻 . Let Ind𝐺𝐻 (𝜇) and Res𝐺𝐻 (𝜈) denote the induced and restricted class functions (see
[25, subsection 7.2]) of 𝜇 ∈ ℂclass(𝐻) and 𝜈 ∈ ℂclass(𝐺), respectively. If we denote the
character of 𝜌𝐻 by 𝜒𝐻 , then Frobenius reciprocity (see [25, Theorem 13]) yields that

⟨𝜒𝐻 , 𝜓⟩𝐺 =
〈
1𝐻 ,Res𝐺𝐻 𝜓

〉
𝐻
=

1
|𝐻 |

∑︁
ℎ∈𝐻

𝜓(ℎ)

for each 𝐺-character 𝜓; in particular, for any𝑊 ∈ Irrℚ(𝐺) we have

(II.6) ⟨𝜒𝐻 , 𝜒𝑊⟩𝐺 =
1
|𝐻 |

∑︁
ℎ∈𝐻

𝜒𝑊 (ℎ).

Thus, we can easily compute the rational irreducible components of 𝜌𝐻 from the rational
character table of 𝐺 and 𝐻. As we summarize in the following result, we only need the
data about the rational conjugacy classes of 𝐻 and the values of the irreducible rational
𝐺-representations on those classes.

Proposition II.1. Let 𝐺 be a finite group. If 𝐻 is a subgroup of 𝐺 with rational character
table as in Table 2, then

⟨𝜒𝐻 , 𝜒𝑊⟩𝐺 =
1
|𝐻 |

𝑟∑︁
𝑖=1

𝜒𝑊 (𝑐𝑖)�̃�𝑖

for all𝑊 ∈ Irrℚ(𝐺).
And, directly from the proposition above, we get the following result.

Corollary II.2. Let 𝐺 be a finite group. If 𝐻 is a subgroup of 𝐺 with rational character
table as in Table 2 and Irrℚ(𝐺) = {𝑊1, . . . ,𝑊𝑟𝐺 }, then

𝜌𝐻 =
1
|𝐻 |

𝑟𝐺∑︁
𝑗=1

(
𝑟∑︁
𝑖=1

𝜒𝑊 𝑗
(𝑐𝑖)�̃�𝑖

)
𝑊 𝑗 .

If 𝑉 is any complex 𝐺-representation, a more geometrical characterization of the de-
composition above is given by

⟨𝜒𝐻 , 𝜒𝑉 ⟩𝐺 = dimℂ(Fix𝐻 𝑉),
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where Fix𝐻 𝑉 denotes the𝑉-subspace of points fixed by 𝐻. Therefore, if we decompose 𝜌𝐻
into rational irreducible representations—this is called rational isotypical decomposition as
in equation (II.2)—then the times that each rational irreducible representation is contained
in 𝜌𝐻 is given by the following result.
Theorem II.3 ([7, Lema 4.3]). Set Irrℚ(𝐺) = {𝑊1, . . . ,𝑊𝑟} and for each 𝑊 𝑗 choose a
Galois associated representation 𝑉 𝑗 ∈ Irrℂ(𝐺). Also let 𝐻 be a subgroup of 𝐺. Then the
rational isotypical decomposition of 𝜌𝐻 is given by

𝜌𝐻 �
𝑟⊕
𝑗=1

dimℂ(Fix𝐻 𝑉 𝑗 )
𝑚𝑉

𝑊 𝑗 .





CHAPTER III

Isotypical and Group Algebra Decomposition of a Jacobian Variety

For the whole chapter, let 𝑋 and𝑌 denote two compact Riemann surfaces with a covering
map 𝑓 : 𝑋 → 𝑌 of degree 𝑑 between them. For every curve 𝑍 , we denote its Jacobian
variety by (Jac(𝑍),Θ𝑍 ) (see its definition and main properties in [2, section 11.1]); also, for
any polarized abelian variety (𝐴,Θ), we denote the natural homomorphism onto its dual
by 𝜙Θ : 𝐴→ �̂�, we also set K(Θ) B ker 𝜙Θ (see [2, pp. 36–37]).

1. Prym variety of a covering map

The pullback 𝑓 ∗ : Jac(𝑌 ) → Jac(𝑋) is a homomorphism with finite kernel; thus an
isogeny onto its image 𝑓 ∗ Jac(𝑌 ). Moreover, we have the following result.

Proposition III.1 ([2, Proposition 11.4.3]). The homomorphism 𝑓 ∗ is not injective if and
only if 𝑓 factorizes via a cyclic étale covering 𝑓 ′ of degree greater than 2 as in the following
commutative diagram:

𝑋 𝑌

𝑍

𝑓

𝑓 ′

In this case, we have that ker 𝑓 ′∗ is cyclic of order deg 𝑓 ′.

Recall from [2, Theorem 5.3] that, as for any abelian variety, we have a bĳective
correspondence between:

(1) abelian subvarieties 𝐴 of a Jacobian 𝐽; and
(2) symmetric idempotents 𝜖 into the rational endomorphisms Endℚ(𝐽).

In virtue of this correspondence, each abelian subvariety 𝐴 has a unique complementary
subvariety: if 𝜖 is the idempotent associated to 𝐴, then its complement is the subvariety
associated to 1 − 𝜖 . Moreover, in [2, section 5.3] is stated that the norm endomorphism
Nm(𝐴) ∈ End(𝐽) of 𝐽 associated to 𝐴 satisfies Nm(𝐴) = 𝑒(𝐴)𝜖 , where 𝑒(𝐴) is the exponent
of 𝐴, that is, the exponent of the polarization induced by the inclusion map 𝐴 ↩→ 𝐽.

Definition III.1. The Prym variety of a covering map 𝑓 : 𝑋 → 𝑌 between compact
Riemann surfaces, denoted by Prym( 𝑓 ), is the complement of 𝑓 ∗ Jac(𝑌 ) in Jac(𝑋).

With respect to the polarization induced in Prym( 𝑓 ) by Θ𝑋 , we have the following
result.

23
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Theorem III.2 ([21, Theorem 2.5]). Let 𝑓 : 𝑋 → 𝑌 be a covering map of degree 𝑑. Denote
by Θ 𝑓 ∗ Jac(𝑌 ) and by ΘPrym( 𝑓 ) the polarizations induced by Θ𝑋 in 𝑓 ∗ Jac(𝑌 ) and Prym( 𝑓 ),
respectively. Then:

(1) The pullback of Θ 𝑓 ∗ Jac(𝑌 ) by 𝑓 ∗ is analytically equivalent to Θ⊗𝑑
𝑌 , and ker 𝑓 ∗ is an

isotropic subgroup of Jac(𝑌 ) [𝑑] with respect to the Weil form associated to Θ⊗𝑑
𝑌 .

(2) The homomorphism 𝑓 ∗ induces an isomorphism

𝑓 ∗ :
(ker 𝑓 ∗)⊥

ker 𝑓 ∗
→ K(Θ 𝑓 ∗ Jac(𝑌 )),

where orthogonality is with respect to the Weil form associated to Θ⊗𝑑
𝑌 . Moreover,

we have K(ΘPrym( 𝑓 )) = K(Θ 𝑓 ∗ Jac(𝑌 )) = 𝑓 ∗ Jac(𝑌 ) ∩ Prym( 𝑓 ).
(3) The homomorphism

𝜇 : Jac(𝑌 ) × Prym( 𝑓 ) → Jac(𝑋)
(𝑦, 𝑝) ↦→ 𝑓 ∗(𝑦) + 𝑝

is an isogeny, and the natural projection 𝜋1 : Jac(𝑌 )×Prym( 𝑓 ) → Jac(𝑌 ) restricts
to an isomorphism

𝜋1 : ker 𝜇 → (ker 𝑓 ∗)⊥.
Moreover, as a direct consequence of the previous theorem and [2, Corollary 5.3.6] we

get the following result.

Proposition III.3. The map 𝜙𝜇∗Θ𝑋
: Jac(𝑌 ) × Prym( 𝑓 ) → �Jac(𝑌 ) × �Prym( 𝑓 ) satisfies

𝜙𝜇∗Θ𝑋
=

(
𝜙Θ⊗𝑑

𝑌
0

0 𝜙ΘPrym( 𝑓 )

)
.

Consider now a Galois covering map 𝜋𝐺 : 𝑍 → 𝑌 given by the quotient of a curve 𝑍
by the action of a group 𝐺. For each 𝑔 ∈ 𝐺, the pullback

(
𝑔−1)∗ : Jac(𝑍) → Jac(𝑍) is an

automorphism of Jac(𝑍); thereby, since
((𝑔ℎ)−1)∗ = (

𝑔−1)∗ ◦ (
ℎ−1)∗, the group 𝐺 acts also

on Jac(𝑍). The automorphism
(
𝑔−1)∗ of Jac(𝑍) will be denoted just by 𝑔.

The action of 𝐺 on Jac(𝑍) induces a natural algebra homomorphism

ℚ[𝐺] → Endℚ(Jac(𝑍));
the elements of the image of this homomorphism will be denoted just as elements of ℚ[𝐺].
The following endomorphism is of particular interest.

Definition III.2. The norm endomorphism Nm𝐺 ∈ End(Jac(𝑍)) is given by Nm𝐺 =∑
𝑔∈𝐺 𝑔.

The following theorem summarizes some results about Jacobian and Prym varieties
associated to intermediate coverings of Galois map; all of them are proved in [21, section 3].
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Theorem III.4. Set a finite group 𝐺 acting on a curve 𝑍 and a subgroup 𝐻 of 𝐺. Denote
the canonical quotient maps and their pullbacks as in the following commutative diagrams:

𝑍 Jac(𝑍)

𝑍/𝐻 Jac(𝑍/𝐻)

𝑍/𝐺 Jac(𝑍/𝐺)

𝜋𝐺

𝜋𝐻

𝜋∗
𝐺

𝜋∗
𝐻

𝜋𝐻 𝜋𝐻∗

Then we have:
(1) The pullback 𝜋∗𝐺

(
Jac(𝑍/𝐺)) equals

(
Jac(𝑍)𝐺 )0.

(2) The Prym variety Prym(𝜋𝐺) equals
(
ker(Nm𝐺)

)0.
(3) If {𝑔1, . . . , 𝑔𝑟} is a complete set of representatives for 𝐺/𝐻, then

𝜋∗𝐻
(
Prym

(
𝜋𝐻

) )
=

{
𝑧 ∈ Fix𝐻 (Jac(𝑍)) :

𝑟∑︁
𝑖=1

𝑔𝑖 (𝑧) = 0
}0
.

2. Decomposition of a Jacobian variety into Prym varieties

Throughout this section, assume that 𝜋𝐺 : 𝑍 → 𝑍/𝐺 is a Galois covering map given by
the action of a finite group𝐺 on a compact Riemann surface 𝑍 . For any 𝛼 ∈ Endℚ(Jac(𝑍)),
we define im(𝛼) B im(𝑚𝛼) where 𝑚 ∈ ℤ+ is such that 𝑚𝛼 ∈ End(Jac(𝑍)). This definition
certainly does not depend on 𝑚.

If we set Irrℚ(𝐺) = {𝑊1, . . . ,𝑊𝑟}, then the rational isotypical decomposition of ℚ[𝐺]
given by equation (II.2) induces a decomposition of Jac(𝑍) as follows (the original result is
more general; not just for Jacobian varieties, but for any abelian variety).

Proposition III.5 ([14, Proposition 1.1]).
• Each abelian subvariety im 𝑒𝑖 is 𝐺-stable with Hom𝐺 (im 𝑒𝑖, im 𝑒 𝑗 ) = 0 for 𝑖 ≠ 𝑗 .
• The addition map induces an isogeny

𝜇 : im 𝑒1 × · · · × im 𝑒𝑟 → Jac(𝑍).
This decomposition is called the isotypical decomposition of Jac(𝑍) and it is unique up

to a permutation of the factors since the idempotents 𝑒𝑖 are uniquely determined.
Recall the group algebra decomposition of ℚ[𝐺], given by equation (II.5). As stated

in [2, p. 434], the abelian subvarieties im 𝑞 𝑗 ,1, . . . , im 𝑞 𝑗 ,𝑙 𝑗 are pairwise isogenous for each
fixed 𝑗 = 1, . . . , 𝑟 . Thereby, for each 𝑗 = 1, . . . , 𝑟 , there is an abelian subvariety 𝐴 such that
im 𝑒 𝑗 is isogenous to 𝐴𝑙 𝑗 (we can set 𝐴 B im 𝑞 𝑗 ,1 for example, but this certainly does not
determine 𝐴 uniquely, since the 𝑞 𝑗 ,𝑖 are not uniquely determined by 𝐺). Thereby, we get
the following result, which is just [14, Theorem 2.2] applied to Jacobian varieties.
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Theorem III.6. Let 𝐺 be a finite group acting on a Jacobian variety Jac(𝑍). Suppose
Irrℚ(𝐺) = {𝑊1, . . . ,𝑊𝑟} and set 𝑙 𝑗 B dim𝐷 𝑗

(𝑊 𝑗 ) as in equation (II.4). Then there are
abelian subvarieties 𝐴1, . . . , 𝐴𝑟 of Jac(𝑍) and an isogeny

Jac(𝑍) ∼ 𝐴𝑙11 × · · · × 𝐴𝑙𝑟𝑟 .
This is called the group algebra decomposition of Jac(𝑍) with respect to 𝐺. We

are interested in describing the abelian subvarieties 𝐴𝑖 as Jacobian or Prym varieties of
intermediate coverings of 𝑓 ; namely, Galois covering maps 𝜋𝐻 : 𝑍 → 𝑍/𝐻 and induced
covering maps of the form 𝜋𝐻 : 𝑍/𝐻 → 𝑍/𝐺 or 𝜋𝐾𝐻 : 𝑍/𝐾 → 𝑍/𝐻, where 𝐻 and 𝐾 are
subgroups of 𝐺 (see section 4 of chapter I). We set𝑊1 as the trivial representation so 𝑙1 = 1
and, according to item (1) of Theorem III.4, we have 𝐴1 ∼ Jac(𝑍/𝐺). For the rest of the
abelian subvarieties 𝐴𝑖 we have the following results.
Theorem III.7 ([7, Proposition 5.2]). Given a Galois covering 𝜋𝐺 : 𝑍 → 𝑍/𝐺, consider
the group algebra decomposition of Jac(𝑍) given by

Jac(𝑍) ∼ Jac(𝑍/𝐺) × 𝐴𝑙22 × · · · × 𝐴𝑙𝑟𝑟 ,
where 𝑙 𝑗 = dim(𝑉 𝑗 )/𝑚 𝑗 for a complex irreducible representation 𝑉 𝑗 Galois associated to
𝑊 𝑗 of Schur index 𝑚 𝑗 . If 𝐻 is a subgroup of 𝐺, then the isotypical decomposition of
Jac(𝑍/𝐻) is given by

Jac(𝑍/𝐻) ∼ Jac(𝑍/𝐺) × 𝐴𝑠2
2 × · · · × 𝐴𝑠𝑟𝑟 ,

where 𝑠 𝑗 = dimℂ(Fix𝐻 𝑉 𝑗 )/𝑚 𝑗 .
Corollary III.8 ([7, Corollary 5.4]). Given a Galois covering 𝜋𝐺 : 𝑍 → 𝑍/𝐺, consider the
group algebra decomposition of Jac(𝑍) given as

Jac(𝑍) ∼ Jac(𝑍/𝐺) × 𝐴𝑙22 × · · · × 𝐴𝑙𝑟𝑟 .
Then, for any subgroups 𝐻 and 𝑁 of 𝐺 such that 𝐻 ⊂ 𝑁 , the corresponding decomposition
of Prym

(
𝜋𝑁𝐻

)
is given as follows:

Prym
(
𝜋𝑁𝐻

) ∼ 𝐴𝑡22 × · · · × 𝐴𝑡𝑟𝑟 ,
where

𝑡 𝑗 =
dimℂ(Fix𝐻 𝑉 𝑗 )

𝑚 𝑗
− dimℂ(Fix𝑁 𝑉 𝑗 )

𝑚 𝑗
.

Remark III.1. In [7], is also established that the isogenies above are inclusions and
pullbacks like 𝜋∗𝐺 and 𝜋∗𝐻 .

The corollary below will be very useful; it directly follows from Theorem II.3 and
Theorem III.8.
Corollary III.9 ([7, Corollary 5.6]). Given a Galois covering 𝜋𝐺 : 𝑍 → 𝑍/𝐺, consider the
group algebra decomposition of Jac(𝑍) given as

Jac(𝑍) ∼ Jac(𝑍/𝐺) × 𝐴𝑙22 × · · · × 𝐴𝑙𝑟𝑟 .
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Let 𝐻 and 𝑁 be subgroups of 𝐺 with 𝐻 ⊂ 𝑁 . If 𝜌𝐻 = 𝑊𝑖 ⊕ 𝜌𝑁 for a rational irreducible
representation𝑊𝑖; then Prym

(
𝜋𝑁𝐻

) ∼ 𝐴𝑖. Conversely, if Prym
(
𝜋𝑁𝐻

) ∼ 𝐴𝑖, then 𝜌𝐻 = 𝑊𝑖⊕𝜌𝑁 .

3. Prym variety of pairs of coverings

As we will see in Theorem V.8 and is remarked in [15], for some Galois coverings
𝜋𝐺 : 𝑍 → 𝑍/𝐺 there are components of the group algebra decomposition of Jac(𝑍) that
are not the Prym variety of any intermediate covering of 𝜋𝐺 ; however, there is another type
of abelian variety associated to the action of 𝐺 on 𝑍 that, in cases as Theorem V.8 (where
𝐺 � 𝔖5), acts as the missing pieces in the group algebra decomposition of Theorem III.6.
In this section, we define that kind of abelian variety; namely, a Prym variety of pairs of
coverings.

Consider holomorphic maps between compact Riemann surfaces as in the following
commutative diagram:

(III.1)

𝑋

𝑋1 𝑋2

𝑌

𝑓1 𝑓2

𝑔1

𝑔2

According to [15, Proposition 2.2], if 𝑌 is minimal (that is, 𝑔1 and 𝑔2 do not both factorize
via the same morphism of degree greater or equal than 2), then 𝑓 ∗2 Prym(𝑔2) is an abelian
subvariety of Prym( 𝑓1).

Definition III.3. The complementary abelian variety Prym( 𝑓1, 𝑓2) of 𝑓 ∗2 Prym(𝑔2) in
Prym( 𝑓1) with respect to the induced polarization ΘPrym( 𝑓1) is called the Prym variety of
the pair of coverings ( 𝑓1, 𝑓2).

As stated in [15, Proposition 2.4], we have that Prym( 𝑓1, 𝑓2) equals Prym( 𝑓2, 𝑓1) as
polarized abelian varieties. Moreover, the Prym variety of a pair of coverings is well-defined
for any pair ( 𝑓1, 𝑓2) of coverings with the same domain (that is, the curve𝑌 and the maps 𝑔1
and 𝑔2 of the commutative diagram (III.1) are naturally given by the pair ( 𝑓1, 𝑓2)); also, we
can assume 𝑋 is minimal (that is, 𝑓1 and 𝑓2 do not both factorize via the same morphism of
degree greater or equal than 2) by, if necessary, redefining 𝑋 = 𝑋1 ×𝑌 𝑋2 (see [15, p. 377]).
With respect to the dimension of Prym( 𝑓1, 𝑓2), when 𝑋 is minimal, the following result is
known.
Proposition III.10 ([15, Proposition 2.5]). For any pair of coverings as in diagram (III.1)
where 𝑋 and 𝑌 are minimal, we have

dim Prym( 𝑓1, 𝑓2) = (𝑑1 −1) (𝑑2 −1) (𝑔𝑌 −1) + 1
2
[
deg(𝑅 𝑓1) + (𝑑1 −1) deg(𝑅𝑔1) −deg(𝑅𝑔2)

]
,

where 𝑑1 and 𝑑2 are the degrees of 𝑓1 and 𝑓2, respectively.
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Back into the context of Galois coverings, let 𝑁1 and 𝑁2 be two subgroups of a group
𝐺 acting on a compact Riemann surface 𝑍 . If we define 𝑀 B 𝑁1 ∩ 𝑁2 and 𝑁 B ⟨𝑁1, 𝑁2⟩,
then the coverings 𝑍/𝑀 and 𝑍/𝑁 in the following diagram are both minimal:

(III.2)

𝑍/𝑀

𝑍/𝑁1 𝑍/𝑁2

𝑍/𝑁

𝜋𝑀
𝑁1

𝜋𝑀
𝑁2

𝜋
𝑁1
𝑁

𝜋
𝑁2
𝑁

The following result is a generalization of [15, Proposition 3.4] for groups where not
necessarily every irreducible ℚ-representation is absolutely irreducible; it relates the group
algebra decomposition of the Jacobian variety of a Galois covering with Prym varieties of
pairs of its subcoverings.
Theorem III.11. In the notation of Theorem III.6 and diagram (III.2), we have
Prym(𝜋𝑀𝑁1

, 𝜋𝑀𝑁2
) ∼ 𝐴𝑡22 × · · · × 𝐴𝑡𝑟𝑟 with

𝑡 𝑗 =
dimℂ(Fix𝑀 𝑉 𝑗 )

𝑚 𝑗
+ dimℂ(Fix𝑁 𝑉 𝑗 )

𝑚 𝑗
− dimℂ(Fix𝑁1 𝑉 𝑗 )

𝑚 𝑗
− dimℂ(Fix𝑁2 𝑉 𝑗 )

𝑚 𝑗

for 𝑗 ∈ {1, . . . , 𝑟}.
Proof. We have that

Jac(𝑍/𝑀) ∼ Jac(𝑍/𝑁) × Prym(𝜋𝑁2
𝑁 ) × Prym(𝜋𝑀𝑁2

)
and

Jac(𝑍/𝑀) ∼ Jac(𝑍/𝑁) × Prym(𝜋𝑁1
𝑁 ) × Prym(𝜋𝑀𝑁1

).
Hence, by Poincare’s complete reducibility theorem, we have

Prym(𝜋𝑁2
𝑁 ) × Prym(𝜋𝑀𝑁2

) ∼ Jac(𝑍/𝑁) × Prym(𝜋𝑁1
𝑁 ) × Prym(𝜋𝑀𝑁1

);
but Prym(𝜋𝑀𝑁1

) ∼ Prym(𝜋𝑁2
𝑁 ) × Prym(𝜋𝑁1

𝑁 , 𝜋
𝑁2
𝑁 ), so

Prym(𝜋𝑁2
𝑁 ) × Prym(𝜋𝑀𝑁2

) ∼ Prym(𝜋𝑁1
𝑁 ) × Prym(𝜋𝑁2

𝑁 ) × Prym(𝜋𝑁1
𝑁 , 𝜋

𝑁2
𝑁 ),

and, again by Poincare’s complete reducibility theorem, we get

Prym(𝜋𝑀𝑁2
) ∼ Prym(𝜋𝑁1

𝑁 ) × Prym(𝜋𝑁1
𝑁 , 𝜋

𝑁2
𝑁 ).

Theorem III.8 states that Prym(𝜋𝑀𝑁2
) ∼ 𝐴

𝑡2,1
2 ×· · ·×𝐴𝑡𝑟 ,1𝑟 and Prym(𝜋𝑁1

𝑁 ) ∼ 𝐴
𝑡2,2
2 ×· · ·×𝐴𝑡𝑟 ,2𝑟

with

𝑡 𝑗 ,1 =
dimℂ(Fix𝑀 𝑉 𝑗 )

𝑚 𝑗
− dimℂ(Fix𝑁2 𝑉 𝑗 )

𝑚 𝑗
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and

𝑡 𝑗 ,2 =
dimℂ(Fix𝑁1 𝑉 𝑗 )

𝑚 𝑗
− dimℂ(Fix𝑁 𝑉 𝑗 )

𝑚 𝑗
.

Therefore, once again by Poincare’s complete reducibility theorem, we get that
Prym(𝜋𝑁1

𝑁 , 𝜋
𝑁2
𝑁 ) ∼ 𝐴𝑡22 × · · · × 𝐴𝑡𝑟𝑡 with 𝑡 𝑗 = 𝑡 𝑗 ,1 − 𝑡 𝑗 ,2, and that last equation is equiva-

lent to

𝑡 𝑗 =
dimℂ(Fix𝑀 𝑉 𝑗 )

𝑚 𝑗
+ dimℂ(Fix𝑁 𝑉 𝑗 )

𝑚 𝑗
− dimℂ(Fix𝑁1 𝑉 𝑗 )

𝑚 𝑗
− dimℂ(Fix𝑁2 𝑉 𝑗 )

𝑚 𝑗
. □





CHAPTER IV

Galois closure of a fivefold covering

Let 𝑓 : 𝑋 → 𝑌 denote a holomorphic map of degree 5 between compact Riemann
surfaces. In this chapter, we give necessary and sufficient criteria for a potential ramification
data of 𝑓 to be actually realizable. Then, all possible monodromy groups Mon( 𝑓 ) modulo
conjugation in 𝔖5 are tabulated in terms of realizable values of 𝑅 𝑓 depending on the value
of 𝑔𝑌 . The main results are exposed in Theorems IV.10 and IV.12 of section 2; the first
one tabulates all possible monodromy groups Mon( 𝑓 ) up to conjugacy in terms of the
ramification data of 𝑓 when 𝑔𝑌 ≥ 1, and the second one deals with the special case where
𝑔𝑌 = 0; that is, when 𝑌 � ℙ1. The preceding notation is kept for the rest of this chapter.

1. Realizable ramification data of a fivefold covering

Recall from Definition I.4 that the type of a branch value of the covering map 𝑓 is the
cycle structure of a permutation in 𝔖5; hence, it can be [5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1]
or [2, 1, 1, 1]. In this section, we state necessary and sufficient conditions for a tuple
(𝑡1, . . . , 𝑡𝑛) of these ramification types to be, once we prescribe branch values 𝑦1, . . . , 𝑦𝑛 in
𝑌 , the ramification data of a degree 5 covering. This is achieved in Theorems IV.1 and IV.3,
which deals, respectively, with the cases where 𝑔𝑌 ≥ 1 and 𝑔𝑌 = 0.

We can classify the possible types of branch values of 𝑓 into two kinds:

(1) the even ones, namely [5], [3, 1, 1] and [2, 2, 1]; and
(2) the odd ones, namely [4, 1], [3, 2] and [2, 1, 1, 1].

As we will see in the following theorem, this coarse classification is enough to enunciate a
necessary and sufficient realizability condition for (𝑡1, . . . , 𝑡𝑛) when 𝑔𝑌 > 0.

Theorem IV.1. Consider a compact Riemann surface 𝑌 with 𝑔𝑌 ≥ 1. For an arbitrary set
{𝑦1, . . . , 𝑦𝑛} of points in 𝑌 , there is a holomorphic map 𝑓 : 𝑋 → 𝑌 of degree 5 with branch
values 𝑦1, . . . , 𝑦𝑛 of types 𝑡1, . . . , 𝑡𝑛, respectively, if and only if there is an even number of
odd branch values.

Proof. First, sufficiency of the hypothesis is proven. Suppose there is a holomor-
phic map 𝑓 : 𝑋 → 𝑌 of degree 5 and branch values 𝑦1, . . . , 𝑦𝑛 of type 𝑡1, . . . , 𝑡𝑛, re-
spectively. According to Theorem I.13, the monodromy group Mon( 𝑓 ) has a generating

31
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Table 3. Permutations for a generating vector of a transitive subgroup of 𝔖5∏𝑛
𝑖=1 𝑐𝑖 𝑎1 𝑏1

∏𝑔𝑌
𝑖=1 [𝑎𝑖, 𝑏𝑖]

(1 2 3 4 5) (1 3) (2 5 4) (1 3 5 2) (1 5 4 3 2)
(1 2) (3 4) (1 3) (2 4 5) (1 2 4 5) (1 2) (3 4)
(1 2 3) (1 5 2) (3 4) (1 3 5 4) (1 3 2)

(𝑔𝑌 ;𝑚1, . . . , 𝑚𝑛)-vector (𝑎1, . . . , 𝑎𝑔𝑌 , 𝑏1, . . . , 𝑏𝑔𝑌 , 𝑐1, . . . , 𝑐𝑛) such that 𝑐𝑖 has cycle struc-
ture 𝑡𝑖 for each 𝑖 ∈ {1, . . . , 𝑛}. By Definition I.8 we know that

(IV.1)
𝑛∏
𝑖=1

𝑐𝑖 =

(
𝑔𝑌∏
𝑖=1

[𝑎𝑖, 𝑏𝑖]
)−1

∈ Mon( 𝑓 )′.

But ∏𝑛
𝑖=1 𝑐𝑖 is even only if there is a even number of odd permutations 𝑐𝑖 and, since

Mon( 𝑓 )′ ⊂ 𝔖′
5 = 𝔄5, the product ∏𝑛

𝑖=1 𝑐𝑖 must be an even permutation. Therefore, there is
an even number of permutations 𝑐𝑖; that is, there is an even number of odd branch values.

For proving the necessity of the hypothesis, an explicit construction will be given. Pre-
scribe points 𝑦1, . . . , 𝑦𝑛 in 𝑌 and ramification types 𝑡1, . . . , 𝑡𝑛 for those points; assume that
there is an even number of odd branch values. According to Theorem I.13, giving a holomor-
phic map 𝑓 : 𝑋 → 𝑌 of degree 5 with branch values 𝑦1, . . . , 𝑦𝑛 of types 𝑡1, . . . , 𝑡𝑛 is equiv-
alent to giving a generating (𝑔𝑌 ;𝑚1, . . . , 𝑚𝑛)-vector (𝑎1, . . . , 𝑎𝑔𝑌 , 𝑏1, . . . , 𝑏𝑔𝑌 , 𝑐1, . . . , 𝑐𝑛)
of a transitive subgroup, namely Mon( 𝑓 ), of 𝔖5 such that 𝑐𝑖 has cycle structure 𝑡𝑖 for each
𝑖 ∈ {1, . . . , 𝑛}.

For the case where 𝑛 = 0, since 𝑔𝑌 ≥ 1, we have the generating (𝑔𝑌 ; )-vector

((1 2 3 4 5), Id, . . . , Id︸     ︷︷     ︸
2𝑔𝑌−1

)

of the transitive subgroup ⟨(1 2 3 4 5)⟩ of 𝔖5.
For the case where 𝑛 > 0, set 𝑐𝑖 as any permutation with cycle structure 𝑡𝑖. The

permutation ∏𝑛
𝑖=1 𝑐𝑖 is even because there is an even number of odd permutations 𝑐𝑖, so it

is of type [5], [3, 1, 1] or [2, 2, 1]; thereby, up to conjugacy in 𝔖5, it can be assumed that∏𝑛
𝑗=1 𝑐𝑖 is (1 2 3 4 5), (1 2 3) or (1 2) (3 4). Set 𝑎𝑖 and 𝑏𝑖 as the identity permutation for

𝑖 ∈ {2, . . . , 𝑔𝑌 } (if 𝑔𝑌 > 1), and, depending on the value of ∏𝑛
𝑖=1 𝑐𝑖, set 𝑎1 and 𝑏1 as in

Table 3. Thereby, we get a generating (𝑔𝑌 ;𝑚1, . . . , 𝑚𝑛)-vector of a subgroup 𝐺 of 𝔖5; we
just need to prove that 𝐺 is transitive, but:

(1) If ∏𝑛
𝑖=1 𝑐𝑖 = (1 2 3 4 5), then (1 2 3 4 5) ∈ 𝐺 and hence 𝐺 transitive.

(2) If ∏𝑛
𝑖=1 𝑐𝑖 = (1 2) (3 4), then 𝑎1𝑏1 = (1 4 2 5 3) ∈ 𝐺 and hence 𝐺 is transitive.

(3) If ∏𝑛
𝑖=1 𝑐𝑖 = (1 2 3), then 𝑎1𝑏1 = (1 4 5 3 2) ∈ 𝐺 and hence 𝐺 is transitive. □
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Motivated by Theorem IV.1, a tuple of ramification types (𝑡1 . . . , 𝑡𝑛) with an even
number of odd branch values will be called even; thereby, if 𝑔𝑌 > 0, then a tuple of potential
ramification types is realizable if and only if it is even.

Items (1) to (3) of the proof of Theorem IV.1 also show that, for any even tuple
(𝑡1 . . . , 𝑡𝑛) with 𝑛 > 0, we can choose a generating vector such that Mon( 𝑓 ) contains an
order 5 permutation; also, that choice is made in such a manner that Mon( 𝑓 ) contains
permutations of order 6 and 4 (see columns 𝑎1 and 𝑏1 in Table 3, respectively). Since
lcm(4, 5, 6) = 60, we have that 60 divides |Mon( 𝑓 ) |; hence Mon( 𝑓 ) ∈ {𝔄5,𝔖5}. Since
we choose 𝑎1 as an odd permutation (see Table 3, again), we have Mon( 𝑓 ) = 𝔖5. As
we will see in section 2, we can obtain generating vectors for smaller transitive groups of
degree 5; nevertheless, as we just showed, the whole symmetric group can be generated in
almost every case: only nonzero values for 𝑔𝑌 and 𝑛 are required. Summarizing, we have
the following corollary.

Corollary IV.2. Consider a compact Riemann surface 𝑌 with 𝑔𝑌 ≥ 1. Choose points
𝑦1, . . . , 𝑦𝑛 in 𝑌 and a realizable tuple of ramification types (𝑡1, . . . , 𝑡𝑛). If 𝑛 > 0, then there
is a holomorphic map 𝑓 : 𝑋 → 𝑌 with monodromy group 𝔖5 and branch values 𝑦1, . . . , 𝑦𝑛
of types 𝑡1, . . . , 𝑡𝑛, respectively.

The situation becomes a bit more complicated when 𝑔𝑌 = 0; we now have a restriction
given by Riemann–Hurwitz formula: we have

2𝑔𝑋 − 2 = 5(2𝑔𝑌 − 2) + deg(𝑅 𝑓 ),
but 𝑔𝑌 = 0, so

2𝑔𝑋 = −8 + deg(𝑅 𝑓 ),
and, since 𝑔𝑋 ≥ 0, we must have

8 ≤ deg(𝑅 𝑓 ).(IV.2)

Recall that deg(𝑅 𝑓 ) can be directly computed from (𝑡1, . . . , 𝑡𝑛); hence, if 𝑡𝑖 = [𝜈𝑖,1, . . . , 𝜈𝑖,𝑘𝑖 ]
for each 𝑖 ∈ {1, . . . , 𝑛}, then we define deg(𝑡1, . . . , 𝑡𝑛) B ∑𝑛

𝑖=1
∑𝑘𝑖
𝑗=1(𝜈𝑖, 𝑗 − 1) and call

deg(𝑡1, . . . , 𝑡𝑛) the degree of the tuple (𝑡1, . . . , 𝑡𝑛). Motivated by the necessary inequal-
ity (IV.2), we say that (𝑡1, . . . , 𝑡𝑛) satisfies the R–H condition if deg(𝑡1, . . . , 𝑡𝑛) ≥ 8. The
following theorem needs some technical lemmata that will also be useful in section 2.

Theorem IV.3. For an arbitrary set {𝑦1, . . . , 𝑦𝑛} of points in ℙ1, there is a holomorphic
map 𝑓 : 𝑋 → 𝑌 of degree 5 with branch values 𝑦1, . . . , 𝑦𝑛 of types 𝑡1, . . . , 𝑡𝑛, respectively, if
and only if the tuple (𝑡1, . . . , 𝑡𝑛) is even and satisfies the R–H condition.

Lemma IV.4. Consider an even tuple of cycle structures (𝑡1, . . . , 𝑡𝑛) of permutations in 𝔖5
with 𝑛 ≥ 2 and at least one even permutation. For any even cycle structure 𝑡, there are
permutations 𝑐1, . . . , 𝑐𝑛 such that each 𝑐𝑖 is of type 𝑡𝑖 and ∏𝑛

𝑖=1 𝑐𝑖 is of type 𝑡.
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Proof. Without loss of generality, we may assume that 𝑡1 is one of the even permutations
in (𝑡1, . . . , 𝑡𝑛) (by hypothesis there is at least one). For each 𝑖 ∈ {2, . . . , 𝑛}, chose a
permutation 𝑐𝑖 of type 𝑡𝑖. Since the tuple (𝑡1, . . . , 𝑡𝑛) is even, the permutation ∏𝑛

𝑖=2 𝑐𝑖 is also
even; thus, modulo conjugation in 𝔖5, we can assume that ∏𝑛

𝑖=2 𝑐𝑖 is (1 2 3 4 5), (1 2) (3 4)
or (1 2 3).

Choose 𝑐1 depending to the cycle structures 𝑡 and 𝑡1 and the value of ∏𝑛
𝑖=2 𝑐𝑖 as in

Table 4. Thereby, the permutation ∏𝑛
𝑖=1 𝑐𝑖 is of type 𝑡 and each 𝑐𝑖 of type 𝑡𝑖. □

Lemma IV.5. Consider an even tuple of cycle structures (𝑡1, . . . , 𝑡𝑛) of permutations in 𝔖5
such that deg(𝑡1, . . . , 𝑡𝑛) ≥ 4. There are permutations 𝑐1, . . . , 𝑐𝑛 such that each 𝑐𝑖 is of type
𝑡𝑖 and ∏𝑛

𝑖=1 𝑐𝑖 is of type [5].
Proof. Suppose that there is at least one even permutation in (𝑡1, . . . , 𝑡𝑛), say 𝑡1. Since

deg(𝑡1, . . . , 𝑡𝑛) ≥ 4, if 𝑛 = 1, then 𝑡1 = [5] and the lemma is trivially satisfied. If 𝑛 ≥ 2,
then Theorem IV.4 implies the existence of the 𝑐𝑖 permutations. That proves the lemma
restricted to the case where there are even cycle structures in (𝑡1, . . . , 𝑡𝑛).

Now suppose that there are no even permutations in (𝑡1, . . . , 𝑡𝑛), so 𝑛 ≥ 2. Suppose
that at least one 𝑡𝑖, namely 𝑡1, is of type [4, 1] or [3, 2]. Set 𝑐𝑖 as any permutation with
cycle structure 𝑡𝑖 for 𝑖 ∈ {2, . . . , 𝑛}. Since (𝑡1, . . . , 𝑡𝑛) is even, the product ∏𝑛

𝑖=2 𝑐𝑖 must be
an odd permutation; hence, its cycle structure is [2, 1, 1, 1], [4, 1] or [3, 2]. Thereby, up
to conjugacy in 𝔖5, we can assume that ∏𝑛

𝑖=2 𝑐𝑖 is (1 2), (1 2 3 4) or (1 2 3) (4 5); for each
case, choose 𝑡1 according to its type as in Table 5. In this manner, the product ∏𝑛

𝑖=1 𝑐𝑖 is
of type [5] and each 𝑐𝑖 has cycle structure 𝑡𝑖. That proves the lemma restricted to the case
where there cycle structures [4, 1] or [3, 2] in (𝑡1, . . . , 𝑡𝑛).

Finally, suppose that 𝑡𝑖 = [2, 1, 1, 1] for each 𝑖 ∈ {1, . . . , 𝑛} (there are neither even nor
type [4, 1] or [3, 2] permutations in (𝑡1, . . . , 𝑡𝑛)). Since deg(𝑡1, . . . , 𝑡𝑛) ≥ 4, we have that
𝑛 ≥ 4. Set 𝑐1 = (3 4), 𝑐2 = (2 3) and 𝑐3 = (1 2); thus ∏3

𝑖=1 𝑐𝑖 = (1 2 3 4). Applying
the already proved restricted version of the lemma to the tuple ( [4, 1], 𝑡4, . . . , 𝑡𝑛) yields
permutations 𝑐4, . . . , 𝑐𝑛 of type [2, 1, 1, 1] such that ∏𝑛

𝑖=1 𝑐𝑖 is of type [5]. □

Remark IV.1. Conjugating in 𝔖5, we can choose the 𝑐𝑖 permutations of Theorem IV.5
such that ∏𝑛

𝑖=1 𝑐𝑖 is any prescribed permutation with cycle structure [5].
Proof of Theorem IV.3. The sufficiency of the hypothesis is direct: the R–H condition

is given by inequality (IV.2), and (𝑡1, . . . , 𝑡𝑛) is proved to be even in the same manner as in
the proof of Theorem IV.1.

For proving the necessity of the hypothesis, we give explicit constructions in the several
possible cases. Fix points 𝑦1, . . . , 𝑦𝑛 in ℙ1 and ramification types 𝑡1, . . . , 𝑡𝑛 for those points;
assume that (𝑡1, . . . , 𝑡𝑛) is even and satisfies the R–H condition. According to Theorem I.13,
giving a holomorphic map 𝑓 : 𝑋 → ℙ1 of degree 5 with branch values 𝑦1, . . . , 𝑦𝑛 of types
𝑡1, . . . , 𝑡𝑛, respectively, is equivalent to give a generating (0;𝑚1, . . . , 𝑚𝑛)-vector (𝑐1, . . . , 𝑐𝑛)
of a transitive subgroup, namely Mon( 𝑓 ), of 𝔖5 such that 𝑐𝑖 has cycle structure 𝑡𝑖 for each
𝑖 ∈ {1, . . . , 𝑛}.
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Table 4. Product of permutations with prescribed cycle structure

𝑡
∏𝑛
𝑖=2 𝑐𝑖 𝑡1 𝑐1

∏𝑛
𝑖=1 𝑐𝑖

[5]

(1 2 3 4 5)
[5] (1 2 3 4 5) (1 3 5 2 4)
[2, 2, 1] (1 3) (2 4) (1 4 5 3 2)
[3, 1, 1] (1 2 5) (1 5 2 3 4)

(1 2)(3 4)
[5] (1 3 2 4 5) (1 4 2 3 5)
[2, 2, 1] (1 5) (2 3) (1 3 4 2 5)
[3, 1, 1] (1 5 3) (1 2 5 3 4)

(1 2 3)
[5] (1 2 5 4 3) (1 5 4 3 2)
[2, 2, 1] (1 5) (3 4) (1 2 4 3 5)
[3, 1, 1] (2 4 5) (1 4 5 2 3)

[2,2,1]

(1 2 3 4 5)
[5] (1 3 2 4 5) (1 4) (3 5)
[2, 2, 1] (1 5) (2 4) (1 4) (2 3)
[3, 1, 1] (1 4 3) (1 2) (4 5)

(1 2)(3 4)
[5] (1 4 5 3 2) (2 4) (3 5)
[2, 2, 1] (1 4) (2 3) (1 3) (2 4)
[3, 1, 1] (1 2 5) (1 5) (3 4)

(1 2 3)
[5] (1 4 3 2 5) (1 5) (3 4)
[2, 2, 1] (2 3) (4 5) (1 3) (4 5)
[3, 1, 1] (1 5 3) (1 2) (3 5)

[3,1,1]

(1 2 3 4 5)
[5] (1 4 5 3 2) (3 5 4)
[2, 2, 1] (1 5) (3 4) (1 2 4)
[3, 1, 1] (1 5 4) (1 2 3)

(1 2)(3 4)
[5] (1 5 4 3 2) (2 5 4)
[2, 2, 1] (1 5) (3 4) (1 2 5)
[3, 1, 1] (1 3 4) (1 2 3)

(1 2 3)
[5] (1 5 4 3 2) (3 5 4)
[2, 2, 1] (1 5) (2 3) (1 3 5)
[3, 1, 1] (1 2 3) (1 3 2)

In any of the following cases, probably after a re-enumeration, we can take an even
sub-tuple (𝑡1, . . . , 𝑡𝑘 ) of (𝑡1, . . . , 𝑡𝑛) with degree 4:

• If there is a cycle structure of degree 4, namely [5], in (𝑡1, . . . , 𝑡𝑛).
• If there are at least two cycle structures of degree 2, namely [3, 1, 1] or [2, 2, 1].
• If there are at least one cycle structure of degree 3, namely [4, 1] or [3, 2], and one

of degree 1, namely [2, 1, 1, 1].
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Table 5. Product of odd permutations with cycle structure [5]∏𝑛
𝑖=2 𝑐𝑖 𝑡1 𝑐1

∏𝑛
𝑖=1 𝑐𝑖

(1 2) [3, 2] (1 5 3) (2 4) (1 4 2 5 3)
[4, 1] (1 5 3 4) (1 2 5 3 4)

(1 2 3 4) [3, 2] (1 3 4) (2 5) (1 5 2 4 3)
[4, 1] (2 3 4 5) (1 3 5 2 4)

(1 2 3)(4 5) [3, 2] (1 5 3) (2 4) (1 4 3 5 2)
[4, 1] (1 5 2 3) (1 3 5 4 2)

• If there are at least four cycle structures of degree 1.
In any of these cases, by Theorem IV.5, we can choose permutations 𝑐1, . . . , 𝑐𝑘 of types
𝑡1, . . . , 𝑡𝑘 , respectively, such that ∏𝑘

𝑖=1 𝑐𝑖 = (1 2 3 4 5). Since (𝑡1, . . . , 𝑡𝑛) satisfies the R–H
condition, we have that deg(𝑡𝑘+1, . . . , 𝑡𝑛) = deg(𝑡1, . . . , 𝑡𝑛) − deg(𝑡1, . . . , 𝑡𝑘 ) ≥ 4; hence,
again by Theorem IV.5, we can choose 𝑐𝑘+1, . . . , 𝑐𝑛 with cycle structures 𝑡𝑘+1, . . . , 𝑡𝑛,
respectively, such that ∏𝑛

𝑖=𝑘+1 𝑐𝑖 = (1 5 4 3 2). Since (1 2 3 4 5) ∈ ⟨𝑐1, . . . , 𝑐𝑛⟩, the tuple
(𝑐1, . . . , 𝑐𝑛) is a generating (0;𝑚1, . . . , 𝑚𝑛)-vector of a transitive subgroup of 𝔖5.

If (𝑡1, . . . , 𝑡𝑛) does not satisfy any of the above conditions, then every 𝑡𝑖 must have
degree 3 except maybe for one cycle structure of degree 2, say 𝑡𝑛. The R–H conditions
implies that 𝑛 ≥ 3. If 𝑛 ≥ 4, Theorem IV.5 can be applied separately to the sub-tuples (𝑡1, 𝑡2)
and (𝑡3, . . . , 𝑡𝑛) yielding permutations 𝑐1, . . . , 𝑐𝑛 of types 𝑡1, . . . , 𝑡𝑛, respectively, such that
𝑐1𝑐2 = (1 2 3 4 5) and ∏𝑛

𝑖=3 𝑐𝑖 = (1 5 4 3 2). Since (1 2 3 4 5) ∈ ⟨𝑐1, . . . , 𝑐𝑛⟩, the tuple
(𝑐1, . . . , 𝑐𝑛) is a generating (0;𝑚1, . . . , 𝑚𝑛)-vector of a transitive subgroup of 𝔖5. Now we
deal with the special case where 𝑛 = 3 (so deg(𝑡1) = deg(𝑡2) = 3 and deg(𝑡3) = 2). If there
is at least one [3, 2] cycle structure in (𝑡1, 𝑡2, 𝑡3) set it as 𝑡1. Choose 𝑐1 to be (1 2 3) (4 5) or
(1 2 3 4) according to 𝑡1 and then choose 𝑐2 according to 𝑡3 and 𝑐1 as given by Table 6; set
𝑐3 B 𝑐−1

2 𝑐
−1
1 . Thereby, in each sub-case, the permutation 𝑐𝑖 has cycle structure 𝑡𝑖 for each

𝑖 ∈ {1, 2, 3} and 𝑐1𝑐2𝑐3 is the identity. Moreover, column [5] of Table 6 gives a permutation
of type [5] that belongs to ⟨𝑐1, 𝑐2, 𝑐3⟩ for each of the six sub-cases; therefore, the tuple
(𝑐1, 𝑐2, 𝑐3) is a generating (0;𝑚1, 𝑚2, 𝑚3)-vector of a transitive subgroup of 𝔖5. □

2. Monodromy group in terms of the ramification data

In this section, we list all possible monodromy groups Mon( 𝑓 ) modulo conjugacy in
𝔖5 for the degree 5 covering 𝑓 : 𝑋 → 𝑌 and give criteria to determine Mon( 𝑓 ) in terms of
the ramification data of 𝑓 ; as in section 1, these criteria will depend on 𝑔𝑌 .
Proposition IV.6. Let 𝑓 : 𝑋 → 𝑌 be a degree 5 covering map between compact Riemann
surfaces. The monodromy group Mon( 𝑓 ) is conjugate to one of the following subgroups of
𝔖5:

(1) The cyclic group ⟨(1 2 3 4 5)⟩, denoted by C5, of order 5.
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Table 6. Odd permutations with product of degree 2 cycle structure

𝑡3 𝑐1 𝑡2 𝑐2 𝑐1𝑐2 [5]

[2,2,1] (1 2 3)(4 5) [3, 2] (1 4 2) (3 5) (1 5) (3 4) 𝑐−1
2 𝑐1𝑐

−2
2 𝑐

2
1

[4, 1] (2 3 4 5) (1 2) (3 5) 𝑐−2
1 𝑐

−1
2 𝑐

3
1𝑐2𝑐

−1
1 𝑐

−2
1

(1 2 3 4) [4, 1] (2 4 5 3) (1 2) (4 5) 𝑐1𝑐
−1
2

[3,1,1] (1 2 3)(4 5) [3, 2] (1 4 5) (2 3) (1 5 2) 𝑐2𝑐
2
1𝑐

3
2

[4, 1] (2 5 4 3) (1 2 4) 𝑐−1
1 𝑐

−1
2 𝑐

−2
1 𝑐

−1
2 𝑐

3
1

(1 2 3 4) [4, 1] (2 5 4 3) (1 2 5) 𝑐−1
1 𝑐2𝑐

−1
1 𝑐2

(2) The dihedral group ⟨(1 2 3 4 5), (2 5) (3 4)⟩, denoted by D5, of order 10.
(3) The group ⟨(1 2 3 4 5), (2 3 5 4)⟩, isomorphic to the general affine group Aff (𝔽5)

of a 1-dimensional affine space over 𝔽5, of order 20. It will be denoted just by
Aff (𝔽5).

(4) The alternating group ⟨(1 2 3 4 5), (1 3 4 5 2)⟩, denoted by 𝔄5, of order 60.
(5) The symmetric group ⟨(1 2 3 4 5), (1 2)⟩, denoted by 𝔖5, of order 120.

Proof. According to Theorem I.8, the monodromy group of 𝑓 is a transitive subgroup
of 𝔖5; those subgroups and their generators are tabulated in [5, Tables 5A and 5B]. □

The cycle structure of the elements of each group listed in Theorem IV.6 are tabulated in
[5, Table 5C]; Table 7 summarizes those cycle structures. The results in [5] are implemented
in the computer algebra system SageMath through the GAP package TransGrp (see [11,12,
26]).
Corollary IV.7. Each transitive subgroup of 𝔖5 can be generated by two elements.

Remark IV.2. The isomorphism of item (3) of Theorem IV.6 is, indeed, very natural:
each permutation 𝜎 ∈ ⟨(1 2 3 4 5), (2 3 5 4)⟩ corresponds to the affine map that, for each
𝑛 ∈ {1, 2, 3, 4, 5}, maps [𝑛]5 to [𝜎(𝑛)]5; in particular, the two generators (1 2 3 4 5) and
(2 3 5 4) corresponds to the maps 𝑥 ↦→ 𝑥 + 1 and 𝑥 ↦→ 2𝑥 + 4, respectively.

In order to give a more straightforward proof of Theorem IV.10, we now establish some
auxiliary lemmata.
Lemma IV.8. For a nonempty finite subset {𝑐1, . . . , 𝑐𝑛} of permutations in D5 with exactly
𝑚 permutations of cycle structure [2, 2, 1], the product ∏𝑛

𝑖=1 𝑐𝑖 is:
(1) of type [2, 2, 1] if 𝑚 is odd; or
(2) of type [5] or the identity if 𝑚 is even.

Proof. Consider the natural isomorphism 𝜙 : D5 → D5/C5 given by quotient. The
image by 𝜙 of any type [5] permutation is the identity, while the image of a type [2, 2, 1]
permutation is the only non-trivial element (1 2) (3 4)C5 of D5/C5. We have 𝜙(∏𝑛

𝑖=1 𝑐𝑖) =
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Table 7. Cycle structure of permutations in each possible monodromy
group of a holomorphic map 𝑓 of degree 5

Mon( 𝑓 ) up to isomorphism Cycle structure of permutations in Mon( 𝑓 )
Cyclic group C5 [5]
Dihedral group D5 [5] or [2, 2, 1]
Affine group Aff (𝔽5) [5], [4, 1] or [2, 2, 1]
Alternating group 𝔄5 [5], [3, 1, 1] or [2, 2, 1]
Symmetric group 𝔖5 [5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1] or [2, 1, 1, 1]∏𝑛

𝑖=1 𝜙(𝑐𝑖) = ((1 2) (3 4))𝑚C5; therefore, whether or not ∏𝑛
𝑖=1 𝑐𝑖 belongs to C5 depends

solely on the parity of 𝑚. □

Lemma IV.9. For a nonempty tuple (𝑡1, . . . , 𝑡𝑛) of cycle structures [2, 2, 1] and [5] with
an even number of cycle structures [2, 2, 1], we can choose a permutation 𝑐𝑖 in D5 of type
𝑡𝑖 for each 𝑖 ∈ {1, . . . , 𝑛} such that ∏𝑛

𝑖=1 𝑐𝑖 is of type [5].
Proof. We proceed by induction. If 𝑛 = 1, set 𝑐1 B (1 2 3 4 5). If 𝑛 = 2, we

have two cases: If there are permutations of type [2, 2, 1], then 𝑡1 = 𝑡2 = [2, 2, 1], so
we set 𝑐1 B (2 5) (3 4) and 𝑐2 B (1 5) (2 4), and hence 𝑐1𝑐2 = (1 2 3 4 5). If there are
no permutations of type [2, 2, 1], then 𝑡1 = 𝑡2 = [5], so we set 𝑐1 B (1 2 3 4 5) and
𝑐2 B (1 2 3 4 5), and hence 𝑐1𝑐2 = (1 3 5 2 4).

Now consider 𝑛 ≥ 3. If there is at least one type [5] in (𝑡1, . . . , 𝑡𝑛), say 𝑡𝑛, we can choose,
by inductive hypothesis, permutations 𝑐𝑖 of type 𝑡𝑖 for 𝑖 ∈ {1, . . . , 𝑛−1} such that ∏𝑛−1

𝑖=1 𝑐𝑖 is
of type [5], say ∏𝑛−1

𝑖=1 𝑐𝑖 = (1 2 3 4 5). Set 𝑐𝑛 B (1 2 3 4 5), so ∏𝑛
𝑖=1 𝑐𝑖 = (1 3 5 2 4). If there

are no permutations of type [5], we can choose, by inductive hypothesis, permutations 𝑐𝑖
of type 𝑡𝑖 for 𝑖 ∈ {1, . . . , 𝑛 − 2} such that ∏𝑛−2

𝑖=1 𝑐𝑖 is of type [5], say ∏𝑛−2
𝑖=1 𝑐𝑖 = (1 2 3 4 5).

So we set 𝑐𝑛−1 B (2 5) (3 4) and 𝑐𝑛 B (1 5) (2 4), and hence ∏𝑛
𝑖=1 𝑐𝑖 = (1 3 5 2 4). □

Theorem IV.10. Consider a degree 5 holomorphic map 𝑓 : 𝑋 → 𝑌 between compact Rie-
mann surfaces with ramification data (𝑡1, . . . , 𝑡𝑛). If 𝑔𝑌 ≥ 1, then the following statements
hold:

(1) Suppose that 𝑛 = 0. If 𝑔𝑌 = 1, then Mon( 𝑓 ) � C5. If 𝑔𝑌 > 1, then Mon( 𝑓 ) may be
any transitive subgroup of 𝔖5.

(2) If at least one 𝑡𝑖 equals [3, 2] or [2, 1, 1, 1], then Mon( 𝑓 ) � 𝔖5.
(3) If there are types [3, 1, 1] and [4, 1] in (𝑡1, . . . , 𝑡𝑛), then Mon( 𝑓 ) � 𝔖5.
(4) If there are no types [3, 2], [3, 1, 1] or [2, 1, 1, 1] in (𝑡1, . . . , 𝑡𝑛), but there is at

least one type [4, 1], then Mon( 𝑓 ) � 𝔖5 or Mon( 𝑓 ) � Aff (𝔽5).
(5) If 𝑓 has only even branch values and at least one of them is of type [3, 1, 1], then

Mon( 𝑓 ) � 𝔖5 or Mon( 𝑓 ) � 𝔄5.
(6) Suppose that there are neither odd nor [3, 1, 1] types in (𝑡1, . . . , 𝑡𝑛), but there is at

least one type [2, 2, 1]. There are three cases:
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(a) If 𝑛 = 1, 𝑡1 = [2, 2, 1] and 𝑔𝑌 = 1; then Mon( 𝑓 ) � 𝔖5.
(b) If there is an odd number of types [2, 2, 1] in (𝑡1, . . . , 𝑡𝑛), and 𝑛 > 1 or 𝑔𝑌 > 1;

then Mon( 𝑓 ) � 𝔖5 or Mon( 𝑓 ) � 𝔄5.
(c) If there is an even number of types [2, 2, 1] in (𝑡1, . . . , 𝑡𝑛), then Mon( 𝑓 ) is

conjugate to any transitive subgroup of 𝔖5 but C5.
(7) Suppose that 𝑡𝑖 = [5] for each 𝑖 ∈ {1, . . . , 𝑛}. There are two cases:

(a) If 𝑛 = 1, then Mon( 𝑓 ) is conjugate to any transitive subgroup of 𝔖5 but C5.
(b) If 𝑛 > 1, then Mon( 𝑓 ) is any transitive subgroup of 𝔖5.

Conversely, for every realizable tuple of ramification types given by Theorem IV.1 and
for each possible monodromy group previously stated, there is a holomorphic map of degree
5 with those ramification data and monodromy group.

Proof. According to Theorem I.13, the holomorphic map 𝑓 : 𝑋 → 𝑌 with ramification
data (𝑡1, . . . , 𝑡𝑛) exists if and only if the group Mon( 𝑓 ) has a generating (𝑔𝑌 ;𝑚1, . . . , 𝑚𝑛)-
vector (𝑎1, . . . , 𝑎𝑔𝑌 , 𝑏1, . . . , 𝑏𝑔𝑌 , 𝑐1, . . . , 𝑐𝑛) such that 𝑐𝑖 has cycle structure 𝑡𝑖 for each
𝑖 ∈ {1, . . . , 𝑛}. In particular, each 𝑐𝑖 belongs to Mon( 𝑓 ); therefore, Mon( 𝑓 ) contains
permutations of each type 𝑡𝑖. We will separately prove items (1) to (7) by assuming the
existence of such a generating vector. After the proof of each item, we show the existence
of a map 𝑓 with the stated ramification data and monodromy group; usually, by explicitly
constructing a generating vector with suitable properties. In the cases where Mon( 𝑓 ) = 𝔖5,
existence of 𝑓 is given by Theorem IV.2; hence, in those cases the existence proof is omitted.

Item (1). If 𝑔𝑌 = 1, then π1(𝑌, 𝑦) is abelian; hence, the monodromy group Mon( 𝑓 )
(the image of π1(𝑌, 𝑦) by the monodromy representation) is also abelian. Therefore, by
Theorem IV.6, it must be conjugate to C5. For the existence proof of a suitable map, note that,
since we just proved that there is only one possible monodromy group for a holomorphic
map with the prescribed characteristics, namely C5, the map 𝑓 given by Theorem IV.1,
which in this case is unramified, must satisfy Mon( 𝑓 ) � C5.

Item (2). Table 7 shows that the only transitive subgroup of 𝔖5 that contains permuta-
tions of type [3, 2] or [2, 1, 1, 1] is 𝔖5 itself; hence Mon( 𝑓 ) � 𝔖5.

Item (3). The only group in Table 7 that contains permutations with both cycle structures,
[3, 1, 1] and [4, 1], is 𝔖5; hence Mon( 𝑓 ) � 𝔖5.

Item (4). As in the two above items, according to Table 7, we have Mon( 𝑓 ) = 𝔖5 or
Mon( 𝑓 ) � Aff (𝔽5). For existence in the case where Mon( 𝑓 ) � Aff (𝔽5), we can assume,
modulo conjugation, that Mon( 𝑓 ) = Aff (𝔽5). Set 𝑐𝑖 as an arbitrary permutation of type 𝑡𝑖 in
Aff (𝔽5) for each 𝑖 ∈ {3, . . . , 𝑛}; since Aff (𝔽5)∩𝔄5 = D5, we have that ∏𝑛

𝑖=3 𝑐𝑖 is equal to Id,
(1 4) (2 3) or (1 2 3 4 5) up to conjugacy. Set 𝑐1 and 𝑐2 as the permutations corresponding
to the affine maps 𝑥 ↦→ 2𝑥 and 𝑥 ↦→ 3𝑥; 𝑥 ↦→ 2𝑥 and 𝑥 ↦→ 2𝑥; or 𝑥 ↦→ 3𝑥 + 3 and 2𝑥 ↦→ 2𝑥
according to each possible ∏𝑛

𝑖=3 𝑐𝑖 mentioned above. In this manner ∏𝑛
𝑖=1 𝑐𝑖 = Id and

Aff (𝔽5) has the generating (𝑔𝑌 ;𝑚1, . . . , 𝑚𝑛)-vector ((1 2 3 4 5), Id, . . . , Id︸     ︷︷     ︸
2𝑔−1

, 𝑐1, . . . , 𝑐𝑛).

Item (5). According to Table 7, we have Mon( 𝑓 ) = 𝔖5 or Mon( 𝑓 ) = 𝔄5.
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Now we prove existence in the case where Mon( 𝑓 ) = 𝔄5. By Theorem IV.4, if 𝑛 ≥ 2
we can choose a permutation 𝑐𝑖 ∈ 𝔄5 of type 𝑡𝑖 for each 𝑖 ∈ {1, . . . , 𝑛} such that ∏𝑛

𝑖=1 𝑐𝑖
is of type [3, 1, 1]; since there is at least one permutation of type [3, 1, 1], in case 𝑛 = 1,
we still can chose (the only) 𝑐𝑖 in the above manner. Without loss of generality, suppose∏𝑛
𝑖=1 𝑐𝑖 = (1 3 2). Since ⟨(1 5 2 3 4), (1 3 4 2 5)⟩ = 𝔄5 (they are both even and generate a

transitive subgroup of order 25 or greater, see Theorem IV.6) and [(1 5 2 3 4), (1 3 4 2 5)] =
(1 2 3), the group 𝔄5 has the suitable generating (𝑔𝑌 ;𝑚1, . . . , 𝑚𝑛)-vector

((1 5 2 3 4), Id, . . . , Id︸     ︷︷     ︸
𝑔𝑌−1

, (1 3 4 2 5), Id, . . . , Id︸     ︷︷     ︸
𝑔𝑌−1

, 𝑐1, . . . , 𝑐𝑛).

Item (6). According to Table 7, the monodromy group Mon( 𝑓 ) could be isomorphic
to any transitive subgroup of 𝔖5 but C5, which implies item (6c). Suppose there is an odd
number of branch values of type [2, 2, 1] and Mon( 𝑓 ) is D5 or Aff (𝔽5) modulo conjugacy;
let (𝑎1, . . . , 𝑎𝑔𝑌 , 𝑏1, . . . , 𝑏𝑔𝑌 , 𝑐1, . . . , 𝑐𝑛) be a generating vector of Mon( 𝑓 ); thereby, the
permutation 𝑐𝑖 is of type [5] or [2, 2, 1] for each 𝑖 ∈ {1, . . . , 𝑛}. Note that D5 is a subgroup
of Aff (𝔽5) and that every permutation of type [2, 2, 1] or [5] in Aff (𝔽5) actually belongs
to D5; hence, we have 𝑐𝑖 ∈ D5 for each 𝑖 ∈ {1, . . . , 𝑛}. Theorem IV.8 implies that ∏𝑛

𝑖=1 𝑐𝑖
is of type [2, 2, 1]. On the other hand, we have Aff (𝔽5)′ = D′

5 = C5; therefore, by
equation (IV.1), there is a permutation of type [2, 2, 1] in C5, which contradicts Table 7.
That proves item (6b). If 𝑛 = 1, 𝑡1 = [2, 2, 1] and 𝑔𝑌 = 1, then Theorem I.11 implies that
𝑔�̂� = 16; however, according to the classification of group actions on surfaces of low genus
(up to 48) in [3, chapter 5] implemented in GAP [11], there is no action of 𝔄5 with signature
(1; 2) on a Riemann surface of genus 16.

Existence for a map 𝑓 as in item (6b) with Mon( 𝑓 ) = 𝔄5 where 𝑔𝑌 > 1 is granted by
the following generating (𝑔𝑌 ; 2)-vector of 𝔄5:

((1 3 4 2 5), (1 3 2 4 5), Id, . . . , Id︸     ︷︷     ︸
𝑔𝑌−2

, (1 5 2 3 4), (1 5 4 3 2), Id, . . . , Id︸     ︷︷     ︸
𝑔𝑌−2

, (1 2) (3 4)).

If 𝑔𝑌 = 1 and 𝑛 > 1, then, according to Theorem IV.4, we can choose a permutation 𝑐𝑖 of
type 𝑡𝑖 for each 𝑖 ∈ {1, . . . , 𝑛} such that ∏𝑛

𝑖=1 𝑐𝑖 = (1 3 2); thereby, we get the following
generating (1;𝑚1, . . . , 𝑚𝑛)-vector of 𝔄5:

((1 4 3 2 5), (1 5 2 4 3), 𝑐1, . . . , 𝑐𝑛).
For existence in the case of item (6c), by Theorem IV.9, we can set 𝑐𝑖 as a permutation of

type 𝑡𝑖 in D5 for each 𝑖 ∈ {1, . . . , 𝑛} such that ∏𝑛
𝑖=1 𝑐𝑖 = (1 5 4 3 2); note that D5 ⊂ Aff (𝔽5)

and D5 ⊂ 𝔄5. Set 𝑎1 and 𝑏1 according to Mon( 𝑓 ) as given by Table 8, also set 𝑎𝑖 B Id and
𝑏𝑖 B Id for 𝑖 ∈ {2, . . . , 𝑔𝑌 }; so ∏𝑔𝑌

𝑖=1 [𝑎𝑖, 𝑏𝑖] = [𝑎1, 𝑏1] = (1 2 3 4 5) and ⟨𝑎1, 𝑏1⟩ = Mon( 𝑓 )
in each case. Thereby, we have a suitable generating (𝑔𝑌 ;𝑚1, . . . , 𝑚𝑛)-vector for Mon( 𝑓 ).

Item (7). Suppose that 𝑓 has only one branch value, of type [5], and Mon( 𝑓 ) = C5.
Equation (IV.1) states that there is a permutation with cycle structure [5] in C′

5 = {Id}, a
contradiction. That contradiction implies item (7a).
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Table 8. Permutations with commutator of type [5]

Mon( 𝑓 ) 𝑎1 𝑏1 [𝑎1, 𝑏1]
𝔄5 (1 2 5 3 4) (1 5 3 2 4) (1 2 3 4 5)
Aff (𝔽5) (1 3 2 5) (3 2 4 5) (1 2 3 4 5)
D5 (1 3 5 2 4) (1 2) (3 5) (1 2 3 4 5)

For existence in the case where Mon( 𝑓 ) � C5, according to Theorem IV.9, we can
choose a permutation 𝑐𝑖 of type [5] in C5 for each 𝑖 ∈ {2, . . . , 𝑛} such that ∏𝑛

𝑖=2 𝑐𝑖 =(1 2 3 4 5). Set 𝑐1 B (1 5 4 3 2) and each 𝑎𝑖 and 𝑏𝑖 as Id; thereby, we get a generating
(𝑔𝑌 ; 5, . . . , 5)-vector of C5. When Mon( 𝑓 ) is D5, Aff (𝔽5) or 𝔄5, according to Theorem IV.9
again, we can choose a permutation 𝑐𝑖 of type [5] in C5 for each 𝑖 ∈ {2, . . . , 𝑛} such
that ∏𝑛

𝑖=2 𝑐𝑖 = (1 5 4 3 2). Set 𝑎1 and 𝑏1 according to Mon( 𝑓 ) as given by Table 8,
also set 𝑎𝑖 B Id and 𝑏𝑖 B Id for 𝑖 ∈ {2, . . . , 𝑔𝑌 }; so ∏𝑔𝑌

𝑖=1 [𝑎𝑖, 𝑏𝑖] = (1 2 3 4 5) and
⟨𝑎1, 𝑏1⟩ = Mon( 𝑓 ) in each case. Thereby, we have a suitable generating (𝑔𝑌 ; 5, . . . , 5)-
vector for Mon( 𝑓 ). □

Theorem IV.10 implies directly the following result, which is just a restatement of the
converses of items (1) to (7).

Corollary IV.11. Consider a degree 5 holomorphic map 𝑓 : 𝑋 → 𝑌 between compact
Riemann surfaces. If 𝑔𝑌 ≥ 1, then the following statements hold:

(1) If Mon( 𝑓 ) � C5, then

𝑅 𝑓 =
𝑛1∑︁
𝑗=1

4𝑝 𝑗 ,

where 𝑛1 > 1 and 𝑝1, . . . , 𝑝𝑛 are different points in 𝑋 .
(2) If Mon( 𝑓 ) � D5, then

𝑅 𝑓 =
𝑛1∑︁
𝑗=1

4𝑝 𝑗 +
𝑛2∑︁
𝑗=1

(𝑞 𝑗 + 𝑟 𝑗 ),

where 𝑛2 is even and 𝑝1, . . . , 𝑝𝑛1 , 𝑞1, . . . , 𝑞𝑛2 , 𝑟1, . . . , 𝑟𝑛2 are different points in 𝑋
such that 𝑓 (𝑞 𝑗 ) = 𝑓 (𝑟 𝑗 ) for each 𝑗 ∈ {1, . . . , 𝑛2}. If 𝑔𝑌 = 1, then 𝑛1 and 𝑛2 cannot
be both zero.

(3) If Mon( 𝑓 ) � Aff (𝔽5), then

𝑅 𝑓 =
𝑛1∑︁
𝑗=1

4𝑝 𝑗 +
𝑛2∑︁
𝑗=1

(𝑞 𝑗 + 𝑟 𝑗 ) +
𝑛3∑︁
𝑗=1

3𝑠 𝑗 ,

where 𝑛3 is even and 𝑝1, . . . , 𝑝𝑛1 , 𝑞1, . . . , 𝑞𝑛2 , 𝑟1, . . . , 𝑟𝑛2 , 𝑠1, . . . , 𝑠𝑛3 are different
points in 𝑋 such that 𝑓 (𝑞 𝑗 ) = 𝑓 (𝑟 𝑗 ) for each 𝑗 ∈ {1, . . . , 𝑛2}. If 𝑔𝑌 = 1, then 𝑛1,
𝑛2, and 𝑛3 cannot be all zero.
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(4) If Mon( 𝑓 ) = 𝔄5, then

𝑅 𝑓 =
𝑛1∑︁
𝑗=1

4𝑝 𝑗 +
𝑛2∑︁
𝑗=1

(𝑞 𝑗 + 𝑟 𝑗 ) +
𝑛4∑︁
𝑗=1

2𝑡 𝑗 ,

where 𝑝1, . . . , 𝑝𝑛1 , 𝑞1, . . . , 𝑞𝑛2 , 𝑟1, . . . , 𝑟𝑛2 , 𝑡1, . . . , 𝑡𝑛4 are different points in 𝑋 such
that 𝑓 (𝑞 𝑗 ) = 𝑓 (𝑟 𝑗 ) for each 𝑗 ∈ {1, . . . , 𝑛2}. If 𝑔𝑌 = 1, then 𝑛1, 𝑛2, and 𝑛4 cannot
be all zero. Moreover, if 𝑔𝑌 = 1 and 𝑛1 = 𝑛4 = 0, then 𝑛2 ≥ 2.

(5) If Mon( 𝑓 ) = 𝔖5, then

𝑅 𝑓 =
𝑛1∑︁
𝑗=1

4𝑝 𝑗 +
𝑛2∑︁
𝑗=1

(𝑞 𝑗 + 𝑟 𝑗 ) +
𝑛3∑︁
𝑗=1

3𝑠 𝑗 +
𝑛4∑︁
𝑗=1

2𝑡 𝑗 +
𝑛5∑︁
𝑗=1

(2𝑢 𝑗 + 𝑣 𝑗 ) +
𝑛6∑︁
𝑗=1
𝑤 𝑗 ,

where 𝑛3, 𝑛5 and 𝑛6 are even and 𝑝1, . . . , 𝑝𝑛1 , 𝑞1, . . . , 𝑞𝑛2 , 𝑟1, . . . , 𝑟𝑛2 , 𝑠1, . . . , 𝑠𝑛3 ,
𝑡1, . . . , 𝑡𝑛4 , 𝑢1, . . . , 𝑢𝑛5 , 𝑣1, . . . , 𝑣𝑛5 , 𝑤1, . . . , 𝑤𝑛6 are different points in 𝑋 such that
𝑓 (𝑞 𝑗 ) = 𝑓 (𝑟 𝑗 ) for each 𝑗 ∈ {1, . . . , 𝑛2}, 𝑓 (𝑢 𝑗 ) = 𝑓 (𝑣 𝑗 ) for each 𝑗 ∈ {1, . . . , 𝑛5},
𝑓 (𝑡 𝑗 ) ≠ 𝑓 (𝑤𝑘 ) for each pair ( 𝑗 , 𝑘), and 𝑓 (𝑤 𝑗 ) ≠ 𝑓 (𝑤𝑘 ) for 𝑗 ≠ 𝑘 . If 𝑔𝑌 = 1, then
𝑛𝑖 cannot be zero for all 𝑖 ∈ {1, . . . , 6}.

Now we list possible monodromy groups Mon( 𝑓 ) according to the ramification of 𝑓 in
the special case where 𝑔𝑌 = 0; namely, when 𝑌 � ℙ1. Recall that the ramification data of
the map 𝑓 must fulfill an additional condition when 𝑔𝑌 = 0 in order to be realizable; namely,
the R–H condition (see Theorem IV.3).

Theorem IV.12. Consider a degree 5 holomorphic map 𝑓 : 𝑋 → ℙ1 between compact
Riemann surfaces with ramification data (𝑡1, . . . , 𝑡𝑛); the following statements hold:

(1) If at least one 𝑡𝑖 equals [2, 1, 1, 1] or [3, 2], then Mon( 𝑓 ) = 𝔖5.
(2) If there are types [3, 1, 1] and [4, 1] in (𝑡1, . . . , 𝑡𝑛), then Mon( 𝑓 ) = 𝔖5.
(3) Suppose there are no types [3, 2], [3, 1, 1] or [2, 1, 1, 1] in (𝑡1, . . . , 𝑡𝑛), but there

is at least one type [4, 1], we have:
(a) If deg(𝑡1, . . . , 𝑡𝑛) = 8, then Mon( 𝑓 ) � Aff (𝔽5).
(b) If deg(𝑡1, . . . , 𝑡𝑛) > 8, then Mon( 𝑓 ) � Aff (𝔽5) or Mon( 𝑓 ) = 𝔖5.

(4) If 𝑓 has only even branch values and at least one of them is of type [3, 1, 1], then
Mon( 𝑓 ) = 𝔄5.

(5) Suppose that there are neither odd nor [3, 1, 1] types in (𝑡1, . . . , 𝑡𝑛), but there is at
least one type [2, 2, 1]. We have three cases:
(a) If deg(𝑡1, . . . , 𝑡𝑛) = 8, then Mon( 𝑓 ) � D5.
(b) If there is an odd number of branch values of type [2, 2, 1], then Mon( 𝑓 ) = 𝔄5.
(c) If deg(𝑡1, . . . , 𝑡𝑛) > 8 and there is an even number of branch values of type

[2, 2, 1], then Mon( 𝑓 ) � D5 or Mon( 𝑓 ) = 𝔄5.
(6) Suppose that 𝑡𝑖 = [5] for each 𝑖 ∈ {1, . . . , 𝑛}. If 𝑛 = 2, then Mon( 𝑓 ) � C5;

otherwise, we have Mon( 𝑓 ) � C5 or Mon( 𝑓 ) = 𝔄5.
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Conversely, for any realizable tuple (𝑡1, . . . , 𝑡𝑛) of ramification types and for each
possible monodromy group listed in items (1) to (6) according to (𝑡1, . . . , 𝑡𝑛), there is a
holomorphic map of degree 5 with that ramification data and that monodromy group.

Proof. As in the proof of Theorem IV.10, according to Theorem I.13, the holomorphic
map 𝑓 : 𝑋 → 𝑌 with ramification data (𝑡1, . . . , 𝑡𝑛) exists if and only if the group Mon( 𝑓 )
has a generating (0;𝑚1, . . . , 𝑚𝑛)-vector (𝑐1, . . . , 𝑐𝑛) such that 𝑐𝑖 has cycle structure 𝑡𝑖 for
each 𝑖 ∈ {1, . . . , 𝑛}. We will separately prove items (1) to (6) by assuming the existence of
such a generating vector. After the proof of each item, we show the existence of a map 𝑓
with the stated ramification data (assuming its realizability) and monodromy group. In the
cases where there is only one possible monodromy group 𝐺 up to conjugacy, the map 𝑓
given by Theorem IV.3 already satisfies Mon( 𝑓 ) � 𝐺; hence, in those cases, the existence
proof is omitted.

Item (1). Table 7 shows that the only transitive subgroup of 𝔖5 that contains permuta-
tions of type [3, 2] or [2, 1, 1, 1] is 𝔖5 itself; hence Mon( 𝑓 ) = 𝔖5.

Item (2). The proof is identical to that of item (1).
Item (3). Table 7 shows that the only transitive subgroups of 𝔖5 that contain permuta-

tions of type [4, 1] are Aff (𝔽5) and 𝔖5; hence Mon( 𝑓 ) � Aff (𝔽5) or Mon( 𝑓 ) = 𝔖5, which
proves item (3b). Now suppose that deg(𝑡1, . . . , 𝑡𝑛) = 8, since (𝑡1, . . . , 𝑡𝑛) is even, there
must be at least two types [4, 1], say 𝑡1 and 𝑡2, so 𝑛 = 3 and deg(𝑡3) = 2; hence Theorem I.11
yields 𝑔�̂� = 1. Since the full group of automorphisms of a surface of genus 1 is isomorphic
to ℤ2 ⋊ C𝑘 , where 𝑘 ∈ {2, 4, 6} (see, for example, [3, subsection 3.4]), which is a solvable
group, the non-solvable group 𝔖5 cannot act on �̂� . That proves item (3a).

Since now we have two possible monodromy groups, we give an existence proof for
both cases separately.

Case Mon( 𝑓 ) = 𝔖5. Assume 𝑡1 = 𝑡2 = [4, 1]. Since (𝑡3, . . . , 𝑡𝑛) is also even and
deg(𝑡3, . . . , 𝑡𝑛) ≥ 4, according to Theorem IV.5, we can choose a permutation 𝑐𝑖 of type 𝑡𝑖
for each 𝑖 ∈ {3, . . . , 𝑛} such that ∏𝑛

𝑖=3 𝑐𝑖 = (1 5 4 3 2). Set 𝑐1 B (1 2 5 4) and 𝑐2 B (2 5 3 4),
then ∏𝑛

𝑖=1 𝑐𝑖 = Id; also, since 𝑐−1
2 𝑐1 = (1 5 4) and the only transitive subgroup of 𝔖5 that

contains [3, 1, 1] and [4, 1] element is 𝔖5 itself, we have ⟨𝑐1, . . . , 𝑐𝑛⟩ = 𝔖5.
Case Mon( 𝑓 ) � Aff (𝔽5). Set 𝑐𝑖 as any permutation of type 𝑡𝑖 in Aff (𝔽5) for 𝑖 ∈

{3, . . . , 𝑛}. The product ∏𝑛
𝑖=3 𝑐𝑖 must be of type [2, 2, 1] or [5] because it is even and an

element of Aff (𝔽5); without loss of generality, assume that it equals (1 4) (2 3) or (1 5 4 3 2)
(in the notation of Remark IV.2, they correspond to the maps 𝑥 ↦→ −𝑥 and 𝑥 ↦→ 𝑥 − 1,
respectively; in particular, they both belong to Aff (𝔽5)). Set

(𝑐1, 𝑐2) B
{
((1 3 2 5), (1 4 5 2)) if ∏𝑛

𝑖=3 𝑐𝑖 = (1 4) (2 3),
((2 4 5 3), (1 3 2 5)) if ∏𝑛

𝑖=3 𝑐𝑖 = (1 2 3 4 5).
In the notation of Remark IV.2, those permutations correspond to the maps 𝑥 ↦→ 2𝑥 + 1,
𝑥 ↦→ 2𝑥 + 2, 𝑥 ↦→ 3𝑥 + 3 and 𝑥 ↦→ 2𝑥 + 1, respectively; in particular, they belong to Aff (𝔽5).
Since ⟨𝑐1, 𝑐2⟩ generates a transitive subgroup of 𝔖5 contained in Aff (𝔽5) and with type
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[4, 1] permutations, we have ⟨𝑐1, . . . , 𝑐𝑛⟩ = Aff (𝔽5); so (𝑐1, . . . , 𝑐𝑛) is a suitable generating
(0; 4, 4, 𝑡3, . . . , 𝑡𝑛)-vector of Aff (𝔽5).

Item (4). According to Table 7, the monodromy group Mon( 𝑓 ) equals 𝔖5 or 𝔄5; but
every even permutation in 𝔖5 is contained in 𝔄5, so there is no suitable generating vector
for 𝔖5. Therefore, Mon( 𝑓 ) = 𝔄5.

Item (5). According to Table 7, Mon( 𝑓 ) could be conjugate to any transitive subgroups
of 𝔖5 but C5; however, neither 𝔖5 nor Aff (𝔽5) is generated by their even permutations
because all of them are contained in 𝔄5 and D5, respectively. Hence Mon( 𝑓 ) = 𝔄5 or
Mon( 𝑓 ) � D5.

Now suppose deg(𝑡1, . . . , 𝑡𝑛) = 8, then, after a potential re-enumeration, there are two
possibilities:

• 𝑛 = 4 and 𝑡1 = 𝑡2 = 𝑡3 = 𝑡4 = [2, 2, 1]; or
• 𝑛 = 3, 𝑡1 = 𝑡2 = [2, 2, 1] and 𝑡3 = [5].

If 𝐺 = 𝔄5, Theorem I.11 yields 𝑔�̂� = 1 for signature (0; 2, 2, 2, 2) and 𝑔�̂� = −7 for
signature (0; 2, 2, 5); so the second case is not possible. Moreover, since the full group
of automorphisms of a surface of genus 1 is a solvable group, the non-solvable group 𝔄5
cannot be a subgroup of it. So Mon( 𝑓 ) is not 𝔄5, that proves item (5a).

Theorem IV.8 states that a product ∏𝑛
𝑖=1 𝑐𝑖 of permutations in D5 with an odd amount

of type [2, 2, 1] factors is of type [2, 2, 1], that proves item (5b).
If deg(𝑡1, . . . , 𝑡𝑛) > 8 and there is an even number of types [2, 2, 1] in (𝑡1, . . . , 𝑡𝑛), both

𝔄5 and D5 are possible monodromy groups, which proves item (5c). Since now we have
two possible monodromy groups, we give an existence proof for both cases separately.

Case Mon( 𝑓 ) = 𝔄5. If there is a type [5] in (𝑡1, . . . , 𝑡𝑛), say 𝑡1, then, modulo
re-enumeration, we have 𝑡2 = 𝑡3 = [2, 2, 1] and deg(𝑡4, . . . , 𝑡𝑛) ≥ 4. According to The-
orem IV.5, we can choose a permutation 𝑐𝑖 of type 𝑡𝑖 for each 𝑖 ∈ {4, . . . , 𝑛} such that∏𝑛
𝑖=4 𝑐𝑖 = (1 5 4 3 2); set 𝑐1 B (1 4 5 3 2), 𝑐2 B (1 2) (3 5) and 𝑐3 B (1 5) (2 3), so∏𝑛
𝑖=1 𝑐𝑖 = Id. Also, note that 𝑐1𝑐2 = (2 4 5), hence ⟨𝑐1, . . . , 𝑐𝑛⟩ contains only even per-

mutations and of every possible type, so ⟨𝑐1, . . . , 𝑐𝑛⟩ = 𝔄5. Therefore, (𝑐1, . . . , 𝑐𝑛) is a
generating (0; 5, 2, 2, 𝑚4, . . . , 𝑚𝑛)-vector for 𝔄5.

If there are no types [5] in (𝑡1, . . . , 𝑡𝑛), then 𝑡𝑖 = [2, 2, 1] for each 𝑖 ∈ {1, . . . , 𝑛},
and 𝑛 ≥ 6. By Theorem IV.5, we can choose a permutation 𝑐𝑖 of type [2, 2, 1] for each
𝑖 ∈ {5, . . . , 𝑛} such that ∏𝑛

𝑖=5 𝑐𝑖 = (1 5 4 3 2); set 𝑐1 B (1 5) (2 3), 𝑐2 B (1 4) (2 5),
𝑐3 B (1 2) (3 5) and 𝑐4 B (1 5) (2 3), so ∏𝑛

𝑖=1 = Id. We also have that 𝑐1𝑐2𝑐3 = (2 4 5),
hence ⟨𝑐1, . . . , 𝑐𝑛⟩ = 𝔄5 as in the previous case. Therefore, (𝑐1, . . . , 𝑐𝑛) is a generating
(0; 2, . . . , 2)-vector for 𝔄5.

Case Mon( 𝑓 ) � D5. There are at least two types [2, 2, 1] in (𝑡1, . . . , 𝑡𝑛), say 𝑡1 and 𝑡2.
By Theorem IV.9 we can choose a permutation 𝑐𝑖 of type 𝑡𝑖 in D5 for each 𝑖 ∈ {3, . . . , 𝑛}
such that ∏𝑛

𝑖=3 𝑐𝑖 = (1 5 4 3 2). Set 𝑐1 B (1 3) (4 5) and 𝑐2 B (1 2) (3 5) (both permutations
belong to D5), so ∏𝑛

𝑖=1 𝑐𝑖 = Id and ⟨𝑐1, . . . , 𝑐𝑛⟩ = D5. Hence, (𝑐1, . . . , 𝑐𝑛) is a generating
(0; 2, 2, 𝑚3, . . . , 𝑚𝑛)-vector of D5.
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Item (6). Note that each type [5] permutation in D5 or Aff (𝔽5) is contained in their
subgroup C5, so neither D5 nor Aff (𝔽5) can be generated by elements of type [5]; also,
each type [5] permutation in 𝔖5 is contained in 𝔄5, so 𝔖5 cannot be generated by elements
of type [5]. Therefore, the monodromy group Mon( 𝑓 ) must be conjugate to C5 or 𝔄5. If
𝑛 = 2, then Mon( 𝑓 ) is generated by a single permutation of type [5], hence Mon( 𝑓 ) � C5.
If 𝑛 > 2, then Mon( 𝑓 ) is conjugate to C5 or equals 𝔄5; since now we have two possible
monodromy groups, we prove existence for each case separately.

Case Mon( 𝑓 ) � C5. According to Theorem IV.9, we can choose a permutation 𝑐𝑖 of
type [5] in C5 for each 𝑖 ∈ {2, . . . , 𝑛} such that ∏𝑛

𝑖=1 𝑐𝑖 = (1 5 4 3 2); set 𝑐1 B (1 2 3 4 5),
so ∏𝑛

𝑖=1 𝑐𝑖 = Id and ⟨𝑐1, . . . , 𝑐𝑛⟩ = C5. Therefore, (𝑐1, . . . , 𝑐𝑛) is a generating (0; 5, . . . , 5)-
vector of C5.

Case Mon( 𝑓 ) = 𝔄5. According to Theorem IV.5, we can choose a permutation 𝑐𝑖
of type [5] for each 𝑖 ∈ {3, . . . , 𝑛} such that ∏𝑛

𝑖=3 𝑐𝑖 = (1 5 4 3 2). Set 𝑐1 B (1 3 2 5 4)
and 𝑐2 B (1 3 5 4 2), so ∏𝑛

𝑖=1 𝑐𝑖 = Id. Note that 𝑐2
1𝑐

2
2 = (2 5 4), hence ⟨𝑐1, . . . , 𝑐𝑛⟩ = 𝔄5.

Therefore, (𝑐1, . . . , 𝑐𝑛) is a generating (0; 5, . . . , 5)-vector of 𝔄5. □

Theorem IV.12 implies directly the following result, which is just a restatement of the
converses of items (1) to (6).

Corollary IV.13. Consider a degree 5 holomorphic map 𝑓 : 𝑋 → ℙ. The following
statements hold:

(1) If Mon( 𝑓 ) � C5, then

𝑅 𝑓 =
𝑛1∑︁
𝑗=1

4𝑝 𝑗 ,

where 𝑛1 ≥ 2 and 𝑝1, . . . , 𝑝𝑛 are different points in 𝑋 .
(2) If Mon( 𝑓 ) � D5, then

𝑅 𝑓 =
𝑛1∑︁
𝑗=1

4𝑝 𝑗 +
𝑛2∑︁
𝑗=1

(𝑞 𝑗 + 𝑟 𝑗 ),

where 𝑛2 is even and positive, and 𝑝1, . . . , 𝑝𝑛1 , 𝑞1, . . . , 𝑞𝑛2 , 𝑟1, . . . , 𝑟𝑛2 are different
points in 𝑋 such that 𝑓 (𝑞 𝑗 ) = 𝑓 (𝑟 𝑗 ) for each 𝑗 ∈ {1, . . . , 𝑛2}. If 𝑛1 = 0, then
𝑛2 ≥ 4.

(3) If Mon( 𝑓 ) � Aff (𝔽5), then

𝑅 𝑓 =
𝑛1∑︁
𝑗=1

4𝑝 𝑗 +
𝑛2∑︁
𝑗=1

(𝑞 𝑗 + 𝑟 𝑗 ) +
𝑛3∑︁
𝑗=1

3𝑠 𝑗 ,

where 𝑛3 is even and positive, and 𝑝1, . . . , 𝑝𝑛1 , 𝑞1, . . . , 𝑞𝑛2 , 𝑟1, . . . , 𝑟𝑛2 , 𝑠1, . . . , 𝑠𝑛3
are different points in 𝑋 such that 𝑓 (𝑞 𝑗 ) = 𝑓 (𝑟 𝑗 ) for each 𝑗 ∈ {1, . . . , 𝑛2}. If
𝑛1 = 𝑛2 = 0, then 𝑛3 ≥ 4.
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(4) If Mon( 𝑓 ) = 𝔄5, then

𝑅 𝑓 =
𝑛1∑︁
𝑗=1

4𝑝 𝑗 +
𝑛2∑︁
𝑗=1

(𝑞 𝑗 + 𝑟 𝑗 ) +
𝑛4∑︁
𝑗=1

2𝑡 𝑗 ,

where 𝑝1, . . . , 𝑝𝑛1 , 𝑞1, . . . , 𝑞𝑛2 , 𝑟1, . . . , 𝑟𝑛2 , 𝑡1, . . . , 𝑡𝑛4 are different points in 𝑋 such
that 𝑓 (𝑞 𝑗 ) = 𝑓 (𝑟 𝑗 ) for each 𝑗 ∈ {1, . . . , 𝑛2}. Also, we have deg(𝑅 𝑓 ) ≥ 8, and if
𝑛4 = 0, then deg(𝑅 𝑓 ) > 8.

(5) If Mon( 𝑓 ) = 𝔖5, then

𝑅 𝑓 =
𝑛1∑︁
𝑗=1

4𝑝 𝑗 +
𝑛2∑︁
𝑗=1

(𝑞 𝑗 + 𝑟 𝑗 ) +
𝑛3∑︁
𝑗=1

3𝑠 𝑗 +
𝑛4∑︁
𝑗=1

2𝑡 𝑗 +
𝑛5∑︁
𝑗=1

(2𝑢 𝑗 + 𝑣 𝑗 ) +
𝑛6∑︁
𝑗=1
𝑤 𝑗 ,

where 𝑛3, 𝑛5 and 𝑛6 are even and not all zero, and 𝑝1, . . . , 𝑝𝑛1 , 𝑞1, . . . , 𝑞𝑛2 ,
𝑟1, . . . , 𝑟𝑛2 , 𝑠1, . . . , 𝑠𝑛3 , 𝑡1, . . . , 𝑡𝑛4 , 𝑢1, . . . , 𝑢𝑛5 , 𝑣1, . . . , 𝑣𝑛5 , 𝑤1, . . . , 𝑤𝑛6 are differ-
ent points in 𝑋 such that 𝑓 (𝑞 𝑗 ) = 𝑓 (𝑟 𝑗 ) for each 𝑗 ∈ {1, . . . , 𝑛2}, 𝑓 (𝑢 𝑗 ) = 𝑓 (𝑣 𝑗 )
for each 𝑗 ∈ {1, . . . , 𝑛5}, 𝑓 (𝑡 𝑗 ) ≠ 𝑓 (𝑤𝑘 ) for each pair ( 𝑗 , 𝑘), and 𝑓 (𝑤 𝑗 ) ≠ 𝑓 (𝑤𝑘 )
for 𝑗 ≠ 𝑘 . Also, we have deg(𝑅 𝑓 ) ≥ 8, and if 𝑛4 = 𝑛5 = 𝑛6 = 0, then deg(𝑅 𝑓 ) > 8.



CHAPTER V

Decomposition of the Jacobian of a fivefold cover

Following the notation of chapter IV, let 𝑓 : 𝑋 → 𝑌 be a degree 5 holomorphic map
between compact Riemann surfaces with ramification divisor 𝑅 𝑓 . Theorem IV.6 states that
Mon( 𝑓 ) is conjugate to one of the following groups:

(1) the cyclic group C5;
(2) the dihedral group D5;
(3) the affine group Aff (𝔽5);
(4) the alternating group 𝔄5; or
(5) the symmetric group 𝔖5.

In this chapter we give, up to isogeny, the group algebra decomposition of Jac( �̂�) in terms
of the Jacobian and Prym varieties associated to the intermediate coverings of 𝑓 for each
possible monodromy group Mon( 𝑓 ) given by Theorems IV.10 and IV.12. Also, we compute
the polarization type of the several abelian varieties involved.

1. Cyclic monodromy group

In this section, we assume that Mon( 𝑓 ) is cyclic of order 5, that is Mon( 𝑓 ) = C5,
where C5 = ⟨(1 2 3 4 5)⟩, as in chapter IV. Since all the non trivial element of C5 are in
the same rational conjugacy class, there are just two rational irreducible representations of
C5: one of degree 1, the trivial representation, and other of degree 4, the restriction of the
standard representation (see [9, p. 27]); both representations have Schur index 1. They will
be respectively denoted by𝑈 and 𝑉 . Table 9 show the rational character table of C5.

Moreover, since any complex irreducible representation Galois associated to 𝑉 is of
degree 1 (see [25, section 5.1]), Theorem III.6 implies that the group algebra decomposition
of Jac(𝑋) is of the form Jac(𝑋) ∼ 𝐴1 × 𝐴2.

Table 9. Rational character table of C5

1 4
C5 Id (1 2 3 4 5)
𝑈 1 1
𝑉 4 −1
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Besides, according to Theorems IV.11 and IV.13, the map 𝑓 is étale or 𝑅 𝑓 =
∑𝑛
𝑗=1 4𝑝 𝑗

with 𝑛 ≥ 2; the former case is only possible if 𝑔𝑌 ≥ 1. Note that in this case 𝑓 is
already Galois because |Mon( 𝑓 ) | = deg 𝑓 ; since 5 is a prime integer, 𝑓 has no intermediate
coverings.
Theorem V.1. Let 𝑓 : 𝑋 → 𝑌 be a degree 5 holomorphic map between compact Riemann
surfaces. If Mon( 𝑓 ) � C5, then

Jac( �̂�) ∼ Jac(𝑌 ) × Prym( 𝑓 )
is the group algebra decomposition of Jac( �̂�). The dimensions of the involved abelian
varieties are:

• dim Jac(𝑌 ) = 𝑔𝑌
• dim Prym( 𝑓 ) = 4𝑔𝑌 − 4 + 2𝑛

The induced polarization on Jac(𝑌 ) ×Prym( 𝑓 ) is of type (1, . . . , 1︸   ︷︷   ︸
3𝑔𝑌−3

, 5, . . . , 5︸   ︷︷   ︸
2𝑔𝑌−1

) if 𝑓 is étale

and of type (1, . . . , 1︸   ︷︷   ︸
3𝑔𝑌−4+2𝑛

, 5, . . . , 5︸   ︷︷   ︸
2𝑔𝑌

) otherwise.

Proof. The only proper subgroup of C5 is the trivial one {Id}, but it will be enough:
Theorem II.2 implies 𝜌{Id} = 𝑈 ⊕ 𝑉 and 𝜌C5 = 𝑈; thereby, Theorem III.9 implies that
Prym( 𝑓 ) ∼ 𝐴2. Therefore, we have
(V.1) Jac( �̂�) ∼ Jac(𝑌 ) × Prym( 𝑓 ).

From Riemann–Hurwitz formula, we get 𝑔𝑋 = 5𝑔𝑌 − 4 + 2𝑛. Then
dim Jac( �̂�) = 5𝑔𝑌 − 4 + 2𝑛

and
dim Prym( 𝑓 ) = dim Jac( �̂�) − dim Jac(𝑌 )

= 4𝑔𝑌 − 4 + 2𝑛.
Theorem III.1 yields that

|ker 𝑓 ∗ | =
{

5 if 𝑛 = 0,
1 if 𝑛 ≥ 2.

Recall that, according to Remark III.1, the isogeny of equation (V.1) is given by inclu-
sions and 𝑓 ∗; moreover, by Theorem III.2, the polarization ( 𝑓 ∗)∗Θ 𝑓 ∗ Jac(𝑌 ) is analytically
equivalent to Θ⊗5

𝑌 , so it is of type (5, . . . , 5︸   ︷︷   ︸
𝑔𝑦

). Also,

K(ΘPrym( 𝑓 )) = K(Θ 𝑓 ∗ Jac(𝑌 )) �
(ker 𝑓 ∗)⊥

ker 𝑓 ∗
�

{
C2𝑔𝑌−2

5 if 𝑛 = 0,
C2𝑔𝑌

5 if 𝑛 ≥ 2;
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therefore,

type(ΘPrym( 𝑓 )) =



(1, . . . , 1︸   ︷︷   ︸
3𝑔𝑌−3

5, . . . , 5︸   ︷︷   ︸
𝑔𝑌−1

) if 𝑛 = 0,

(1, . . . , 1︸   ︷︷   ︸
3𝑔𝑌−4+2𝑛

5, . . . , 5︸   ︷︷   ︸
𝑔𝑌

) if 𝑛 ≥ 2.

Therefore, Theorem III.3 implies the assertion on the type of the polarization induced on
Jac(𝑌 ) × Prym( 𝑓 ). □

2. Dihedral monodromy group

Now we assume that Mon( 𝑓 ) is dihedral of order 10, that is Mon( 𝑓 ) = D5, where
D5 = ⟨(1 2 3 4 5), (2 5) (3 4)⟩, as in Theorem IV.6. We denote ⟨(1 2 3 4 5)⟩ and ⟨(2 5) (3 4)⟩
by C5 and C2, respectively. The subgroup lattice of D5 yields intermediate coverings of 𝑓
as in the following commutative diagram:

(V.2)

{Id} �̂�

C2 C5 �̂�/C2 � 𝑋 �̂�/C5

D5 �̂�/D5 � 𝑌

𝜋C2 𝜋C5

𝜋C2� 𝑓 𝜋C5

Since StabD5 (1) = C2, Theorem I.4 implies that �̂�/C2 � 𝑋 and 𝜋C2 � 𝑓 .
According to Theorems IV.11 and IV.13, we have

(V.3) 𝑅 𝑓 =
𝑛1∑︁
𝑗=1

4𝑝 𝑗 +
𝑛2∑︁
𝑗=1

(𝑞 𝑗 + 𝑟 𝑗 ),

where 𝑛2 is even and 𝑝1, . . . , 𝑝𝑛1 , 𝑞1, . . . , 𝑞𝑛2 , 𝑟1, . . . , 𝑟𝑛2 are different points in 𝑋 such that
𝑓 (𝑞 𝑗 ) = 𝑓 (𝑟 𝑗 ); also:

• if 𝑔𝑌 = 1, then 𝑛1 and 𝑛2 cannot be both zero; and
• if 𝑔𝑌 = 0, then 𝑛2 ≥ 2 and if 𝑛1 = 0, then 𝑛2 ≥ 4.

Theorem I.14 and equation (V.3) imply that the signature of 𝑓 is

(𝑔𝑌 ; 2, . . . , 2︸   ︷︷   ︸
𝑛2

, 5, . . . , 5︸   ︷︷   ︸
𝑛1

).
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Table 10. Total ramification of the intermediate coverings of the Galois
closure of a convering 𝑓 with Mon( 𝑓 ) � D5

𝐻 Genus of �̂�/𝐻 deg(𝑅𝜋𝐻 ) deg(𝑅𝜋𝐻 )
{Id} 10𝑔𝑌 + 4𝑛1 + 5𝑛2/2 − 9 0 8𝑛1 + 5𝑛2
C2 5𝑔𝑌 + 2𝑛1 + 𝑛2 − 4 𝑛2 4𝑛1 + 2𝑛2
C5 2𝑔𝑌 + 𝑛2/2 − 1 8𝑛1 𝑛2
D5 𝑔𝑌 8𝑛1 + 5𝑛2 0

Table 11. Complex character table of D5

1 5 2 2
D5 Id (2 5) (3 4) (1 2 3 4 5) (1 3 5 2 4)
𝑈 1 1 1 1
𝑊 1 −1 1 1
𝑊2 2 0 2 cos(2π/5) 2 cos(4π/5)
𝑊3 2 0 2 cos(4π/5) 2 cos(2π/5)

Table 12. Rational character table of D5

1 5 4
D5 Id (2 5) (3 4) (1 2 3 4 5)
𝑈 1 1 1
𝑊 1 −1 1
𝑉 4 0 −1

The genera and total ramification of the several intermediate coverings of 𝑓 are computed
through the SageMath implementation of Theorem I.17 and Theorem I.16 (see appendix A)
and presented in Table 10.

According to [25, section 5.3], there are four complex irreducible representations of D5:
two of degree 1, the trivial denoted 𝑈 and another one denoted 𝑊 , and two of degree 2,
which we will denote by𝑊2 and𝑊3. Table 11 shows the complex character table of D5.

The representations𝑊2 and𝑊3 are clearly not rational, but𝑊2 ⊕𝑊3 is; furthermore, it
is the restriction of the standard representation, so we denote it by𝑉 . Moreover, the rational
conjugacy classes of D5 are three: the class of the identity, the class of (2 5) (3 4) and the
class of (1 2 3 4 5); so, the three rational irreducible representations of D5 are 𝑈,𝑊 and 𝑉 .
Table 12 shows the rational character table of D5.

Rational irreducible representations of D5 satisfies the following properties:
• 𝑚𝑈 = 𝑚𝑊 = 𝑚𝑉 = 1;
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• 𝑈 and𝑊 are complex irreducible representations; and
• 𝑉 is Galois associated to the complex irreducible representation 𝑊2, which is of

degree 2.
Therefore, Theorem III.6 implies that the group algebra decomposition of Jac( �̂�) is of the
form

Jac( �̂�) ∼ 𝐴1 × 𝐴2 × 𝐴2
3.

Theorem V.2. Let 𝑓 : 𝑋 → 𝑌 be a degree 5 holomorphic map between compact Riemann
surfaces. If Mon( 𝑓 ) � D5, then

(V.4) Jac( �̂�) ∼ Jac(𝑌 ) × Prym(𝜋C5) × Prym( 𝑓 )2

is the group algebra decomposition of Jac( �̂�), where D5 acts trivially on Jac(𝑌 ), and as
multiples of 𝑊 and 𝑉 on Prym(𝜋C5) and Prym( 𝑓 )2, respectively. The dimensions of the
abelian varieties involved are:

• dim Jac(𝑌 ) = 𝑔𝑌
• dim Prym(𝜋C5) = 𝑔𝑌 + 𝑛2/2 − 1
• dim Prym( 𝑓 ) = 4𝑔𝑌 + 2𝑛1 + 𝑛2 − 4

and the types of the polarizations of the Prym varieties are:

• typeΘPrym(𝜋C5 ) =


(2, . . . , 2︸   ︷︷   ︸

𝑔𝑌−1

) if 𝑛2 = 0,

(1, . . . , 1︸   ︷︷   ︸
𝑛2/2−1

, 2, . . . , 2︸   ︷︷   ︸
𝑔𝑌

) if 𝑛2 ≥ 2;

• typeΘPrym( 𝑓 ) = (1, . . . , 1︸   ︷︷   ︸
3𝑔𝑌+2𝑛1+𝑛2−4

, 5, . . . , 5︸   ︷︷   ︸
𝑔𝑌

).

Proof. We have that:
• The subgroup C5 has four elements in the D5-rational conjugacy class of (1 2 3 4 5),

and the identity.
• The subgroup C2 has one element in the rational D5-conjugacy class of (2 5) (3 4),

and the identity.
Thereby, a direct computation using Theorem II.2 and Table 12 shows that

𝜌C5 = 𝑈 ⊕𝑊,
𝜌C2 = 𝑈 ⊕ 𝑉

and

𝜌D5 = 𝑈.
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Therefore, following the notation of Theorem III.6, Theorem III.9 implies that
𝐴1 ∼ Jac(𝑌 ),
𝐴2 ∼ Prym(𝜋C5)

and
𝐴3 ∼ Prym( 𝑓 ).

The dimension of the several Jacobian and Prym varieties are directly computed from the
genera of the corresponding curves in Table 10.

Now we compute the polarization type of the Prym varieties in the decomposition.
According to Table 10, we have that 𝜋C5 is étale if and only if 𝑛2 = 0; besides, the map
𝜋C5 is cyclic (has degree 2) whereas 𝑓 is not even Galois, because C2 is not normal in D5.
Also, neither 𝜋C5 nor 𝑓 factor non-trivially, because there are no proper subgroups of D5
that contains C5 or C2 but themselves, see Theorem I.15. Hence, by Theorem III.1 we have
that

|ker 𝜋C5∗ | =
{

2 if 𝑛2 = 0,
1 if 𝑛2 ≥ 2;

|ker 𝑓 ∗ | = 1.
Using item (2) of Theorem III.2 and the computations in Table 10, we get the types of
ΘPrym(𝜋C5 ) and ΘPrym( 𝑓 ) . □

Corollary V.3. Under the hypotheses of Theorem V.2, if 𝑌 � ℙ1, then the polarization
induced on Jac(𝑌 ) ×Prym(𝜋C5) ×Prym( 𝑓 )2 by isogeny (V.4) is of type (2, . . . , 2︸   ︷︷   ︸

4𝑛1+2𝑛2−8

, 5, . . . , 5︸   ︷︷   ︸
𝑛2/2−1

).

Proof. If 𝑔𝑌 = 0, then Jac(𝑌 ) = {0}, Jac(𝑋) = Prym( 𝑓 ) and Jac( �̂�/C5) = Prym(𝜋C5).
By item (1) of Theorem III.2, the polarization induced on Prym( 𝑓 ) by Θ�̂� through 𝜋∗C2

is
analytically equivalent to Θ⊗2

𝑋 and, analogously, the polarization induced on Prym(𝜋C5) by
Θ�̂� through 𝜋∗C5

is analytically equivalent to Θ⊗5
�̂�/C5

. According to Remark III.1, the isogeny
(V.4) is given by the natural pullbacks in each component, so the polarization induced
on Jac(𝑌 ) × Prym(𝜋C5) × Prym( 𝑓 )2, which with the current restrictions is isogenous to
Prym(𝜋C5) × Prym( 𝑓 )2, by isogeny (V.4) is of type (2, . . . , 2︸   ︷︷   ︸

4𝑛1+2𝑛2−8

, 5, . . . , 5︸   ︷︷   ︸
𝑛2/2−1

). □

3. Affine monodromy group

Now we assume that Mon( 𝑓 ) is isomorphic to the group of affine transformations
of 𝔽5, which we denote by Aff (𝔽5). As in Theorem IV.6, suppose that Aff (𝔽5) =

⟨(1 2 3 4 5), (2 3 5 4)⟩. Since ⟨(1 2 3 4 5)⟩ and ⟨(2 3 5 4)⟩ are cyclic groups of order 5 and
4, respectively, and ⟨(2 5) (3 4), (1 2 3 4 5)⟩ is dihedral of order 10; we denote these three
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groups by C5, C4 and D5, respectively. The subgroup lattice of Aff (𝔽5) yields the coverings
described in the following commutative diagram (there are other intermediate coverings,
but they will not be used in the Jacobian decomposition):

(V.5)

{Id} �̂�

C4 C5 �̂�/C4 � 𝑋 �̂�/C5

D5 �̂�/D5

Aff (𝔽5) �̂�/Aff (𝔽5) � 𝑌

𝜋C4
𝜋C5

𝜋C4� 𝑓

𝜋
C5
D5

𝜋D5

Since StabAff (𝔽5) (1) = C4, Theorem I.4 implies that �̂�/C4 � 𝑋 and 𝜋C4 � 𝑓 .
According to Theorems IV.11 and IV.13, we have

(V.6) 𝑅 𝑓 =
𝑛1∑︁
𝑗=1

4𝑝 𝑗 +
𝑛2∑︁
𝑗=1

(𝑞 𝑗 + 𝑟 𝑗 ) +
𝑛3∑︁
𝑗=1

3𝑠 𝑗 ,

where 𝑛3 is even and 𝑝1, . . . , 𝑝𝑛1 , 𝑞1, . . . , 𝑞𝑛2 , 𝑟1, . . . , 𝑟𝑛2 , 𝑠1, . . . , 𝑠𝑛3 are different points in
𝑋 such that 𝑓 (𝑞 𝑗 ) = 𝑓 (𝑟 𝑗 ); also:

• if 𝑔𝑌 = 1, then 𝑛1, 𝑛2 and 𝑛3 cannot be all zero; and
• if 𝑔𝑌 = 0, then 𝑛3 ≥ 2 and if 𝑛1 = 𝑛2 = 0, then 𝑛3 ≥ 4.

Theorem I.14 and equation (V.6) imply that the signature of 𝑓 is

(𝑔𝑌 ; 2, . . . , 2︸   ︷︷   ︸
𝑛2

, 4, . . . , 4︸   ︷︷   ︸
𝑛3

, 5, . . . , 5︸   ︷︷   ︸
𝑛1

).

The genera and total ramification of the several coverings in diagram V.5 were computed
through the SageMath implementation of Theorem I.17 and Theorem I.16 (see appendix A)
and are presented in Table 13. The total ramification

(V.7) deg 𝑅
𝜋

C5
D5

= 2𝑛2 + 𝑛3

was also computed through that implementation.
There are five complex irreducible representations of Aff (𝔽5):

• Four of degree 1:
– The trivial, which we will denote by𝑈.
– The restriction of the alternating representation, which will be denoted by �̃�.
– Two more representations, which are dual to each other and will be denoted

by𝑊 and𝑊∗, respectively.
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Table 13. Total ramification of the intermediate coverings of the Galois
closure of a convering 𝑓 with Mon( 𝑓 ) � Aff (𝔽5)

𝐻 Genus of �̂�/𝐻 deg(𝑅𝜋𝐻 ) deg(𝑅𝜋𝐻 )
{Id} 20𝑔𝑌 + 8𝑛1 + 5𝑛2 + 15𝑛3/2 − 19 0 16𝑛1 + 10𝑛2 + 15𝑛3
C4 5𝑔𝑌 + 2𝑛1 + 𝑛2 + 3𝑛3/2 − 4 2𝑛2 + 3𝑛3 4𝑛1 + 2𝑛2 + 3𝑛3
C5 4𝑔𝑌 + 𝑛2 + 3𝑛3/2 − 3 16𝑛1 2𝑛2 + 3𝑛3
D5 2𝑔𝑌 + 𝑛3/2 − 1 16𝑛1 + 10𝑛2 + 5𝑛3 𝑛3
Aff (𝔽5) 𝑔𝑌 16𝑛1 + 10𝑛2 + 15𝑛3 0

Table 14. Complex character table of Aff (𝔽5)

1 4 5 5 5
Aff (𝔽5) Id (1 2 3 4 5) (2 3 5 4) (2 4 5 3) (1 4) (2 3)
𝑈 1 1 1 1 1
�̃� 1 1 −1 −1 1
𝑊 1 1 i −i −1
𝑊∗ 1 1 −i i −1
𝑉 4 −1 0 0 0

• One of degree 4, which is the restriction of the standard representation and will be
denoted by 𝑉 .

Table 14 shows the complex character table of Aff (𝔽5).
The representations𝑊 and𝑊∗ are clearly not rational, but their direct sum𝑊 ⊕𝑊∗ is.

Moreover, the rational conjugacy classes of Aff (𝔽5) are four:
(1) the class of Id;
(2) the class of (1 2 3 4 5);
(3) the class of (2 3 5 4); and
(4) the class of (2 5) (3 4).

Therefore, the four rational irreducible representations of Aff (𝔽5) are𝑈, �̃�,𝑊 ⊕𝑊∗ and 𝑉 .
Table 15 shows the rational character table of Aff (𝔽5). Rational irreducible representations
of Aff (𝔽5) satisfies the following properties:

• 𝑚𝑈 = 𝑚�̃� = 𝑚𝑊⊕𝑊∗ = 𝑚𝑉 = 1;
• 𝑈, �̃� and 𝑉 are complex irreducible representations; and
• 𝑊 ⊕𝑊∗ is Galois associated to the complex irreducible representation 𝑊 , which

is of degree 1.
Therefore, Theorem III.6 implies that the group algebra decomposition of Jac( �̂�) is of the
form

Jac( �̂�) ∼ 𝐴1 × 𝐴2 × 𝐴3 × 𝐴4
4.
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Table 15. Rational character table of Aff (𝔽5)

1 4 10 5
Aff (𝔽5) () (1 2 3 4 5) (2 3 5 4) (1 4) (2 3)
𝑈 1 1 1 1
�̃� 1 1 −1 1
𝑊 ⊕𝑊∗ 2 2 0 −2
𝑉 4 −1 0 0

Theorem V.4. Let 𝑓 : 𝑋 → 𝑌 be a degree 5 holomorphic map between compact Riemann
surfaces. If Mon( 𝑓 ) � Aff (𝔽5), then

(V.8) Jac( �̂�) ∼ Jac(𝑌 ) × Prym(𝜋D5) × Prym(𝜋C5
D5
) × Prym( 𝑓 )4

is the group algebra decomposition of Jac( �̂�), where Aff (𝔽5) acts trivially on Jac(𝑌 ) and
as multiples of �̃�, 𝑊 ⊕𝑊∗ and 𝑉 on Prym(𝜋D5), Prym(𝜋C5

D5
) and Prym( 𝑓 )4, respectively.

The dimensions of the abelian varieties involved are:
• dim Jac(𝑌 ) = 𝑔𝑌
• dim Prym(𝜋D5) = 𝑔𝑌 + 𝑛3/2 − 1
• dim Prym(𝜋C5

D5
) = 2𝑔𝑌 + 𝑛2 + 𝑛3 − 2

• dim Prym( 𝑓 ) = 4𝑔𝑦 + 2𝑛1 + 𝑛2 + 3𝑛3/2 − 4
and the types of the polarizations of the Prym varieties are:

• typeΘPrym(𝜋D5 ) =


(2, . . . , 2︸   ︷︷   ︸

𝑔𝑌−1

) if 𝑛3 = 0,

(1, . . . , 1︸   ︷︷   ︸
𝑛3/2−1

, 2, . . . , 2︸   ︷︷   ︸
𝑔𝑌

) if 𝑛3 ≥ 2;

• typeΘPrym(𝜋C5
D5

) =


(2, . . . , 2︸   ︷︷   ︸

2𝑔𝑌−2

) if 𝑛2 = 𝑛3 = 0,

(1, . . . , 1︸   ︷︷   ︸
𝑛2+𝑛3/2−1

, 2, . . . , 2︸   ︷︷   ︸
𝑔�̂�/D5

) if 𝑛2 + 𝑛3 > 0;

• typeΘPrym( 𝑓 ) = (1, . . . , 1︸   ︷︷   ︸
𝑢

, 5, . . . , 5︸   ︷︷   ︸
𝑔𝑌

), where 𝑢 = 3𝑔𝑌 + 2𝑛1 + 𝑛2 + 3𝑛3/2 − 4.

Proof. We have that:
• The subgroup D5 has four elements in the rational Aff (𝔽5)-conjugacy class of
(1 2 3 4 5), five in the Aff (𝔽5)-conjugacy class of (2 3 5 4), and the identity.
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• The subgroup C5 has four elements in the rational Aff (𝔽5)-conjugacy class of
(1 2 3 4 5), and the identity.

• The subgroup C4 has two elements in the rational Aff (𝔽5)-conjugacy class of
(2 3 5 4), one in the Aff (𝔽5)-conjugacy class of (2 5) (3 4), and the identity.

Thereby, a direct computation using Theorem II.2 and Table 15 shows that

𝜌D5 = 𝑈 ⊕ �̃�,
𝜌C5 = 𝑈 ⊕ �̃� ⊕ (𝑊 ⊕𝑊∗)

and

𝜌C4 = 𝑈 ⊕ 𝑉.
Therefore, following the notation of Theorem III.6, Theorem III.9 implies that,

𝐴1 ∼ Jac(𝑌 ),
𝐴2 ∼ Prym(𝜋D5),
𝐴3 ∼ Prym(𝜋C5

D5
)

and

𝐴4 ∼ Prym( 𝑓 ).
The dimension of the several Jacobian and Prym varieties are directly computed from the
genera of the corresponding curves in Table 13.

Now we compute the polarization type of the Prym varieties in the decomposition.
According to Table 13 and equation (V.7), we have that 𝜋D5 and 𝜋C5

D5
are étale if and only

if 𝑛3 = 0 and 𝑛2 = 𝑛3 = 0, respectively; besides, the maps 𝜋D5 and 𝜋C5
D5

are cyclic (both of
them are of degree 2) whereas 𝑓 is not even Galois (because C4 is not normal in Aff (𝔽5)).
Also, neither 𝜋D5 nor 𝜋C5

D5
factor non-trivially, because there are no proper subgroups of

Aff (𝔽5) that contains D5 or C4 but themselves, see Theorem I.15; analogously, the map 𝑓
also does not factor non-trivially. Hence, by Theorem III.1 we have that

|ker 𝜋D5∗ | =
{

2 if 𝑛3 = 0,
1 if 𝑛3 ≥ 2;

|ker 𝜋C5∗
D5

| =
{

2 if 𝑛2 = 𝑛3 = 0,
1 if 𝑛2 + 𝑛3 > 0;

|ker 𝑓 ∗ | = 1.

Using item (2) of Theorem III.2 and the computations in Table 10, we get the types of
ΘPrym(𝜋D5 ) , ΘPrym(𝜋C5

D5
) and ΘPrym( 𝑓 ) . □



4. ALTERNATING MONODROMY GROUP 57

Corollary V.5. Under the hypotheses of Theorem V.4, if 𝑌 � ℙ1 and 𝑛3 = 2, then the
induced polarization on Jac(𝑌 ) ×Prym(𝜋D5) ×Prym(𝜋C5

D5
) ×Prym( 𝑓 )4 by the isogeny (V.8)

is of type (4, . . . , 4︸   ︷︷   ︸
8𝑛1+4𝑛2−4

, 5, . . . , 5︸   ︷︷   ︸
𝑛2

).

Proof. If 𝑔𝑌 = 0, then Jac(𝑌 ) = {0}, Jac(𝑋) = Prym( 𝑓 ) and Jac( �̂�/D5) = Prym(𝜋D5);
moreover, if 𝑛3 = 2, then Jac( �̂�/D5) = {0} and Prym(𝜋C5

D5
) = Jac( �̂�/C5). By Theorem III.2,

the polarization induced on Prym( 𝑓 ) by Θ�̂� through 𝜋∗C4
is analytically equivalent to Θ⊗4

𝑋

and, analogously, the polarization induced on Prym(𝜋C5
D5
) by Θ�̂� through 𝜋∗C5

is analytically
equivalent to Θ⊗5

�̂�/C5
. According to Remark III.1, the isogeny (V.4) is given by the natural

pullbacks in each component, so, by Theorem III.3, the polarization induced on Jac(𝑌 ) ×
Prym(𝜋D5) × Prym(𝜋C5

D5
) × Prym( 𝑓 )4, which with the given restrictions is isogenous to

Prym(𝜋C5
D5
) × Prym( 𝑓 )4, by the isogeny (V.4) is of type (4, . . . , 4︸   ︷︷   ︸

8𝑛1+4𝑛2−4

, 5, . . . , 5︸   ︷︷   ︸
𝑛2

). □

4. Alternating monodromy group

In this section, we assume that Mon( 𝑓 ) is the alternating group 𝔄5. In order to archive
a cleaner (and more intuitive) notation, we set:

(1) C5 ≔ ⟨(1 2 3 4 5)⟩;
(2) D5 ≔ ⟨(1 2 3 4 5), (2 5) (3 4)⟩; and
(3) 𝔄4 ≔ ⟨(2 3 4), (3 4 5)⟩.

The subgroup lattice of 𝔄5 yields the coverings described in the following commutative
diagram (there are other intermediate coverings, but they will not be used in the Jacobian
decomposition):

(V.9)

{Id} �̂�

C5 �̂�/C5

𝔄4 D5 �̂�/𝔄4 � 𝑋 �̂�/D5

𝔄5 �̂�/𝔄5 � 𝑌

𝜋𝔄4

𝜋C5

𝜋
C5
D5

𝜋𝔄4� 𝑓
𝜋D5

Since Stab𝔄5 (1) = 𝔄4, Theorem I.4 implies that �̂�/𝔄4 � 𝑋 and 𝜋𝔄4 � 𝑓 .
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Table 16. Total ramification of the intermediate coverings of the Galois
closure of a covering 𝑓 with Mon( 𝑓 ) � 𝔄5

𝐻 Genus of �̂�/𝐻 deg(𝑅𝜋𝐻 ) deg(𝑅𝜋𝐻 )
{Id} 60𝑔𝑌 + 24𝑛1 + 15𝑛2 + 20𝑛4 − 59 0 48𝑛1 + 30𝑛2 + 40𝑛4
C5 12𝑔𝑌 + 4𝑛1 + 3𝑛2 + 4𝑛4 − 11 8𝑛1 8𝑛1 + 6𝑛2 + 8𝑛4
D5 6𝑔𝑌 + 2𝑛1 + 𝑛2 + 2𝑛4 − 5 8𝑛1 + 10𝑛2 4𝑛1 + 2𝑛2 + 4𝑛4
𝔄4 5𝑔𝑌 + 2𝑛1 + 𝑛2 + 𝑛4 − 4 6𝑛2 + 16𝑛4 4𝑛1 + 2𝑛2 + 2𝑛4
𝔄5 𝑔𝑌 48𝑛1 + 30𝑛2 + 40𝑛4 0

According to Theorems IV.11 and IV.13, we have

(V.10) 𝑅 𝑓 =
𝑛1∑︁
𝑗=1

4𝑝 𝑗 +
𝑛2∑︁
𝑗=1

(𝑞 𝑗 + 𝑟 𝑗 ) +
𝑛4∑︁
𝑗=1

2𝑡 𝑗 ,

where 𝑝1, . . . , 𝑝𝑛1 , 𝑞1, . . . , 𝑞𝑛2 , 𝑟1, . . . , 𝑟𝑛2 , 𝑡1, . . . , 𝑡𝑛3 are different points in 𝑋 such that
𝑓 (𝑞 𝑗 ) = 𝑓 (𝑟 𝑗 ); also:

• if 𝑔𝑌 = 1, then 𝑛1, 𝑛2 and 𝑛4 cannot be all zero, and if 𝑛1 = 𝑛4 = 0, then 𝑛2 ≥ 2;
and

• if 𝑔𝑌 = 0, then deg(𝑅 𝑓 ) ≥ 8 and if 𝑛4 = 0, then deg(𝑅 𝑓 ) > 8.
Theorem I.14 and equation (V.10) implies that the signature of 𝑓 is

(𝑔𝑌 ; 2, . . . , 2︸   ︷︷   ︸
𝑛2

, 3, . . . , 3︸   ︷︷   ︸
𝑛4

, 5, . . . , 5︸   ︷︷   ︸
𝑛1

).

The genera and total ramification of the several coverings in diagram V.9 were computed
through the SageMath implementation of Theorem I.17 and Theorem I.16 (see appendix A)
and are presented in Table 16.

The total ramification

(V.11) deg 𝑅
𝜋

C5
D5

= 2𝑛2

was also computed through that implementation; these ramification will be used latter.
According to [9, section 3.1], there are five complex irreducible representations of 𝔄5:
(1) The trivial, which we will denote by𝑈.
(2) One of degree 4, which is the restriction of the standard representation and which

we will denote by 𝑉 .
(3) One of degree 5, which we will denote by𝑊 .
(4) Two of degree 3, which we will denote by𝑊2 and𝑊3, that satisfy𝑊2 ⊕𝑊3 =

∧2𝑉 .
Table 17 shows the complex character table of 𝔄5.

The representations 𝑊2 and 𝑊3 are clearly not rational, but their direct sum ∧2𝑉 is.
Moreover, the rational conjugacy classes of 𝔄5 are four:
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Table 17. Complex character table of 𝔄5

1 20 15 12 12
𝔄5 Id (1 2 3) (1 2) (3 4) (1 2 3 4 5) (2 1 3 4 5)
𝑈 1 1 1 1 1
𝑉 4 1 0 −1 −1
𝑊 5 −1 1 0 0
𝑊2 3 0 −1

(
1 +

√
5
)/2

(
1 −

√
5
)/2

𝑊3 3 0 −1
(
1 −

√
5
)/2

(
1 +

√
5
)/2

Table 18. Rational character table of 𝔄5

1 20 15 24
𝔄5 Id (1 2 3) (1 2) (3 4) (1 2 3 4 5)
𝑈 1 1 1 1
𝑉 4 1 0 −1
𝑊 5 −1 1 0∧2𝑉 6 0 −2 1

(1) the class of Id;
(2) the class of (1 2 3);
(3) the class of (2 5) (3 4); and
(4) the class of (1 2 3 4 5).

Therefore, the four rational irreducible representations of 𝔄5 are𝑈,𝑉 ,𝑊 and ∧2𝑉 . Table 18
shows the rational character table of 𝔄5.

Rational irreducible representations of 𝔄5 satisfies the following properties:
• 𝑚𝑈 = 𝑚𝑉 = 𝑚𝑊 = 𝑚∧2 𝑉 = 1;
• 𝑈, 𝑉 and𝑊 are complex irreducible representations; and
• ∧2𝑉 is Galois associated to the complex irreducible representation 𝑊2, which is

of degree 3.
Therefore, Theorem III.6 implies that the group algebra decomposition of Jac( �̂�) is of the
form

Jac( �̂�) ∼ 𝐴1 × 𝐴4
2 × 𝐴5

3 × 𝐴3
4.

Theorem V.6. Let 𝑓 : 𝑋 → 𝑌 be a degree 5 holomorphic map between compact Riemann
surfaces. If Mon( 𝑓 ) � 𝔄5, then

Jac( �̂�) ∼ Jac(𝑌 ) × Prym( 𝑓 )4 × Prym(𝜋D5)5 × Prym(𝜋C5
D5
)3
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is the group algebra decomposition of Jac( �̂�), where 𝔄5 acts trivially on Jac(𝑌 ) and as
multiples of 𝑉 ,𝑊 and ∧2𝑉 on Prym( 𝑓 )4, Prym(𝜋D5)5 and Prym(𝜋C5

D5
)3, respectively. The

dimensions of the abelian varieties involved are:
• dim Jac(𝑌 ) = 𝑔𝑌
• dim Prym( 𝑓 ) = 4𝑔𝑦 + 2𝑛1 + 𝑛2 + 𝑛4 − 4
• dim Prym(𝜋D5) = 5𝑔𝑌 + 2𝑛1 + 𝑛2 + 2𝑛4 − 5
• dim Prym(𝜋C5

D5
) = 6𝑔𝑌 + 2𝑛1 + 2𝑛2 + 2𝑛4 − 6

and the types of the polarizations of the Prym varieties are:
• typeΘPrym( 𝑓 ) = (1, . . . , 1︸   ︷︷   ︸

𝑢

, 5, . . . , 5︸   ︷︷   ︸
𝑔𝑌

), where 𝑢 = 3𝑔𝑌 + 2𝑛1 + 𝑛2 + 𝑛4 − 4;

• typeΘPrym(𝜋D5 ) = (1, . . . , 1︸   ︷︷   ︸
𝑢

, 6, . . . , 6︸   ︷︷   ︸
𝑔𝑌

), where 𝑢 = 4𝑔𝑌 + 2𝑛1 + 𝑛2 + 2𝑛4 − 5;

• typeΘPrym(𝜋C5
D5

) =


(2, . . . , 2︸   ︷︷   ︸
𝑔�̂�/D5

−1

) if 𝑛2 = 𝑛3 = 0,

(1, . . . , 1︸   ︷︷   ︸
𝑛2−1

, 2, . . . , 2︸   ︷︷   ︸
𝑔�̂�/D5

) if 𝑛2 + 𝑛3 > 0.

Proof. We have that:
(1) The subgroup 𝔄4 has three elements in the rational 𝔄5-conjugacy class of

(2 5) (3 4), eight in the 𝔄5-conjugacy class of (2 3 4), and the identity.
(2) The subgroup D5 has four elements in the rational 𝔄5-conjugacy class of (1 2 3 4 5),

five in the 𝔄5-conjugacy class of (2 3 5 4), and the identity.
(3) The subgroup C5 has four elements in the rational 𝔄5-conjugacy class of (1 2 3 4 5),

and the identity.
Thereby, a direct computation using Theorem II.2 and Table 18 shows that

𝜌𝔄4 = 𝑈 ⊕ 𝑉,
𝜌D5 = 𝑈 ⊕𝑊

and

𝜌C5 = 𝑈 ⊕𝑊 ⊕ ∧2𝑉.

Therefore, following the notation of Theorem III.6, Theorem III.9 implies that,

𝐴1 ∼ Jac(𝑌 ),
𝐴2 ∼ Prym( 𝑓 ),
𝐴3 ∼ Prym(𝜋D5)
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and

𝐴4 ∼ Prym(𝜋C5
D5
).

The dimension of the several Jacobian and Prym varieties are directly computed from the
genera of the corresponding curves in Table 16.

Now we compute the polarization type of the Prym varieties in the decomposition.
According to equation (V.11), we have that 𝜋C5

D5
is étale if and only if 𝑛2 = 0; besides, the

map 𝜋C5
D5

is cyclic because it is of degree 2, whereas neither 𝑓 nor 𝜋D5 are Galois because
𝔄5 is simple; also, for the same reason, they does not factor by a Galois covering onto 𝑌 ,
see Theorem I.15. Hence, by Theorem III.1 we have that

|ker 𝑓 ∗ | = 1,
|ker 𝜋D5∗ | = 1

|ker 𝜋C5∗
D5

| =
{

2 if 𝑛2 = 0,
1 if 𝑛2 > 0;

Using item (2) of Theorem III.2 and the computations in Table 16, we get the types of
ΘPrym( 𝑓 ) , ΘPrym(𝜋D5 ) and ΘPrym(𝜋C5

D5
) . □

Corollary V.7. Under the hypotheses of Theorem V.6, if𝑌 � ℙ1 and (𝑛1, 𝑛2, 𝑛4) is (2, 1, 0),
(1, 1, 1), (1, 3, 0) or (0, 3, 1), then the induced polarization on Jac(𝑌 ) × Prym( 𝑓 )4 ×
Prym(𝜋D5)5 × Prym(𝜋C5

D5
)3 by the isogeny (V.6) is of type (5, . . . , 5︸   ︷︷   ︸

3𝑛2−3

, 12, . . . , 12︸      ︷︷      ︸
4−4𝑛4

).

Proof. If 𝑔𝑌 = 0, then Jac(𝑌 ) = {0}, Jac(𝑋) = Prym( 𝑓 ) and Jac( �̂�/D5) = Prym(𝜋D5);
moreover, if (𝑛1, 𝑛2, 𝑛4) is any of the listed possibilities, then Jac( �̂�/D5) = {0} (moreover,
those are the only combinations of positive integers that satisfies dim Jac( �̂�/D5) = 0
and the conditions imposed on 𝑅 𝑓 simultaneously) and Prym(𝜋C5

D5
) = Jac( �̂�/C5). By

Theorem III.2, the polarization induced on Prym( 𝑓 ) by Θ�̂� through 𝜋∗
𝔄4

is analytically
equivalent to Θ⊗12

𝑋 and, analogously, the polarization induced on Prym(𝜋C5
D5
) by Θ�̂� through

𝜋∗C5
is analytically equivalent toΘ⊗5

�̂�/C5
. According to Remark III.1, the isogeny (V.4) is given

by the natural pullbacks in each component, so, by Theorem III.3, the polarization induced
on Jac(𝑌 ) × Prym( 𝑓 )4 × Prym(𝜋D5)5 × Prym(𝜋C5

D5
)3, which with the given restrictions is

isogenous to Prym( 𝑓 )4×Prym(𝜋C5
D5
)3, by the isogeny (V.4), after reducing the indexes using

2𝑛1 + 𝑛2 + 2𝑛4 = 5, is of type (5, . . . , 5︸   ︷︷   ︸
3𝑛2−3

, 5, . . . , 5︸   ︷︷   ︸
4−4𝑛4

). □
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5. Symmetric monodromy group

In this section, we assume that Mon( 𝑓 ) is the whole symmetric group 𝔖5. In order to
archive a cleaner (and more intuitive) notation, we set:

(1) Aff (𝔽5) ≔ ⟨(1 2 3 4 5), (1 2 4 3)⟩
(2) 𝔄5 ≔ ⟨(1 2 3 4 5), (1 2 3)⟩
(3) 𝔖4 ≔ ⟨(2 3 4 5), (2 3)⟩
(4) D6 ≔ ⟨(1 2), (3 4), (3 4 5)⟩

(5) D5 ≔ ⟨(1 2 3 4 5), (2 5) (3 4)⟩
(6) 𝔄4 ≔ ⟨(2 3 4), (3 4 5)⟩
(7) 𝔖3 ≔ ⟨(3 4 5), (3 4)⟩

The lattice of subgroups of 𝔖5 yields the coverings described in the following commu-
tative diagram:

(V.12)

{Id}

𝔖3 𝔄4 D5

D6 𝔖4 𝔄5 Aff (𝔽5)

𝔖5

�̂�

�̂�/𝔖3 �̂�/𝔄4 �̂�/D5

�̂�/D6 �̂�/𝔖4 � 𝑋 �̂�/𝔄5 �̂�/Aff (𝔽5)

�̂�/𝔖5 � 𝑌

𝜋𝔖3 𝜋𝔄4

𝜋D5

𝜋
𝔖3
D6

𝜋
𝔖3
𝔖4

𝜋
𝔄4
𝔖4

𝜋
𝔄4
𝔄5

𝜋
D5
𝔄5

𝜋
D5
Aff (𝔽5 )

𝜋D6

𝜋𝔖4� 𝑓

𝜋𝔄5 𝜋Aff (𝔽5 )

Since Stab𝔖5 (1) = 𝔖4, Theorem I.4 implies that �̂�/𝔖4 � 𝑋 and 𝜋𝔖4 � 𝑓 .
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According to Theorems IV.11 and IV.13, we have

(V.13) 𝑅 𝑓 =
𝑛1∑︁
𝑗=1

4𝑝 𝑗 +
𝑛2∑︁
𝑗=1

(𝑞 𝑗 + 𝑟 𝑗 ) +
𝑛3∑︁
𝑗=1

3𝑠 𝑗 +
𝑛4∑︁
𝑗=1

2𝑡 𝑗 +
𝑛5∑︁
𝑗=1

(2𝑢 𝑗 + 𝑣 𝑗 ) +
𝑛6∑︁
𝑗=1
𝑤 𝑗 ,

where 𝑛3, 𝑛5 and 𝑛6 are even and 𝑝1, . . . , 𝑝𝑛1 , 𝑞1, . . . , 𝑞𝑛2 , 𝑟1, . . . , 𝑟𝑛2 , 𝑠1, . . . , 𝑠𝑛3 , 𝑡1, . . . , 𝑡𝑛4 ,
𝑢1, . . . , 𝑢𝑛5 , 𝑣1, . . . , 𝑣𝑛5 , 𝑤1, . . . , 𝑤𝑛6 are different points in 𝑋 such that 𝑓 (𝑞 𝑗 ) = 𝑓 (𝑟 𝑗 ) for
each 𝑗 ∈ {1, . . . , 𝑛2}, 𝑓 (𝑢 𝑗 ) = 𝑓 (𝑣 𝑗 ) for each 𝑗 ∈ {1, . . . , 𝑛5}, 𝑓 (𝑡 𝑗 ) ≠ 𝑓 (𝑤𝑘 ) for each pair
( 𝑗 , 𝑘), and 𝑓 (𝑤 𝑗 ) ≠ 𝑓 (𝑤𝑘 ) for 𝑗 ≠ 𝑘; also:

• if 𝑔𝑌 = 1, then 𝑛𝑖 cannot be zero for all 𝑖 ∈ {1, . . . , 6}; and
• if 𝑔𝑌 = 0, then deg(𝑅 𝑓 ) ≥ 8 and if 𝑛4 = 𝑛5 = 𝑛6 = 0, then deg(𝑅 𝑓 ) > 8.

Theorem I.14 and equation (V.13) implies that the signature of 𝑓 is
(𝑔𝑌 ; 2, . . . , 2︸   ︷︷   ︸

𝑛2+𝑛6

, 3, . . . , 3︸   ︷︷   ︸
𝑛4

, 4, . . . , 4︸   ︷︷   ︸
𝑛3

, 5, . . . , 5︸   ︷︷   ︸
𝑛1

, 6, . . . , 6︸   ︷︷   ︸
𝑛5

).

The genera and total ramification of the several coverings in diagram V.12 were computed
through the SageMath implementation of Theorem I.17 and Theorem I.16 (see appendix A)
and are presented in Table 19.

The following total ramifications where also computed through that implementation:
deg 𝑅

𝜋
𝔖3
D6

= 2𝑛2 + 𝑛3 + 𝑛5 + 𝑛6,

deg 𝑅
𝜋
𝔄4
𝔖4

= 𝑛3 + 𝑛5 + 3𝑛6

and
deg 𝑅

𝜋
D5
𝔄5

= 8𝑛1 + 4𝑛2 + 2𝑛3 + 8𝑛4 + 4𝑛5.

According to [9, section 3.1], there are seven complex irreducible representations of the
symmetric group 𝔖5:

(1) Two of order 1:
(a) The trivial, which we will denote by𝑈.
(b) The alternating one, which we will denote by �̃�

(2) Two of degree 4:
(a) The standard representation, which we will denote by 𝑉 .
(b) The product �̃� ⊗ 𝑉 , which we denote by �̃� .

(3) Two of degree 5:
(a) One that will be denoted by𝑊 .
(b) Another one that corresponds to �̃� ⊗𝑊 , which we will denote by �̃�

(4) One of degree 6, namely ∧2𝑉 .
Table 20 shows the complex character table of 𝔖5.

The rational conjugacy classes of 𝔖5 are also seven:
(1) the class of Id;
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Table
19.

Totalram
ification

of
the

interm
ediate

coverings
of

the
G

alois
closure

of
a

covering
𝑓

w
ith

M
on(

𝑓)
�
𝔖

5

𝐻
G

enusof
𝑋/𝐻

deg(𝑅
𝜋
𝐻 )

deg(𝑅
𝜋
𝐻 )

{Id}
120

𝑔
𝑌 +

48
𝑛

1 +
30
𝑛

2 +
45
𝑛

3 +
40
𝑛

4
+
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Table 20. Complex and rational character table of 𝔖5

1 10 20 30 24 15 20
𝔄5 Id (1 2) (1 2 3) (1 2 3 4) (1 2 3 4 5) (1 2) (3 4) (1 2) (3 4 5)
𝑈 1 1 1 1 1 1 1
�̃� 1 −1 1 −1 1 1 −1
𝑉 4 2 1 0 −1 0 −1
�̃� 4 −2 1 0 −1 0 1∧2𝑉 6 0 0 0 1 −2 0
𝑊 5 1 −1 −1 0 1 1
�̃� 5 −1 −1 1 0 1 −1

(2) the class of (1 2);
(3) the class of (1 2 3);
(4) the class of (1 2 3 4);
(5) the class of (1 2 3 4 5);
(6) the class of (1 2) (3 4); and
(7) the class of (1 2) (3 4 5).

Therefore, the seven complex irreducible representations of 𝔖5 are also rational, hence
Table 20 is also the rational character table of 𝔖5. Rational irreducible representations of
𝔖5 satisfies the following properties:

• all of them have Schur index 1; and
• all of them are complex irreducible representations.

Therefore, Theorem III.6 implies that the group algebra decomposition of Jac( �̂�) is of the
form

Jac( �̂�) ∼ 𝐴1 × 𝐴2 × 𝐴4
3 × 𝐴4

4 × 𝐴6
5 × 𝐴5

6 × 𝐴5
7.

Theorem V.8. Let 𝑓 : 𝑋 → 𝑌 be a degree 5 holomorphic map between compact Riemann
surfaces. If Mon( 𝑓 ) � 𝔖5, then

Jac( �̂�) ∼ Jac(𝑌 ) × Prym(𝜋𝔄5) × Prym( 𝑓 )4 × Prym(𝜋𝔄4
𝔖4
, 𝜋𝔄4

𝔄5
)4 × Prym(𝜋𝔖3

D6
, 𝜋𝔖3

𝔖4
)6

× Prym(𝜋D5
𝔄5
, 𝜋D5

Aff (𝔽5))
5 × Prym(𝜋Aff (𝔽5))5

is the group algebra decomposition of Jac( �̂�), where 𝔖5 acts trivially on Jac(𝑌 ) and as
multiples of �̃�, 𝑉 and �̃� , ∧2𝑉 , 𝑊 and �̃� on Prym(𝜋𝔄5), Prym( 𝑓 )4, Prym(𝜋𝔄4

𝔖4
, 𝜋𝔄4

𝔄5
)4,

Prym(𝜋𝔖3
D6
, 𝜋𝔖3

𝔖4
)6, Prym(𝜋D5

𝔄5
, 𝜋D5

Aff (𝔽5))
5 and Prym(𝜋Aff (𝔽5))5, respectively. The dimensions

of the abelian varieties involved are:
• dim Jac(𝑌 ) = 𝑔𝑌
• dim Prym(𝜋𝔄5) = 𝑔𝑌 + 𝑛3/2 + 𝑛5/2 + 𝑛6/2 − 1
• dim Prym( 𝑓 ) = 4𝑔𝑌 + 2𝑛1 + 𝑛2 + 3𝑛3/2 + 𝑛4 + 3𝑛5/2 + 𝑛6/2 − 4
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• dim Prym(𝜋𝔄4
𝔖4
, 𝜋𝔄4

𝔄5
) = 4𝑔𝑌 + 2𝑛1 + 𝑛2 + 3𝑛3/2 + 𝑛4 + 3𝑛5/2 + 3𝑛6/2 − 4

• dim Prym(𝜋𝔖3
D6
, 𝜋𝔖3

𝔖4
) = 6𝑔𝑌 + 2𝑛1 + 2𝑛2 + 5𝑛3/2 + 2𝑛4/2 + 5𝑛5/2 + 3𝑛6/2 − 6

• dim Prym(𝜋D5
𝔄5
, 𝜋D5

Aff (𝔽5)) = 5𝑔𝑌 + 2𝑛1 + 𝑛2 + 2𝑛3 + 2𝑛4 + 2𝑛5 + 𝑛6 − 5
• dim Prym(𝜋Aff (𝔽5)) = 5𝑔𝑌 + 2𝑛1 + 𝑛2 + 3𝑛3/2 + 2𝑛4 + 5𝑛5/2 + 3𝑛6/2 − 5

and the types of the polarizations of the Prym varieties are:
• typeΘPrym( 𝑓 ) = (1, . . . , 1︸   ︷︷   ︸

𝑢

, 5, . . . , 5︸   ︷︷   ︸
𝑔𝑌

), where 𝑢 = 3𝑔𝑌 +2𝑛1 + 𝑛2 +3𝑛3/2𝑛4 +3𝑛5/2+

𝑛6/2 − 4;

• typeΘPrym(𝜋Aff (𝔽5 ) ) = (1, . . . , 1︸   ︷︷   ︸
𝑣

, 6, . . . , 6︸   ︷︷   ︸
𝑔𝑌

), where 𝑣 = 4𝑔𝑌 + 2𝑛1 + 𝑛2 + 3𝑛3/2+ 2𝑛4 +

5𝑛2/2 + 3𝑛6/2 − 5;

• typeΘPrym(𝜋𝔄5 ) =


(2, . . . , 2︸   ︷︷   ︸

𝑔𝑌−1

) if 𝑛3 = 𝑛5 = 𝑛6 = 0,

(1, . . . , 1︸   ︷︷   ︸
(𝑛3+𝑛5+𝑛6)/2−1

, 2, . . . , 2︸   ︷︷   ︸
𝑔𝑌

) if 𝑛3 + 𝑛5 + 𝑛6 > 0.

Proof. We have that:
(1) The subgroup Aff (𝔽5) has five in the rational 𝔖5-conjugacy class of (1 2) (3 4),

ten in the rational 𝔖5-conjugacy class of (1 2 3 4), four elements in the rational
𝔖5-conjugacy class of (1 2 3 4 5), and the identity.

(2) The subgroup 𝔄5 has twenty elements in the rational 𝔄5-conjugacy class of (1 2 3),
fifteen in the rational 𝔖5-conjugacy class of (1 2) (3 4), twenty-four in the rational
𝔖5-conjugacy class of (1 2 3 4 5), and the identity.

(3) The subgroup𝔖4 has six elements in the rational𝔖5-conjugacy class of (1 2), eight
elements in the rational𝔖5-conjugacy class of (1 2 3), three elements in the rational
𝔖5-conjugacy class of (1 2) (3 4), six elements in the rational 𝔖5-conjugacy class
of (1 2 3 4), and the identity.

(4) The subgroup D6 has four elements in the rational𝔖5-conjugacy class of (1 2), two
elements in the rational𝔖5-conjugacy class of (1 2 3), three elements in the rational
𝔖5-conjugacy class of (1 2) (3 4), two elements in the rational 𝔖5-conjugacy class
of (1 2) (3 4 5), and the identity.

(5) The subgroup D5 has five elements in the rational𝔖5-conjugacy class of (1 2) (3 4),
four elements in the rational 𝔖5-conjugacy class of (1 2 3 4 5), and the identity.

(6) The subgroup 𝔄4 has eight elements in the rational 𝔖5-conjugacy class of (1 2 3),
three elements in the rational 𝔖5-conjugacy class of (1 2) (3 4), and the identity.

(7) The subgroup 𝔖3 has three elements in the rational 𝔖5-conjugacy class of (1 2),
two elements in the rational 𝔖5-conjugacy class of (1 2 3), and the identity.
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Thereby, a direct computation using Theorem II.2 and Table 20 shows that

𝜌Aff (𝔽5) = 𝑈 ⊕ �̃�,
𝜌𝔄5 = 𝑈 ⊕ �̃�,
𝜌𝔖4 = 𝑈 ⊕ 𝑉,
𝜌D6 = 𝑈 ⊕ 𝑉 ⊕𝑊,
𝜌D5 = 𝑈 ⊕ �̃� ⊕𝑊 ⊕ �̃�,
𝜌𝔄4 = 𝑈 ⊕ �̃� ⊕ 𝑉 ⊕ �̃�

and

𝜌𝔖3 = 𝑈 ⊕ 2𝑉 ⊕ ∧2𝑉 ⊕𝑊.
Therefore, following the notation of Theorem III.6, Theorem III.9 implies that

𝐴1 ∼ Jac(𝑌 ),
𝐴2 ∼ Prym(𝜋𝔄5),
𝐴3 ∼ Prym( 𝑓 )

and

𝐴7 ∼ Prym(𝜋Aff (𝔽5)).
Also, using Theorems II.3 and III.11, we get

𝐴4 ∼ Prym(𝜋𝔄4
𝔖4
, 𝜋𝔄4

𝔄5
),

𝐴5 ∼ Prym(𝜋𝔖3
D6
, 𝜋𝔖3

𝔖4
)

and

𝐴6 ∼ Prym(𝜋D5
𝔄5
, 𝜋D5

Aff (𝔽5)).
The dimension of the several Jacobian and Prym varieties are directly computed from the
genera of the corresponding curves in Table 19 and, for Prym of pairs of coverings, through
Theorem III.10.

Now we compute the polarization type of the Prym varieties in the decomposition.
According to Table 19, we have that 𝜋𝔄5 is étale if and only if 𝑛3 = 𝑛5 = 𝑛6 = 0; besides,
the map 𝜋𝔄5 is cyclic (because it is of degree 2) whereas 𝑓 and 𝜋Aff (𝔽5) are not (because
neither 𝔖4 nor Aff (𝔽5) are normal in 𝔖5); also, since neither 𝔖4 nor Aff (𝔽5) are subgroups
of 𝔄5, which is the only normal subgroup of 𝔖5, the maps 𝑓 and 𝜋Aff (𝔽5) do not factor by a
Galois covering onto 𝑌 , see Theorem I.15. Hence, by Theorem III.1 we have that

|ker 𝑓 ∗ | = 1,

|ker 𝜋Aff (𝔽5)∗ | = 6
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and

|ker 𝜋𝔄5∗ | =
{

2 if 𝑛3 = 𝑛5 = 𝑛6 = 0,
1 if 𝑛3 + 𝑛5 + 𝑛6 > 0;

Using item (2) of Theorem III.2 and the computations in Table 19, we get the types of
ΘPrym( 𝑓 ) , ΘPrym(𝜋Aff (𝔽5 ) ) and ΘPrym(𝜋𝔄5 ) . □



APPENDIX A

SageMath Implementation

1 def RamificationTypes(Group, IncludeTrivial = False):
2 if isinstance(Group, sage.libs.gap.element.GapElement):
3 G = Group
4 else:
5 G = Group.gap()
6 if IncludeTrivial:
7 return [G.ConjugacyClassSubgroups(G.Subgroup(
8 [H.Representative()]))
9 for H in list(G.RationalClasses())]

10 else:
11 return [G.ConjugacyClassSubgroups(G.Subgroup(
12 [H.Representative()]))
13 for H in list(G.RationalClasses())[1:]]
14
15 class GaloisCovering:
16 def __init__(
17 self, Group, QuotientGenus = None,
18 GeometricSignature = None):
19 if isinstance(Group, sage.libs.gap.element.GapElement):
20 self.__Group = Group
21 else:
22 self.__Group = Group.gap()
23 self.__QuotientDegree = self.__Group.Order().sage()
24 if self._Group().Order().sage() != 1:
25 self._IntermediateCoverings = {K : None for K in list(
26 self.__Group.ConjugacyClassesSubgroups())}
27 else:
28 self._IntermediateCoverings = {self._Group(
29 ).ConjugacyClassSubgroups(self._Group()) : self}
30 if QuotientGenus is None:
31 self.__QuotientGenus = var( ' g ' )
32 else:
33 self.__QuotientGenus = QuotientGenus
34 if GeometricSignature is None:
35 if GeometricSignature is None:
36 if self.__Group.Order().sage() != 1:
37 GeometricSignature = list(var(
38 [ ' n ' + str(j + 1) for j

69



70 CHAPTER A. SAGEMATH IMPLEMENTATION

39 in range(len(RamificationTypes(self.__Group)))]))
40 else:
41 GeometricSignature = []
42 self.__GeometricSignature = dict(zip(RamificationTypes(
43 self.__Group), GeometricSignature))
44 self.__Signature = {StabClass.Representative().Order().sage()
45 : sum([Num for S, Num
46 in self.__GeometricSignature.items()
47 if (StabClass
48 .Representative()
49 .Order()
50 .sage()) == (S.Representative()
51 .Order()
52 .sage())])
53 for StabClass in self.__GeometricSignature}
54 self.__QuotientRamification = {
55 Mult : Num * self.__QuotientDegree/Mult
56 for Mult, Num in self.__Signature.items()}
57 self.__QuotientTotalRamification = sum(
58 [(Mult- 1) * Num for Mult, Num
59 in self.__QuotientRamification.items()])
60 self._InducedDegree = 1
61 self._InducedRamification = {}
62 self._InducedRamificationData = {}
63 self._InducedTotalRamification = 0
64 self.__TableOfCoverings = [
65 [
66 i,
67 PermutationGroup(list(
68 Class.Representative().GeneratorsOfGroup())),
69 PermutationGroup(list(
70 Class.Representative().GeneratorsOfGroup()))
71 .structure_description(),
72 Class.Size(),
73 Class.Representative().Order().sage(),
74 self._Group().Index(Class.Representative()).sage(),
75 ' * ' ,
76 ' * ' ,
77 ' * ' ]
78 for i, Class in enumerate(self._IntermediateCoverings)]
79
80 def IntermediateCovering(self, K = None):
81 if K is None:
82 K = self._Group()
83 Class = self._DetermineClass(K)
84 if self._IntermediateCoverings[Class] == None:
85 self._IntermediateCoverings[Class] = self if Class == list(
86 self._IntermediateCoverings)[-1] else (
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87 IntermediateCovering(Class, ParentCovering = self))
88 self.__TableOfCoverings[
89 list(self._IntermediateCoverings).index(Class)][6:9] = (
90 [self.Genus(Class)]
91 + list(self.TotalRamifications(Class)))
92 return self._IntermediateCoverings[Class]
93
94 def Genus(self, K = None):
95 return self.IntermediateCovering(K).__QuotientGenus
96
97 def GeometricSignature(self, K = None):
98 return self.IntermediateCovering(K).__GeometricSignature
99

100 def Signature(self, K = None):
101 return self.IntermediateCovering(K).__Signature
102
103 def QuotientRamification(self, K = None):
104 return self.IntermediateCovering(K).__QuotientRamification
105
106 def InducedRamification(self, K = None, H = None):
107 if H is None:
108 return self.IntermediateCovering(K)._InducedRamification
109 else:
110 return self.IntermediateCovering(H).IntermediateCovering(
111 self._DetermineClassOfClass(K, H))._InducedRamification
112
113 def InducedRamificationData(self, K = None, H = None):
114 if H is None:
115 return self.IntermediateCovering(K)._InducedRamificationData
116 else:
117 return (self.IntermediateCovering(H).IntermediateCovering(
118 self._DetermineClassOfClass(K, H))
119 ._InducedRamificationData)
120
121 def Ramifications(self, K = None, H = None):
122 if H is None:
123 return (self.QuotientRamification(K),
124 self.InducedRamification(K))
125 else:
126 return (self.QuotientRamification(K),
127 self.InducedRamification(K,H),
128 self.InducedRamification(H))
129
130 def QuotientTotalRamification(self, K = None):
131 return self.IntermediateCovering(K).__QuotientTotalRamification
132
133 def InducedTotalRamification(self, K = None, H = None):
134 if H is None:
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135 return (self.IntermediateCovering(K)
136 ._InducedTotalRamification)
137 else:
138 return (self.IntermediateCovering(H)
139 .IntermediateCovering(
140 self._DetermineClassOfClass(K, H))
141 ._InducedTotalRamification)
142
143 def TotalRamifications(self, K = None, H = None):
144 if H is None:
145 return (self.QuotientTotalRamification(K),
146 self.InducedTotalRamification(K))
147 else:
148 return (self.QuotientTotalRamification(K),
149 self.InducedTotalRamification(K, H),
150 self.InducedTotalRamification(H))
151
152 def IntermediateCoverings(self, *Show, ComputeAll = False):
153 Header = [ ' # ' , ' $H$ ' , ' Structure ' ,
154 ' $\\left|\\operatorname{Class}(H)\\right|$ ' ,
155 ' $\\deg \\pi_H $ ' , ' $\\deg \\pi^H $ ' , ' $g_{X_H}$ ' ,
156 ' $\\left|R_{\\pi_H}\\right|$ ' ,
157 ' $\\left|R_{\\pi^H}\\right|$ ' ]
158 if Show is not ():
159 for Code in Show:
160 self.IntermediateCovering(Code)
161 return table(
162 rows = [
163 row for i, row
164 in enumerate(self.__TableOfCoverings)
165 if i in [list(self._IntermediateCoverings)
166 .index(self._DetermineClass(Code))
167 for Code in Show]],
168 header_row = Header,
169 frame = True)
170 if ComputeAll is True:
171 for Code in range(len(self._IntermediateCoverings)):
172 self.IntermediateCovering(Code)
173 return table(rows = self.__TableOfCoverings ,
174 header_row = Header,
175 frame = True)
176
177 def InducedIsGalois(self, K, H = None):
178 if H is None:
179 return self._DetermineClass(K).Size().sage() == 1
180 else:
181 return self._DetermineClassOfClass(K,H).Size().sage() == 1
182
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183 def InducedIsCyclic(self, K, H = None):
184 if H is None:
185 if self.InducedIsGalois(K):
186 return (self._Group().FactorGroup(
187 self._DetermineClass(K).Representative())
188 .IsCyclic().sage())
189 else:
190 return False
191 else:
192 if self.InducedIsGalois(K,H):
193 return (self.IntermediateCovering(H)._Group()
194 .FactorGroup(self._DetermineClassOfClass(K, H)
195 .Representative())
196 .IsCyclic().sage())
197 else:
198 return False
199
200 def InducedAutomorphisms(self, K, H = None):
201 if H is None:
202 Subgroup = self._DetermineClass(K).Representative()
203 return (self._Group().Normalizer(Subgroup)
204 .FactorGroup(Subgroup))
205 else:
206 Subgroup = (self._DetermineClassOfClass(K, H)
207 .Representative())
208 return (self.IntermediateCovering(K)._Group()
209 .Normalizer(Subgroup).FactorGroup(Subgroup))
210
211 def _Group(self):
212 return self.__Group
213
214 def _DetermineClass(self, K):
215 if K in self._IntermediateCoverings:
216 return K
217 elif isinstance(K, sage.rings.integer.Integer):
218 return list(self._IntermediateCoverings.keys())[K]
219 elif isinstance(K, int):
220 return list(self._IntermediateCoverings.keys())[K]
221 else:
222 try:
223 ClassK = (
224 self.__Group.ConjugacyClassSubgroups(
225 self.__Group.AsSubgroup(K))
226 if isinstance(K, sage.libs.gap.element.GapElement)
227 else self.__Group.ConjugacyClassSubgroups(
228 self.__Group.AsSubgroup(K.gap())))
229 except:
230 raise Exception(
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231 ' The argument is not a subgroup of self.__Group ' )
232 for ClassH in self._IntermediateCoverings:
233 if ClassK == ClassH:
234 return ClassH
235
236 def _DetermineClassOfClass(self, K, H):
237 GroupH = self.IntermediateCovering(H)._Group()
238 for g in self._DetermineClass(K).AsList():
239 if GroupH.IsSubgroup(g):
240 return self.IntermediateCovering(H)._DetermineClass(g)
241 raise Exception( ' There are no subgroup in the first class '
242 ' into a group of the second class ' )
243
244 class IntermediateCovering(GaloisCovering):
245 def __init__(self, K, ParentCovering):
246 if not isinstance(ParentCovering , GaloisCovering):
247 raise Exception(
248 ' SuperCovering is not a GaloisCovering instance ' )
249 self.__ParentCovering = ParentCovering
250 ParentClass = self.__ParentCovering._DetermineClass(K)
251 Subgroup = ParentClass.Representative()
252 GeometricSignature = dict(zip(
253 RamificationTypes(Subgroup),
254 [0]*len(RamificationTypes(Subgroup))))
255 InducedRamification = {}
256 InducedRamificationData = {}
257 for StabClass in self.__ParentCovering.GeometricSignature():
258 L = [Subgroup.Intersection(Stab)
259 for Stab in StabClass.AsList()]
260 RT = []
261 for StabClassSub in RamificationTypes(
262 Subgroup , IncludeTrivial = True):
263 Num = L.count(StabClassSub.Representative())
264 if Num != 0:
265 Images = (
266 Num * (self.__ParentCovering
267 .GeometricSignature()[StabClass])
268 * (self.__ParentCovering._Group()
269 .Normalizer(StabClass.Representative())
270 .Index(StabClass.Representative()).sage())
271 / (Subgroup.Normalizer(StabClassSub
272 .Representative())
273 .Index(StabClassSub.Representative())
274 .sage()))
275 if StabClassSub in GeometricSignature:
276 GeometricSignature[StabClassSub] += Images
277 InducedMult = (
278 StabClass.Representative()
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279 .IndexNC(StabClassSub.Representative())
280 .sage())
281 RT.append(InducedMult)
282 if InducedMult != 1:
283 if InducedMult in InducedRamification:
284 InducedRamification[InducedMult] += Images
285 else:
286 InducedRamification[InducedMult] = Images
287 if RT and not all(R == 1 for R in RT):
288 RT.sort(reverse = True)
289 RamType = tuple(RT)
290 if RamType in InducedRamificationData:
291 InducedRamificationData[RamType] += (
292 self.__ParentCovering
293 .GeometricSignature()[StabClass])
294 else:
295 InducedRamificationData[RamType] = (
296 self.__ParentCovering
297 .GeometricSignature()[StabClass])
298 InducedDegree = (self.__ParentCovering._Group()
299 .Index(Subgroup).sage())
300 InducedTotalRamification = sum(
301 [(Mult - 1) * Num for Mult, Num
302 in InducedRamification.items()])
303 Genus = (
304 InducedDegree * (self.__ParentCovering.Genus() - 1) + 1
305 + InducedTotalRamification / 2)
306 super().__init__(
307 Subgroup ,
308 Genus,
309 list(GeometricSignature.values()))
310 self._InducedDegree = InducedDegree
311 self._InducedRamification = InducedRamification
312 self._InducedTotalRamification = InducedTotalRamification
313 self._InducedRamificationData = InducedRamificationData





Glossary of Symbols

Notation Description
π1(𝑋, 𝑥) Fundamental group of a pointed surface (𝑋, 𝑥)
𝜋𝐺 Quotient map associated to a group 𝐺 acting on a surface
𝜋𝐻 Map induced by the subgroup 𝐻 of a group 𝐺 acting on a surface
𝜋𝐻𝑁 Map induced by a pair of subgroups 𝐻 and 𝑁 , with 𝐻 ⊂ 𝑁 , of a group

𝐺 that acts on a surface
𝑓∗ Push-forward induced by a map 𝑓
𝑓 ∗ Pull-back induced by a map 𝑓
N𝐺 (𝐻) Normalizer in a group 𝐺 of a subgroup 𝐻 of 𝐺
Aut(𝐹) Group of automorphisms of a covering map 𝐹
𝔖𝑛 Symmetric group of degree 𝑛
𝔄𝑛 Alternating group of degree 𝑛
C𝑛 Cyclic group of order 𝑛
D𝑛 Dihedral group of order 2𝑛
Aff (𝔽5) General affine group of a 1-dimensional affine space over 𝔽5
Mon(𝐹) Monodromy group of a covering map 𝐹
Stab𝐺 (1) Stabilizer of 1 in a permutation group 𝐺
�̂� : �̂� → 𝑌 Galois closure of a covering map 𝐹 : 𝑋 → 𝑌
Core𝐺 (𝐻) Core in 𝐺 of a subgroup 𝐻 of 𝐺
|𝐺 | Order of a group 𝐺
[𝐺 : 𝐻] Index of a subgroup 𝐻 of 𝐺
deg 𝐹 Degree of a covering map 𝐹
mult𝑥 (𝐹) Multiplicity of a map 𝐹 at a point 𝑥
𝑔𝑋 Genus of a compact Riemann surface 𝑋
𝑅𝐹 Ramification divisor of a covering 𝐹
deg(𝑅𝐹) Total ramification of a covering 𝐹
Stab𝐺 (𝑝) Stabilizer of a point 𝑝 ∈ 𝑋 under the action of a group 𝐺 on 𝑋
𝐺 · 𝑝 Orbit of a point 𝑝 ∈ 𝑋 by the action of a group 𝐺 on 𝑋
⟨𝑔1, . . . , 𝑔𝑛⟩ Subgroup generated by elements 𝑔1, . . . , 𝑔𝑛 of a group 𝐺
𝑔ℎ Conjugate 𝑔ℎ𝑔−1 of 𝑔 by ℎ
Class𝐺 (𝐻) Conjugacy class of a subgroup 𝐻 of a group 𝐺
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Notation Description
𝐻𝑔 Conjugate subgroup 𝑔𝐻𝑔−1 of a subgroup 𝐻 by an element 𝑔
|𝑔 | Order of an element 𝑔 of some group
[𝑔, ℎ] Commutator 𝑔−1ℎ−1𝑔ℎ of two elements 𝑔 and ℎ of some group
lcm 𝑆 Least common multiple of finite set of integers 𝑆
e Euler’s number
i Imaginary unit
Irr𝑘 (𝐺) Irreducible representations of a group 𝐺 over a field 𝑘
GL(𝑉) General linear group of a vector space 𝑉
𝜒𝑉 Character of a complex representation 𝜌 : 𝐺 → GL(𝑉)
𝑚𝑉 Schur index of a representation 𝜌 : 𝐺 → GL(𝑉)
ℂclass(𝐺) Space of class functions on 𝐺
⟨𝜒, 𝜉⟩𝐺 Inner product between two class functions 𝜒, 𝜉 ∈ ℂclass(𝐺)
𝑧 Conjugate of a complex number 𝑧
ℚ[𝑉] Definition field of a representation 𝑉
ℚ[𝜒𝑉 ] Field of characters of a representation 𝑉
Gal(𝑘′/𝑘) Galois group of a field extension 𝑘′/𝑘
𝑉𝜎 Conjugate representation of 𝑉 by 𝜎 ∈ Gal(ℚ[𝑉]/ℚ)
𝜒𝜎𝑉 Character of th conjugate representation 𝑉𝜎
Id𝐺 Identity element of a group 𝐺
ℚ[𝐺] Rational group algebra of the group 𝐺
tr(𝜎) Trace of 𝜎
dim𝑘 (𝑉) Dimension of a vector space 𝑉 over a field 𝑘
Ind𝐺𝐻 Class function induced on 𝐺 by a class function of a subgroup 𝐻 of 𝐺
Res𝐺𝐻 Restriction to a subgroup 𝐻 of a 𝐺-representation or class function
𝜌𝐻 Representation induced by the trivial 𝐻-representation
𝜒𝐻 Character of the induced representation 𝜌𝐻
ℂclass(𝐺) Space of class functions of a group 𝐺 over ℂ
⟨𝜒, 𝜓⟩𝐺 Natural inner product between class functions 𝜒, 𝜓 ∈ ℂclass(𝐺)
Fix𝐻 Set of fixed points by the action of a group 𝐻
(Jac(𝑍),Θ𝑍 ) Jacobian variety of a compact Riemann surface 𝑍
𝜙Θ Homomorphism associated to the polarization Θ of an abelian variety
K(Θ) Kernel of the homomorphism 𝜙Θ
type(Θ) Type of the polarization Θ

Endℚ(𝐽) Rational endomorphisms of a Jacobian variety 𝐽
Prym( 𝑓 ) Prym variety of a covering map 𝑓
𝐴[𝑑] Set of 𝑑-division points of an abelian variety 𝐴
Θ𝐴 Polarization induced on an abelian subvariety 𝐴
Prym( 𝑓1, 𝑓2) Prym variety of a pair of coverings ( 𝑓1, 𝑓2)
𝐺′ Derivated subgroup of a group 𝐺
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Notation Description
ℙ1 Riemann sphere
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Abelian variety, 23
subvariety, 23

complementary subvariety, 23
exponent, 23
norm, 23

symmetric idempotents, 23
Affine group, 37, 52

character table, 54
rational character table, 55

Alternating group, 37
character table, 59
rational character table, 59

Automorphism group, 4, 14

Branch value, 7
even, 9
odd, 9
type, 9

Character, 17
Character table, 17

affine group, 54
alternating group, 59
dihedral group, 50
symmetric group, 65

Conjugacy class, 17
rational, see Rational conjugacy class

Covering, 3
cyclic, 23
étale, 23
Galois, 4, 5, 15, 25

minimal, 28
intermediate, 5, 14, 15

ramification data, 15
isomorphic, 3
minimal, 27
ramification data, see Ramification data

ramified, 7
total ramification, 9, 11
universal, 3

Cycle structure, 8, 38
Cyclic group, 36, 47

group algebra decomposition, 48
rational character table, 47

Dihedral group, 37, 49
character table, 50
rational character table, 50

Frobenius reciprocity, 20
Fundamental group, 3

Galois closure, 7, 10, 13
Galois group, 17
GAP, 16, 37
Generating vector, 12, 13
Group action, 10

geometric signature, 12, 14, 15
on Jacobian, 24
signature, 11

Group algebra decomposition, 19
Jacobian variety, 26
of a fivefold covering

affine, 55
alternating, 59
cyclic, 48
dihedral, 51
symmetric, 65

Group representation
complex, 17
conjugate, 17
Galois associated, 18
induced, 20
irreducible, 17
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rational, 18, 20
restriction, 20
trivial, 17

Induced map, 3
Inner product, 17
Isogeny, 23
Isotypical decomposition, 19

Jacobian variety, 25

Jacobian variety, 23
group algebra decomposition, 26
isotypical decomposition, 25

Monodromy group, 6, 7
of a fivefold covering, 36

Monodromy representation, 5, 7, 8, 14

Normalizer, 4

Orbit, 10

Prym variety, 23
dimension, 27
pair of coverings, 27
polarization, 24

Quotient map, 3
Quotient space, 3

R–H condition, 33
Ramification data, 9

even, 33
intermediate covering, 15
of a fivefold covering, 38, 42
realizable, 31

Ramification divisor
of a fivefold covering, 41, 45

with affine monodromy, 53
with alternating monodromy, 58
with cyclic monodromy, 48
with dihedral monodromy, 49
with symmetric monodromy, 63

Rational character table, 18
affine group, 55
alternating group, 59
cyclic group, 47
dihedral group, 50
symmetric group, 65

Rational conjugacy class, 18

Riemann’s existence theorem, 12
Riemann–Hurwitz formula, 33
Riemann surface, 7

genus, 9, 11, 15

SageMath, 16
Schur index, 17
Small loop, 8
Stabilizer, 10
Symmetric group, 6, 37

character table, 65
rational character table, 65

Transitive group, 32, 37
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