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Abstract. If n � 3, then the moduli space M0,[n+1], of isomorphisms classes of (n + 1)-
marked spheres, is a complex orbifold of dimension n�2. Its branch locus B0,[n+1] consists
of the isomorphism classes of those (n + 1)-marked spheres with non-trivial group of con-
formal automorphisms. If either (i) n � 4 is even or (ii) n � 6 is divisible by 3, then we
prove that B0,[n+1] is connected. Otherwise, we observe that it has exactly two connected
components. The orbifoldM0,[n+1] also admits a natural real structure, this being induced
by the complex conjugation on the Riemann sphere. The locus M0,[n+1](R) of its fixed
points, the real points, consists of the isomorphism classes of those marked spheres admit-
ting an anticonformal automorphism. Inside this locus is the real locusMR0,[n+1], consisting
of those classes of marked spheres admitting an anticonformal involution. We prove that
MR0,[n+1] is connected for n � 5 odd, and that it is disconnected for n = 2r with r � 5 is odd.
If n is odd, then in generalM0,[n+1](R) andMR0,[n+1] are di↵erent and every connected com-
ponent ofM0,[n+1](R) intersects the real locusMR0,[n+1], thereforeM0,[n+1](R) is connected.
If n is even we have thatM0,[n+1](R) =MR0,[n+1].
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INTRODUCTION 1

Introduction

The moduli space Mg,[r], of isomorphism classes of (r)-marked Riemann surfaces of
genus g � 0, is a complex orbifold of dimension 3g � 3 + r, where r � 0 is a integer (so,
for g = 0, we have r � 3). Its branch locus Bg,[r] ⇢ Mg,[r] consists of the isomorphism
classes of those admitting non-trivial conformal automorphisms. In [5] it was proved that
Bg,[0] ⇢Mg,[0] =Mg is connected only for g 2 {3, 4, 13, 17, 19, 59}. The complex orbifold
Mg,[r] also admits a natural anti-holomorphic automorphism of order two (a real structure)
which is induced by the usual complex conjugation. The locusMg,[r](R) ⇢Mg,[r] of fixed
points (the real points) of such a real structure consists of the isomorphic classes of those
admitting anticonformal automorphisms. LetMR

g,[r] ⇢ Mg,[r](R) be the sublocus of those
classes having a representative admitting an anticonformal involution (equivalently, the
representative being definable over the reals), we callMR

g,[r] the real locus ofMg,[r](R). In
[11, 16, 48] it has been proved thatMR

g,[0] ⇢ Mg is connected. In [20] it was proved that
Mg,[0](R) ⇢Mg is also connected but thatMg,[0](R) \MR

g,[0] is not in general connected. In
this thesis we consider r = n + 1, g = 0, and n � 3, that is, we work with (n + 1)-marked
spheres and we study the connectivity of the branch locus B0,[n+1], the real locusMR0,[n+1]
and the locus the real pointsM0,[n+1](R).

Torelli space M0,n+1 is the moduli space of isomorphisms classes of ordered (n + 1)-
marked spheres. The modular group Mod0,[n+1] induces an action of the symmetric group
Sn+1 as a group Gn of holomorphic automorphisms ofM0,n+1 (called the Torelli group) and
M0,[n+1] = M0,n+1/Sn+1. If n = 3, then M0,4 can be identified with the orbifold whose
underlying space is ⌦3 = C \ {0, 1} and all of its points being singular points of order 4. In
this case, G3 � S3 (the action ofS4 onM0,4 is not faithful as it contains a normal subgroup
K3 � C

2
2 acting trivially). In particular, B0,[4] =M0,[4]. The quotient orbifold ⌦3/G3 can be

identified with the complex plane C with two cone points, one of order two and the other of
order three, (the two cone points corresponds exactly to those 4-marked spheres whose of
conformal automorphisms is bigger than C

2
2). Also,MR0,[4] = R. If n � 4, thenM0,n+1 can be

identified with the domain⌦n ⇢ Cn�2 consisting of those tuples (z1, . . . , zn�2), where z j 2 ⌦3
and zi , z j for i , j. In this case, Gn � Sn+1 acts faithfully as the full group of holomorphic
automorphisms of M0,n+1 [46, 25] and ⌦n/Gn = M0,[n+1]. If Sing0,[n+1] ⇢ M0,[n+1] is the
locus of non-manifold points, then: (i) for n � 6, Sing0,[n+1] = B0,[n+1] [43] and (ii) for
n 2 {4, 5}, the singular locus consists of exactly one point [35]. If, for T 2 Gn \ {I}, we
denote by Fix(T ) ⇢ ⌦n the locus of its fixed points, then in [47] it was observed that, for
Fix(T ) , ; (which might not be connected), its projection toM0,[n+1] is connected.

The structure of this thesis is the following. In the first chapter (Preliminaries), we re-
view our basic study objects, these are: branched covering, complex manifolds, Riemann
surfaces, holomorphic and anti-holomorphic automorphisms and complex orbifold. In the
second chapter (Moduli and Torelli spaces of marked surfaces) we present the Teichmüller
space, the modular group and the pure modular group associated with a Riemann surface,
and we obtain the moduli space and the Torelli space as quotient of the Teichmüller space
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for the respective modular groups, we also present the ⌦n space and its Gn group of holo-
morphic automorphisms obtaining to ⌦n and ⌦n/Gn as models for the Torelli space and the
moduli space respectively, we also discuss the special case for n = 3 which is summarized
above, and since for the case studies that we interest, that is n � 4 we have that the mod-
ular group is the full group of holomorphic automorphisms of the Teichmüller space, we
have that Gn is the full group of holomorphic automorphisms of the Torelli space, with this
an anti-holomorphic automorphism of ⌦n is presented as T � J with T 2 Gn and J is the
anti-holomorphic automorphism of order two induced by the complex conjugation, finally
we define our main objects of study the branch locus B0,[n+1], the real locusMR0,[n+1] and the
locus the real pointsM0,[n+1](R). In the third chapter (Results) we present the main results
of this investigation, the Theorem 6 refers to the connectivity of the branch locus, obtain-
ing as main result that the branch locus is connected if n is even or if n � 6 is divisible
by 3, and in the others cases has exactly two connected components, the Theorem 7 refers
to the connectivity of the real locus, obtaining as main result that the real locus MR0,[n+1]
is connected for n � 5 odd and it is not connected for n = 2r, r � 5 odd, also if p � 5
is a prime, then MR0,[2p+1] has exactly (p � 1)/2 connected components, the connectivity
graph of the irreducible components of the real locus is also presented, determining if the
real locus is connected or not for each n � 4. We observed that for the locus of the real
points, M0,[n+1](R), when n is odd, then in general M0,[n+1](R) and MR0,[n+1] are di↵erent,
and every connected component ofM0,[n+1](R) intersects the real locusMR0,[n+1], therefore
M0,[n+1](R) is connected, if n is even we have that M0,[n+1](R) = MR0,[n+1]. Finally in the
fourth chapter (Applications) we study the Moduli spaces of the generalized Fermat curves
of type (k, n) and the hyperelliptic Riemann surfaces of genus g, the same ones that are
modeled by the quotient orbifold ⌦n/Gn , so, we have that the locus in Fk,n (Moduli space
of generalized Fermat curves of type (k, n)) , consisting of those admitting more conformal
automorphisms than the generalized Fermat group of the (k, n), is connected for n � 4 even
and for n � 6 divisible by 3, and it has exactly two connected components otherwise. Its
real locus is connected for n � 5 odd, and it is not connected for n = 2r, r � 5 odd, anal-
ogously, the locus in Hg (Moduli space of hyperelliptic Riemann surfaces), consisting of
those hyperelliptic Riemann surfaces admitting more conformal automorphisms than the
hyperelliptic one, is connected if 2g + 1 is divisible by 3 and it has exactly two connected
components otherwise, and the real locus in Hg is connected. This results can be applied
as well to the more unknown (and di�cult to work with) generic p-gonal curves, simple
generic p-gonal curves [17, 18, 39, 21].



CHAPTER I

Preliminaries

This chapter is devoted to summarize the material that constitutes the background for
the rest of the thesis. The contents of Sections are well-known facts about branched cover-
ings, complex manifolds and complex orbifolds.

I.1. Branched Covering

All of our spaces will be in general Hausdor↵, arc-connected and locally arc-connected
(unless we indicate otherwise).

Definition 1 (Branched Covering). Let X and Y be topological spaces and p : X ! Y be

a continuous and surjective function. It is said that p is a branched covering if for each

y 2 Y there is an open U ⇢ Y, y 2 U, such that:

(1) p
�1(U) is a disjoint union of open sets Vi ⇢ X, i 2 Iy;

(2) for each i 2 Iy, there is a finite subgroup �i < Homeo(Vi), where Homeo(Vi) is the

homeomorphisms group of Vi; and

(3) for each i 2 Iy, the restriction p|Vi
: Vi ! U is surjective and given x1, x2 2 Vi, we

have that, p(x1) = p(x2), 9� 2 �i such that x2 = �(x1);
(4) the locus of points in X with non-trivial �i a nowhere dense.

Remark 1. Let p : X ! Y be a branched covering.

(1) If in the above definition, for given y 2 Y and every i 2 Iy, we have that �i is the
trivial group {id : x 7! x}, then p is a covering between topological spaces.

(2) Let y 2 Y and U an open neighborhood of y as in the definition 1. Then the
following hold:
(a) In each connected component Vi of p

�1(U) we have that #(Vi\p
�1(y)) consists

of a finite collection of points, all of them in the same orbit for �i; denote by
qVi

one of such points.
(b) If the point qVi

2 p
�1(y) has �i� non-trivial stabilizer, then this is a branching

point of p and p(qVi
) is a branching value of p (also called a singular point

of Y). The order of qVi
is the order of its �i�stabilizer. A singular point

associated to a cyclic stabilizer is also called a conical point.

3
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(3) If the branched covering p has finite degree, that is, 8y 2 Y , #p
�1(y) is finite, then

we can define the branching order of y 2 Y , as the least common multiple of all
the corresponding orders of the stabilizers of their pre-images.

Definition 2 (Deck group). Let X and Y topological spaces and p : X ! Y a branched

covering. The group deck(p : X ! Y) := { f : X �! X : f 2 Homeo(X), p = p � f }, it’s
called the Deck group (or cover group) of p.

Example 1. A covering between topological spaces is a branched covering whose set of
branching values is empty.

Definition 3 (Properly discontinuous action). Let X be a topological space and � <
Homeo(X) be a subgroup of homeomorphisms of X. We say that � act properly discontin-
uously on X, if 8x 2 X the following properties hold:

(1) its stabilizer �x = {� 2 � : �(x) = x} is finite, and

(2) there is an open Vx ⇢ X with x 2 Vx, such that �(Vx) \ Vx = ;, 8� 2 � � �x.

Note that we can assume that the open Vx satisfies the following property:

�(Vx) = Vx 8� 2 �x.

Example 2 (Galois branched covering). Let’s assume � acts properly discontinuously on
X. Then in X we define the equivalence relation:

x1 ⇠� x2 , 9� 2 � : x2 = �(x1).

Denote by X/� the set of equivalence classes [x]�, and p : X ! X/� : x 7! [x]� to the
quotient application. Giving X/� of the quotient topology, we have that p is a continuous
and open application.

Note that we may have that X/� might not be Hausdor↵. In order to get the Hausdor↵
condition, we also need the following property:

(H) for every two points x1, x2 2 X, which are not �-equivalent, there are neighborhoods
V1 of x1 and V2 of x2 such that �1(V1) \ �2(V2) = ;, for every �1, �2 2 � (see next example
below).

Let [x]� 2 X/�. By hypothesis we have that �x is finite and that there is an open Vx that
contains x and that it satisfies the conditions of the definition of properly discontinuous. We
take U = p(Vx) ⇢ X/� which is an open that contains [x]�. As p

�1(U) = ·[�2�/�x
�(Vx) and

the group � � �x � ��1 < Homeo(�(Vx)) is finite, we note that p : X ! Y meets conditions:
(1), (2) and (3) of the definition 1. Therefore, p is a branched covering; called regular or
Galois, defined by the action of the group � < Homeo(X).

In this case we have that [x]� is a branching value if and only if �x , {id : z 7! z}, the
branching order of [x]� is #�x.
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Example 3. Let X = R2 \ {(0, 0)} and � = hA(x, y) = (x/2, 2y)i � Z. It can be seen that �
acts properly discontinuos on X and, moreover, the stabilizer of every point is trivial. But
in this case X/� is not Hausdor↵.
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I.2. Complex Manifolds

Definition 4 (Complex Manifold).
(1) An n-dimensional complex structure on a connected, Hausdor↵ and second

countable topological space M is a maximal collection

A = {(U↵, �↵) : ↵ 2 I},
verifying the following properties:

(a) Each U↵ is an open set of M.

(b) M =
S

↵2I U↵.

(c) Each �↵ is a homeomorphism between U↵ and an open set in C
n
. We say that

�↵ is a chart local of M.

(d) If U↵ \ U� , ;, then

�� � ��1
↵ : �↵(U↵ \ U�)! ��(U↵ \ U�)

is a biholomorphism, i.e., it is bijective and holomorphic in each of the n

variables separately at every point.

(2) An n-dimensional complex manifold is a second countable connected Hauss-

dor↵ topological space together with an n-dimensional complex structure.

I.2.1. Function on Complex Manifold.

Definition 5 (Holomorphic and anti-holomorphic functions on Complex Manifold). Let

f : M1 ! M2 be a function between two complex manifolds. We say that the function

f is holomorphic (respectively anti-holomorphic) if for each p 2 M1, there are local

charts �1 : U1 ! V1 for M1 and �2 : U2 ! V2 for M2, such that p 2 U1, f (U1) ⇢ U2 and

�2� f ���1
1 : V1 ⇢ C! C is holomorphic (respectively anti-holomorphic), i.e., holomorphic

(respectively anti-holomorphic) in each of the n variables separately at every point.

Definition 6 (Biholomorphism and anti-biholomorphism on Complex Manifold). Let f :
M1 ! M2 be a holomorphic (respectively anti-holomorphic) and bijective function be-

tween two complex manifolds, we call the function f a biholomorphism (respectively anti-
biholomorphism). If there exists an biholomorphic between M1 and M2, we say that M1
and M2 are biholomorphics.

Remark 2. Let us observe, in the above definition, that the inverse of a biholomor-
phism (respectively, anti-biholomorphism) is also a biholomorphism (respectively, anti-
biholomorphism).

Definition 7 (Holomorphic automorphism and anti-holormorphic automorphism of Com-
plex Manifold). Let M be a complex manifold and f : M ! M a biholomorphism (respec-

tively a anti-biholomorphism), we call to the function f a holomorphic automorphism
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(respectively anti-holomorphic automorphism) on complex manifolds. We denote with

Aut
+(M) (respectively Aut(M)) to the group (with the composition operation) of holomor-

phic automorphism of M (respectively to the group of the holomorphic automorphism and

anti-holomorphic automorphism).

I.2.2. Examples of Complex Manifold.

(1) Every connected and non-empty open subset ⌦ ⇢ Cn, for instance, Cn.

(2) Let M be a n-dimensional complex manifold and let G be a group of holomorphic
automorphisms of M, acting properly discontinuously. Let us assume that for each
point p 2 M there must be an open set U ⇢ M, p 2 U, such that g(U) \U = ; for
all g 2 G � {I} (that is, G acts without fixed points). We also assume the property
(H) above (in order to get the Hausdor↵ condition on the quotient space M/G).
In this case, M/G turns out to be a n-dimensional complex manifold where the
charts can be chosen as the composition of local inverses of the natural projection
⇡ : M ! M/G with local charts of M.

I.2.3. Riemann Surfaces. A Riemann surface is a 1-dimensional complex manifold
(details regarding Riemann surfaces consult [40, 26]).

Remark 3. A Riemann surface is an orientable surface. So if we have a compact Riemann
surface, according to the classification of compact orientable surfaces, each of these is a
connected sum of g tori for some unique interger g � 0. This integer g is called the genus
of Riemann surface.

I.2.3.1. Examples of Riemann Surfaces. Below we present some examples of Riemann
surfaces, which will be used in this work later on.

Example 4. The connected open sets of the complex plane are Riemann surfaces, provided
with the identity as the only local chart, in particular the complex plane C, the unitary disc
D = {z 2 C : | z |< 1}, and the upper half-plane H = {z = x + iy 2 C : y > 0} are Riemann
surfaces. Moreover every connected open subset of a Riemann surface is a Riemann sur-
face.

Example 5. Let bC = C[ {1} be the one-point compactification of the complex plane. The
local charts (

(�1 : C! C : z 7! z) ,
 
�2 : bC � {0}! C : z 7! 1

z

!)
,

has as transition function �2 � ��1
1 : C � {0} 7! C � {0} defined by �2 � ��1

1 (z) = 1
z
, which is

holomorphic. Thus, bC is a Riemann surface, called the Riemann sphere.
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Example 6. Let w1 and w2 be two linearly independent C vectors with respect to R. Con-
sider the following set called lattice,

L = {nw1 + mw2 | n,m 2 Z},
this set is a discrete subgroup of C and is isomorphic to Z⇥Z . Consider in C the equiva-
lence relation, let z1, z2 2 C, z1 ⇠ z2 , z1 � z2 2 L and let ⇡ : C! T := C/L the canonical
projection that gives T the topology quotient, so ⇡ is continuous and surjective. Also ⇡ is
open since for all open set V of C, its image ⇡(V) is open if and only if ⇡�1(⇡(V)) is open
from C. Since

⇡�1(⇡(V)) = [w2L(V + w)

is an union of translators of V , which are all open, it is open. For any z 2 C, define the
closed parallelogram

Pz = {z + �1w1 + �2w2/�i 2 [0, 1], i = 1, 2},
any point of C is congruent modulo L to a point of Pz, since Pz is compact and ⇡ maps Pz

onto X, X is compact.
Since L is discrete then there is " > 0 such that |w| > " for all w 2 L r {0} then

8z0 2 C, ⇡|B(z0,") : B(z0, ")! ⇡(B(z0, "))

it is a local homeomorphism (with respect to T ). Consider Vz0 = B(z0, "),Uz0 = ⇡(B(z0, "))
and �z0 : Uz0 ! Vz0 , that is, the local inverse with respect to C of ⇡ restricted to B(z0, ").
We see that (�z0) is a local chart in T = C/L. If U = ⇡(B(z1, "1))\ ⇡(B(z2, "2)) is not empty
the transition function �2 � ��1

1 (z) = z + w for some fixed w 2 L is holomorphic. Thus, T is
a compact Riemann surface of genus 1 called complex torus.

I.2.3.2. Function on Riemann Surfaces. Since a Riemann surface is a 1-dimensional
complex manifold, we can define functions on Riemann surfaces in a similar way, these are:
holomorphic and anti-holomorphic functions, biholomorphisms and anti-biholomorphisms
and holomorphic automorphisms and anti-holomorphic automorphisms.

Example 7. The upper half-planeH is biholomorphic to the unitary disc D, the biholomor-
phism is given by:

T :
(
H ! D,
z 7! (z � i)/(z + i).

Example 8. The holomorphic automorphisms of the Riemann sphere bC are the Möbius
transformations, these are rational functions of the form:

T (z) =
az + b

cz + d
,
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where a, b, c, d 2 C and ad � bc = 1. The anti-holomorphic automorphisms are obtained as
composition of a Möbius transformations with the complex conjugation (z 7! z). We have
that Aut

+(bC) � PS L2(C). The group of holomorphic automorphisms of upper half-plane H
is the group:

Aut
+(H) = PS L2(R).

Example 9. The group of holomorphic automorphisms of the complex plane C is the
group:

Aut
+(C) = {z 7! az + b | a, b 2 C, a , 0}.

The anti-holomorphic automorphisms are obtained as composition of a element of Aut
+(C)

with the complex conjugation.

Example 10 (Holomorphic branched coverings between Riemann surfaces). If in the defi-
nition 1 we assume that: (i) X,Y are Riemann surfaces, and (ii) p : X ! Y is a holomorphic
function, then we can see that for each Vi ✓ X and U ✓ Y we can choose biholomorphisms
to the unit disk D = {z 2 C : |z| < 1} and each �i < Aut

+(Vi) is a finite cyclic subgroup of
holomorphic automorphisms of Vi. In this case we can find � : U ! D and  i : Vi ! D
such that ⇧ni

�  i = � � p, where ⇧ni
: D ! D : z 7! z

ni , see figure: I.1. Thus, p is
a holomorphic branched covering. In addition, the elements of the deck group of this
covering are biholomorphisms.

Figure I.1. Holomorphic branched covering

Example 11. Let eS , S be Riemann surfaces and p : eS ! S a holomorphic surjective func-
tion of finite degree (that is, the pre-image of each point is finite), then p is a holomorphic
branched covering. For example, this happens if eS is compact.

I.2.3.3. Algebraic Curves. In this section we will describe examples of Riemann sur-
faces as zeros of polynomials in a�ne and proyective spaces.
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Example 12 (Smooth a�ne plane curves). An a�ne plane curve is the locus of zeroes in
C

2 of a polynomial f 2 C [z,w]. A polynomial f (z,w) is nonsingular at a root p if either
partial derivative @ f /@z or @ f /@w is not zero at p. The a�ne plane curve X = {(z,w) 2 C2 |
f (z,w) = 0} is nonsingular or smooth, if it is nonsingular at each of its points.

We can obtain complex charts on a smooth a�ne plane curve using the Implicit function
theorem to conclude that the curve is locally a graph. Let p = (z0,w0) 2 X, if @/@w(p) , 0,
by the Implicit function theorem there is a function gp(z) such that in a neighborhood U

of p, X is the graph w = gp(z), thus the projection ⇡z : U ! ⇡z(U) ⇢ C : (z,w) 7! z is
a complex chart on X. If instead @ f /@z(p) , 0, then we make the identical construction
using the other projection ⇡w : (z,w) 7! w near p, therefore X has a complex structure.

If f (z,w) is an irreducible polynomial (that is, that f cannot be factored nontrivially as
f = g(z,w)h(z,w), where both g and h are nonconstant polynomials), then its locus of roots
X is connected. Hence if f is nonsingular and irrreducible, X is a Riemann surface.

Definition 8 (The projective n-space). The projective n-space denoted by P
n

is the space

of the one-dimensional subspaces of C
n+1

,

P
n = {W ✓ Cn+1| dim(W) = 1}.

The span of the vector (x1, . . . , xn+1) 2 Cn+1
r {0}, i.e, W =< (x1, . . . , xn+1) > is denoted

by [x1 : . . . : xn+1]; these are the homogeneous coordinates of the corresponding point
W of Pn. We have that Pn can also be defined as the set of orbits of Cn+1

r {0} by the
multiplicative action of C⇤ := C r {0},

P
n := Cn+1

r {0}/C⇤,
so the projection ⇡n : Cn+1

r {0} ! Pn induces a Haussdorf topology on the projective
n-space.

An n-dimensional complex structure for Pn is given by the open sets:

Ui = {[x1 : . . . : xn+1]| xi , 0} ,
for i = 1, . . . , n + 1, together with the homeomorphisms:

�i : Ui ! Cn : [x1 : . . . : xn+1] 7! (x1/xi, . . . , xi�1/xi, xi+1/xi, . . . , xn+1/xi),

thus, the projective n-space is an n-dimensional complex manifold.

Example 13 (The projective line). If n = 1 we have that P1 denotes the projective line,
which is a Riemann surface compact and simply connected. It is biholomorphic to the
Riemann sphere bC; for example with the following correspondence:

P
1 ! bC

[x1 : x2] 7!
(

x1/x2, x2 , 0
1, x2 = 0 .
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A polynomial F is homogeneous if every term has the same degree in the variables.
For example, F(x, y, z) = y

2
z + 5xyz + 9x

3 is homogeneous of degree 3.
Let F(x1, . . . , xn+1) 2 C [x1, . . . , xn+1] be a homogeneous polynomial of degree d in

the indeterminate x1, . . . , xn+1 and with complex coe�cients. It is not possible to eval-
uate F in points of Pn given the non-uniqueness of the homogeneous coordinates, that
is, F(↵x1, . . . ,↵xn+1) = ↵d

F(x1, . . . , xn+1), 8↵ 2 C r {0}, but if it makes sense write:
{[x1 : . . . : xn+1] 2 Pn | F(x1, . . . , xn+1) = 0}.

Definition 9 (Projective algebraic curve). Let C ⇢ Pn
the common locus of zeros of a

collection {Fi}i=1,...,n�1 of homogeneous polynomials, i.e.,

C = {[x1 : . . . : xn+1] 2 Pn | F1(x1, . . . , xn+1) = . . . = Fn�1(x1, . . . , xn+1) = 0}.
We say C ⇢ Pn

is a smooth complete intersection curve in P
n

or projective algebraic curve,

if the Jacobian matrix

JF1,...,Fn�1(x1, . . . , xn+1) =
 
@Fi

@x j

!
2 M((n � 1) ⇥ (n + 1),C [x1, . . . , xn+1])

has maximal rank n � 1 at every point of C. If x 2 C does not have a maximal range, then

we will say that x is a singular point of C.

Theorem 1. ([40]) Every smooth projective algebraic curve is a compact Riemann surface.

Example 14 (Smooth projective plane curve). Let F(x, y, z) 2 C ⇥
x, y, z

⇤
be a homogeneous

polynomial, and the smooth projective plane curve:
C = {⇥x : y : z

⇤ 2 P2 | F(x, y, z) = 0}.

Let
⇥
x0, y0, z0

⇤ 2 C and suppose that
@F

@x
(x0, y0, z0) , 0. Since C is smooth, by the

Implicit function theorem we can find a holomorphic function h(y, z) defined in a neighbor-
hood of (y0, z0) such that h(y0, z0) = x0 and F(h(y, z), y, z) = 0, this is easily done for the
other two partial derivatives as well. So, we define the complex local charts analogously to
the example 12:

�1 : U1 = {
⇥
x : y : z

⇤ | x , 0} ! �1(U1) ⇢ C :
⇥
x : y : z

⇤ 7! (y/x)
�2 : U2 = {

⇥
x : y : z

⇤ | y , 0} ! �2(U2) ⇢ C :
⇥
x : y : z

⇤ 7! (z/y)
�3 : U3 = {

⇥
x : y : z

⇤ | z , 0} ! �3(U3) ⇢ C :
⇥
x : y : z

⇤ 7! (y/z)
.

Hyperelliptic curves and generalized Fermat curves are examples of smooth projective
algebraic curves, whose definition and properties will be discussed in chapter IV.

As a consequence of the Theorem 1 and the Riemann-Roch theorem (see [40]) we have
a correspondence between compact Riemann surfaces and smooth projective curves.
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I.3. Complex Orbifold

Definition 10. An n-dimensional complex orbifold consists of a second countable con-

nected Haussdor↵ topological space X (called the underlying topological space of the
orbifold) and of a collection

(U↵,V↵,G↵, f↵ : U↵ ! V↵/G↵);↵ 2 I,

satisfying the following properties:

(1) the collection {U↵;↵ 2 I} is an open covering of X;

(2) G↵ is a finite group of homeomorphisms from the open V↵ ⇢ Cn
;

(3) f↵ : U↵ ! V↵/G↵ is a homeomorphism;

(4) if U↵\U� , ;, and ⇡s : Vs ! Vs/Gs is the natural projection (branched covering)

induced by the action of Gs over Vs, then the homeomorphism

f� � f
�1
↵ : f↵(U↵ \ U�)! f�(U↵ \ U�)

can be raised to a holomorphic homeomorphism

h↵,� : ⇡�1
↵ ( f↵(U↵ \ U�))! ⇡�1

� ( f�(U↵ \ U�)).

I.3.1. Examples of Complex Orbifold.
(1) An n-dimensional complex manifold M is a particular case of n-dimensional com-

plex orbifold. In this case, G↵ = {I} and (U↵, f↵) are local charts of M.
(2) Let X = M be an n-dimensional complex manifold and G a group of holomorphic

automorphisms that act discontinuously in M. Then the quotient space M/G turns
out to be an n-dimensional complex orbifold. If the stabilizers Gx are the trivial
group, then we get an n-dimensional complex manifold.

I.3.2. Riemann Orbifold.

Definition 11 (Riemann Orbifold). A Riemann orbifold O is a topological Hausdor↵
space, second countable, such that, each point p 2 S , there exist:

(1) an open U ⇢ O, p 2 U;

(2) an finite cyclic group Gp, generated by a conformal automorphism of the unitary

disk D;

(3) a homeomorphism z : U ! D/G; so that if we have two of these homeomor-

phisms, let’s say z1 : U1 ! D/G1 y z2 : U2 ! D/G2 such that U1 \ U2 , ;,
then

z2 � z
�1
1 : z1(U1 \ U2)! z2(U1 \ U2)

can be raised to a holomorphic function (then biholomorphism).

In the above, x 2 X with z(x) = p and non-trivial Gp is called a cone point of the

orbifold and the order of Gp is called its cone order.
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Example 15. Every Riemann surface is a Riemann orbifold. Moreover, every Riemann
orbifold has a Riemann surface underlying structure.

Example 16. Let S be a Riemann surface and let G be a group of conformal automor-
phisms of S . If G acts discontinuously on S , then S/G is a Riemann orbifold (for instance,
S = H2 and G a Fuchsian group). In these cases, the cone points of S/G are exactly the
G-classes of those points with non-trivial G-stabilizer.

Example 17 (Holomorphic Galois branched coverings). Let H be a finite group of holo-
morphic automorphisms of the Riemann surface eS and p : eS ! S a surjective holomorphic
function satisfying that p(x) = p(y) if and only if there is h 2 H with h(x) = y. Then p

to be a branched covering, of degree equal to the order of H, with deck group being H. In
this case, p is a holomorphic Galois branched covering, and the branch points of p are
those points whose H-stabilizer is non-trivial (necessarily a cyclic group of order n > 1). In
addition, we have that if y 2 S is a branching value of p, the stabilizers of your pre-images
have the same order, let’s say the integer k � 2, so the number of pre-images is #�i/k ([40]).





CHAPTER II

Moduli and Torelli spaces of marked surfaces

In this chapter study the moduli space and Torelli space of marked surfaces. We begin
with Section 2.1 and 2.2 where we present a summary of existing results about Teichmüller
spaces and moduli spaces. In Section 2.3 we present a summary of existing results about
about moduli and Teichmüller spaces of marked spheres.

Let S 0 be a compact orientable surface of genus g � 0 and let B = {p1, . . . , pr} ⇢ S 0
be (r) fixed points (B could be an empty set). The surface S 0 is called r-marked surface,
we are interested in the spaces that parameterizes classes of biholomorphisms of Riemann
surfaces of genus g with (r) marked points ordered and without order.

II.1. Teichmüller space

Definition 12 (Marking). A marking of S 0 is a pair (S , �), where S is a closed Riemann

surface of genus g and � : S 0 ! S is an orientation-preserving homeomorphism.

Definition 13 (Equivalence relation between markings). Two markings (S 1, �1) and

(S 2, �2) of S 0 is said that are equivalent if there is a biholomorphism T : S 1 ! S 2 such

that ��1
2 � T � �1 : S 0 ! S 0 fixes each of the points p j and it is homotopic to the identity

relative the set {p1, . . . , pr} (see the figure II.1).

S 0

���1
2 �T��1

✏✏

�1
// S 1

T

✏✏

S 0
�2
// S 2

Figure II.1. Equivalent markings of S 0: �1 and �2.

Definition 14 (The Teichmüller space). The Teichmüller space of S 0 of type (g, r) Tg,r,

is the set of equivalence classes of the above markings. If r = 0 then Tg,0 = Tg is the

Teichmüller space of genus g. We will denote with [(S , �)] or [� : S 0 ! S ] an element of

Tg,r.

15
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Theorem 2. [41] Let Tg,r be the teichmüller space of S 0 of type (g, r). Then

(1) If 3g � 3 + r > 0, then Tg,r is a complex, contractible (it is a ball in a 3g � 3 + r-

dimensional space) manifold of complex dimension 3g � 3 + r.

(2) If (g, r) 2 {(1, 0), (0, 4)} then Tg,r � H (where H is the upper half-plane).

(3) If (g, r) 2 {(0, 0), (0, 1), (0, 2), (0, 3)} then Tg,r consists of a point.

II.2. The Moduli and Torelli space

Let Hom+(S 0; {p1, . . . , pr}) be the group of orientation-preserving homeomorphisms
of S 0 keeping the set {p1, . . . , pr} invariant, and let Hom+(S 0; (p1, . . . , pr)) be its normal
subgroup consisting of those orientation-preserving homeomorphisms of S 0 fixing each of
the points pj, j = 1, . . . , r. The subgroup Hom0(S 0; (p1, . . . , pr)) of Hom+(S 0; (p1, . . . , pr))
consisting of those being homotopic to the identity relative to the set {p1, . . . , pr} is a normal
subgroup of Hom+(S 0; {p1, . . . , pr}).

Definition 15 (The modular group and the pure modular group). The quotient groups

Modg,[r] = Hom+(S 0; {p1, . . . , pr})/Hom0(S 0; (p1, . . . , pr)),

Modg,r = Hom+(S 0; (p1, . . . , pr))/Hom0(S 0; (p1, . . . , pr))
are, respectively, the modular group and the pure modular group of marked surface S 0.

Note that if  2 Hom+(S 0; {p1, . . . , pr}), then [ ] 2 Modg,[r] contains elements of the
form  �  0, where  0 2 Hom0(S 0; (p1, . . . , pr)).

Let  2 Hom+(S 0; {p1, . . . , pr}), we have that a permutation of the r-points is induced
naturally, say � 2 S r, with S r is the symmetric group of r permutations. Therefore we
define the surjective homomorphism ⇢,

⇢ : Modg,[r] ! S r : [ ] 7! ��1,

which is well defined because it does not depend on the representative of the class,
since if we take another representative of the class, ( �  0) 2 [ ], where  0 2
Hom0(S 0; (p1, . . . , pr)), the same ��1 permutation is induced. To verify that ⇢ is surjec-
tive, it su�ces to prove that any transposition of the symmetric group S r has a pre-image,
so if � = (a, b) is a transposition of S r, we take the points a and b and enclose them in
an open of S 0, which is homeomorphic to a disk of the complex plane C, and we define
 � 2 Hom+(S 0; {p1, . . . , pr}) being the orientation-preserving homeomorphism acting as
(i) the identity outside a disk containg in its interior the two points a, b, (ii) as a rotation
of 180 degrees in a smaller disc containing these two points and permuting the points, and
(iii) being an homeomorphism in the intermediate annulus (see [47]). So the pre-image
of � 2 S r is [ �] 2 Modg,[r]. We also have that the kernel of ⇢ is the pure modular group
Modg,r, therefore we obtain that:

S r � Modg,[r]/Modg,r,
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also called the Torelli modular group.
We have a natural action of the group Modg,[r] in the Teichmüller space Tg,r defined by:

↵ :
(

Modg,[r] ⇥ Tg,r ! Tg,r

([ ], [� : S 0 ! S ]) 7! [� �  �1 : S 0 ! S ] .

Proposition 1. The above does not depend on the representatives of the classes and it is

an action.

Proof. First we take other representatives of the classes [ ] 2 Modg,[r] and , [� : S 0 !
S ] 2 Tg,r and we’ll show that your alpha image gives us the class [� �  �1 : S 0 ! S ]. Let
 1 =  �  0 with  0 2 Hom0(S 0; (p1, . . . , pr)), and �1 : S 0 ! S 1 equivalent to �, i.e.,
�1 = T � � � ⌘�1 where T : S ! S 1 is a biholomorphism and ⌘ 2 Hom0(S 0; (p1, . . . , pr)).
We will verify that (�1 �  �1

1 ) ⇠ (� �  �1). So, as (�1 �  �1
1 ) = T � � � ⌘�1 �  �1

0 �  �1 we
have the following diagram:

S 0

f

✏✏

 �1
1
// S 0

�1
// S 1

T
�1

✏✏

S 0
 �1
// S 0

�
// S

Figure II.2. Equivalent markings: � �  �1 and �1 �  �1
1

Where f = ( � (⌘�1 �  �1
0 ) �  �1) 2 Hom0(S 0; (p1, . . . , pr)), with this we have to,

(�1 �  �1
1 ) ⇠ (� �  �1).

Now we will show that ↵ defines an action, that is, let [ ], [ ̃] 2 Modg,[r], and [� :
S 0 ! S ] 2 Tg,r, we will verify that:

↵([ ] ⇤ [ ̃], [�]) = ↵([ ],↵([ ̃], [�])),

where the operation ⇤ is induced by the composition, so, we have:

↵([ ] ⇤ [ ̃], [�]) = ↵([ �  ̃], [�]) = [� � ( �  ̃)�1] = [� �  ̃�1 �  �1],
on the other hand,

↵([ ],↵([ ̃], [�])) = ↵([ ], [� �  ̃�1]) = [� �  ̃�1 �  �1].

⇤

Theorem 3 ([41]). The modular group Modg,[r] (in particular, the pure modular group

Modg,r) acts properly discontinuously on Tg,r as a group of holomorphic automorphisms.
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In particular, the stabilizer of each point by Modg,[r] is finite, and the quotient spaces

Tg,r/Modg,[r] and Tg,r/Modg,r are both complex orbifolds of the same dimension that Tg,r.

Theorem 4 ([46], [25]). For (i) r = 0 and g � 2 and for (ii) r � 1 and 2g + r > 4, the

modular group Modg,[r] is the full group of holomorphic automorphisms of Tg,r.

Let [� : S 0 ! S ] be a class marking in the Teichmüller space Tg,r, we will denote by
[[� : S 0 ! S ]]Modg,r or [[�]]Modg,r the class in the quotient space Tg,r/Modg,r.

Proposition 2. Let [�1 : S 0 ! S 1] and [�2 : S 0 ! S 2] be class of markings in the

Teichmüller space Tg,r, they are Modg,r-equivalents if and only if there is a biholomorphism

h : S 1 ! S 2 such that h(�1(pj)) = �2(pj), for j = 1 to r.

Proof. Let [�1 : S 0 ! S 1], [�2 : S 0 ! S 2] 2 Tg,r, let’s notice with qj := �1(pj) and
with mj := �2(pj) for j = 1 to r, to the marked points of S 1 and S 2 respectively. First we
show that if [�1 : S 0 ! S 1] and [�2 : S 0 ! S 2] belong to [[�1 : S 0 ! S 1]]Modg,r , then
S 1 and S 2 are biholomorphic-equivalents. Since [�1 : S 0 ! S 1] and [�2 : S 0 ! S 2] are
Modg,r-equivalents, then there is  ̃ 2 Hom+(S 0, (p1, . . . , pr)) such that,

↵([ ̃], [�1 : S 0 ! S 1]) = [�1 �  ̃�1 : S 0 ! S 1] = [�2 : S 0 ! S 2],

therefore (�1 �  ̃�1) ⇠ �2, with this there is a biholomorphism h : S 1 ! S 2 such that
h(qj) = mj, for j = 1 to r. In the other sense, suppose that there is a biholomorphism
h : S 1 ! S 2 such that h(qj) = mj, for j = 1 to r, we will show that [�1 : S 0 ! S 1]
and [�2 : S 0 ! S 2] belong to [[�1 : S 0 ! S 1]]Modg,r , i.e., there is [ ̃] 2 Modg,r such that
[�1 �  ̃�1 : S 0 ! S 1] = [�2 : S 0 ! S 2], so we define  ̃ := ��1

2 � h � �1, with this it is
verified that (�1 �  ̃�1) ⇠ �2.

⇤

Definition 16 (Ordered moduli space of type (g, r) or Torelli space of r-marked surfaces
of genus g). The ordered moduli space of type (g, r), also called the Torelli space of
r-marked surfaces of genus g is the quotient complex orbifold

Mg,r := Tg,r/Modg,r

of dimension 3g � 3 + r. This space consists of classes of biholomorphisms of marked

surfaces of genus g with r ordered marked points.

Definition 17 (Unordered Moduli space of type (g, r) or Moduli space of type (g, r) ). The

unordered Moduli space of type (g, r) is the quotient complex orbifold

Mg,[r] := Tg,r/Modg,[r],
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of dimension 3g � 3 + r. This space consists of classes of biholomorphisms of marked

surfaces of genus g with r marked points without order.

As a consequence of Theorem 4 we obtain the following.

Corollary 1. For r � 1 and 2g + r > 4, the Torelli modular group, S r � Modg,[r]/Modg,r,
acts properly discontinuously onMg,r as a group of holomorphic automorphisms with quo-

tient orbifoldMg,[r]. This action corresponds to the permutations of the r marked points.

From the above, we have the following commutative diagram:

Tg,r

⇡g,r

++

⇡g,[r]

✏✏

Mg,r = Tg,r/Modg,r

Pg,rss

Mg,[r] = Tg,r/Modg,[r] =Mg,r/S r

Figure II.3. Modular groups actions of Modg,[r] and Modg,r

where ⇡g,[r] : Tg,r ! Tg,r/Modg,[r], ⇡g,r : Tg,r ! Tg,r/Modg,r, and Pg,r : Mg,r !
Mg,r/S r are respectively the natural projections of the action of groups Modg,[r] and Modg,r

on the space Tg,r, and the action of group S r = Modg,[r]/Modg,r on the spaceMg,r.

II.3. The ModuliM0,[n+1] and TorelliM0,n+1 spaces of marked spheres

From here on we will consider r = n + 1 with n � 3, and the genus g = 0, there-
fore we will work with the Riemann spheres marked in n + 1 points, with {1, 0, 1} ⇢
{p1, . . . , pn+1}. As well as, consider the Teichmüller space of type (0, n + 1), T0,n+1, the
modular group Mod0,[n+1], the pure modular group Mod0,n+1, the Torelli modular group
S n+1 � Mod0,[n+1]/Mod0,n+1, the Torelli spaceM0,n+1 and the Moduli spaceM0,[n+1].

It is known that, for n � 4, Mod0,n+1 acts freely on T0,n+1, so the Torelli spaceM0,n+1 is a
complex manifold of complex dimension n� 2. For n = 3 the group Mod0,4 acts non-freely
on T0,4 (in fact, every point in T0,4 has non-trivial stabilizer).

Remark 4. Igusa [35] observed, by using the invariants of the binary sextics, thatM0,[6]
can be seen as the quotient of C3 by the action of the cyclic group of order five h(x, y, z) 7!
(!5x,!2

5y,!3
5z)i, where !5 = e

2⇡i/5. Using invariants of binary quintics, it can also be ob-
tained thatM0,[5] is the quotient of C2 by the cyclic group of order two h(x, y) 7! (�x,�y)i.
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In [43] it was observed that, for n � 6, the moduli space M0,[n+1] cannot be seen as the
quotient of Cn�2 by the action of a finite linear group.

II.3.1. Models for the Moduli and Torelli spaces of marked spheres. Next, we pro-
ceed to recall a natural model ⌦n ⇢ Cn�2 for the Torelli space M0,n+1 together with an
explicit form of its automorphisms (see, for instance, [43]).

Let Xn ⇢ bCn+1 be the configuration space of ordered (n + 1)-tuples whose coordinates
are pairwise di↵erent. Two tuples (p1, . . . , pn+1), (q1, . . . , qn+1) 2 Xn are equivalent if there
is a Möbius transformation M 2 PSL2(C) such that M(pj) = qj, for j = 1, . . . , n + 1. As
for (p1, . . . , pn+1) 2 Xn, there is a (unique) Möbius transformation M such that M(p1) = 1,
M(p2) = 0 and M(p3) = 1, each (p1, . . . , pn+1) is equivalent to a unique one of the form
(1, 0, 1, �1, . . . , �n�2). It follows that the quotient space Xn/PSL2(C) can be identified with

⌦n = {(z1, . . . , zn�2) : z j 2 C \ {0, 1}, zi , z j} ⇢ Cn�2.

By the uniformization theorem, each point of T0,n+1 is the class of a pair of the form
(bC, �), where � : bC ! bC is an orientation-preserving homeomorphism that fixes 1, 0, 1.
This is given, because if �̃ : bC ! bC is a marking of bC, the application T � �̃ is a marking
equivalent to �̃ that fixes 1, 0, 1, where T is the only Mobiüs transformation that sends
�̃(1) to1, �̃(0) to 0 and �̃(1) to 1.

The following bijective application is defined:

f :
(
T0,n+1/Mod0,n+1 ! ⌦n⇥

[�]
⇤
Mod0,n+1

7! (�1, . . . , �n�2) ,

where �(1) = 1, �(0) = 0, �(1) = 1, �(p4) = �1, ..., �(pn+1) = �n�2. The application is
well defined because if we take another representative [�̃] 2 ⇥

[�]
⇤
Mod0,n+1

, where �̃ fixes
1, 0, and 1, then we have that, there is [ ] 2 Mod0,n+1 such that, (�̃ �  �1) ⇠ �, with this
we have �(pj) = (�̃ �  �1)(pj) = �̃(pj), therefore to

h
[�̃]

i
Mod0,n+1

corresponds to the same
tuple (�1, . . . , �n�2). The injectivity is given because, if we take

⇥
[�1]

⇤
Mod0,n+1

,
⇥
[�2]

⇤
Mod0,n+1

in T0,n+1/Mod0,n+1, such that f (
⇥
[�1]

⇤
Mod0,n+1

) = f (
⇥
[�2]

⇤
Mod0,n+1

), that is: �1(pj) = �2(pj), for
j = 1 to n + 1, if we take  := (��1

2 � �1) 2 Hom+(bC; (p1, . . . , pn+1)), then
⇥
[�1]

⇤
Mod0,n+1

=⇥
[�2]

⇤
Mod0,n+1

. The application is surjective because, let be (�1, . . . , �n�2) 2 ⌦n, then you can
build a homeomorphism � that preserves the orientation of the Riemann sphere that sends
the tuple (p1, . . . , pn+1) in (1, 0, 1, �1, . . . , �n�2). So we may identifyM0,n+1 with ⌦n.

The permutation action of Sn+1 on the coordinates of the tuples (p1, . . . , pn+1) 2 Xn is
transported to the action of a group Gn of holomorphic automorphisms of ⌦n, as describe
below. Let us fix some � 2 Sn+1. Each point � := (z1, . . . , zn�2) 2 ⌦n corresponds to the
ordered tuple (p1 = 1, p2 = 0, p3 = 1, p4 = z1, . . . , pn+1 = zn�2) 2 Xn. We now consider
the new tuple (p��1(1), . . . , p��1(n+1)) 2 Xn. There is a unique Möbius transformation M�,�
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such that M�,�(p��1(1)) = 1, M�,�(p��1(2)) = 0 and M�,�(p��1(3)) = 1; this given as

M�,�(x) =
(x � p��1(2))(p��1(3) � p��1(1))
(x � p��1(1))(p��1(3) � p��1(2))

.

As
⇣
M�,�(p��1(4)), . . . ,M�,�(p��1(n+1))

⌘
2 ⌦n, the map

T� : ⌦n ! ⌦n : � = (z1, . . . , zn�2) 7!
⇣
M�,�(p��1(4)), . . . ,M�,�(p��1(n+1))

⌘
,

is an holomorphic automorphism of ⌦n. This procedure provides of a surjective homomor-
phism (we are using multiplication of permutations from the left)

⇥n :
(
Sn+1 ! Gn = hA, Bi
� 7! ⇥n(�) := T�

,

where A = ⇥n((1, 2)) and B = ⇥n((1, 2, . . . , n + 1)). It can be checked that

A (z1, . . . , zn�2) =
 

1
z1
, . . . ,

1
zn�2

!
, B (z1, . . . , zn�2) =

 
zn�2

zn�2 � 1
,

zn�2

zn�2 � z1
, . . . ,

zn�2

zn�2 � zn�3

!
,

If n = 3, then K3 := ker(⇥3) = {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} � C
2
2; so S4/C2

2 �
S3 � G3. For n � 4 the kernel of ⇥n is just the trivial group; so Gn �⇥n

Sn+1.

Next we will see in an example the previous procedure to define ⇥n.

Example 18. If n = 3, we have ⌦3 = C r {0, 1}, and ⇥3 : S4 ! G3 : � 7! ⇥3(�) := T�.
Let � 2 ⌦3, and � = (1, 2) 2 S4, we have the tuple (p1 = 1, p2 = 0, p3 = 1, p4 = �), we get
a new tuple (p��1(1) = 0, p��1(2) = 1, p��1(3) = 1, p��1(4) = �), by the action of ��1 over first
tuple, subsequently we apply the only Möbius transformation that sends zero to infinity,
infinity to zero, and one to one, it is M�,�(x) = 1/x, so, we have the new tuple (1, 0, 1, 1/�)
and we define T�(�) = 1/� (see the figure II.4).

(1, 0, 1, �)
_

�
�1
=(1,2)

✏✏

(0,1, 1, �)
_

M�,�(x)=1/x
✏✏

(1, 0, 1, 1/�) ) T�(�) = 1/�.

Figure II.4. Diagram of the procedure to obtain T�

Continuing with this procedure, we obtain for each � 2 S4 the following values of T�:
�1 = e 7! T�1(�) = �, �2 = (1, 2) 7! T�2(�) = 1/�, �3 = (1, 3) 7! T�3(�) = �/(� � 1),
�4 = (2, 3) 7! T�4(�) = 1 � �, �5 = (1, 3, 2) 7! T�5(�) = (� � 1)/� and �6 = (1, 2, 3) 7!
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T�6(�) = 1/(1� �), all these permutations in particular, are in S3, the permutations that are
in ker(⇥3) correspond to Te and for the other elements of S4 the values of T� are repeated
as we saw earlier S4/ker(⇥3) = S4/C2

2 � S3 � G3.

We have that Gn is the full group of holomorphic automorphisms of ⌦n. For n = 3
this is trivial. For n � 4, this is as follows: Since the Teichmüller space (which is con-
tractible) is the universal covering of ⌦n. If ↵ is a holomorphic automorphism of ⌦n, then
it we lift to a holomorphic automorphism of the Teichmuller space, that is, ↵ belongs to the
modular group by theorem 4 , for n � 4. Therefore Gn is the full group of automorphisms
of ⌦n. So, every anti-holomorphic automorphism of ⌦n has the form T � J, where T 2 Gn

and J(z1, . . . , zn�2) = (z1, . . . , zn�2) (which is induced by complex conjugation).

Definition 18 (Symmetries of ⌦n). The symmetries of ⌦n are those anti-holomorphic au-

tomorphisms of order two. In particular, J is a symmetry. As J commutes with every

element of Gn, the symmetries of ⌦n are those of the form T � J, where T
2 = I.

Summarizing all the above is the following.

Lemma 1. Let n � 3, Gn = hA, Bi and ⇥n : Sn+1 ! Gn : � 7! T� be the surjective

homomorphism as defined above. Then

(1) ker(⇥3) = {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} � C
2
2 and G3 � S3 is the full

group of holomorphic automorphisms of ⌦3;

(2) if n � 4, Gn �⇥n
Sn+1 is the full group of holomorphic automorphisms of ⌦n.

(3) The anti-holomorphic automorphisms of ⌦n are those of the form T � J, where

T 2 Gn. Those of order two are for which T
2 = I.

(4) The quotient orbifold ⌦n/Gn is biholomorphic to the moduli spaceM0,[n+1].

In the rest of document we use the modelM0,n+1 = ⌦n and we fix a regular branched
cover ⇡n : ⌦n ! ⌦n/Gn with deck group Gn, and therefore we also consider the model
M0,[n+1] = ⌦n/Gn.

II.3.2. The branch locus and real locus of theM0,[n+1]. We are interested in studying
the connectivity of certain special subsets ofM0,[n+1], which we will define below.

Definition 19 (The branch locus of theM0,[n+1]). LetM0,[n+1] be the Moduli space of iso-

morphism classes of marked spheres in (n+1) points. Its branch locus B0,[n+1] ⇢ M0,[n+1]
consists of the isomorphism classes of those (n + 1)-marked spheres admitting non-trivial

holomorphic automorphisms.
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Remark 5. According to the models ofM0,n+1 = ⌦n andM0,[n+1] = ⌦n/Gn, the previous
definition indicates that the branch locus B0,[n+1] ⇢ ⌦n/Gn consists of the images under ⇡n

of those points of ⌦n with non-trivial Gn-stabilizer, i.e.,

B0,[n+1] =
�
⇡n(�)/� 2 ⌦n,StabGn

(�) , {I : z 7! z} 

=
S

T2Gnr{I} ⇡n(Fix(T )),
where Fix(T ) is the set of fixed points of T on ⌦n.

The complex orbifold M0,[n+1] also admits a natural anti-holomorphic automorphism
bJ of order two (a real structure), this being induced by the complex conjugation on the
Riemann sphere, see the commutative diagram:

⌦n

�⇡n

✏✏

J
// ⌦n

⇡n

✏✏

⌦n/Gn

bJ
// ⌦n/Gn

Figure II.5. Real structure Ĵ

The fixed points of the real structure bJ are called the real points. These points are the
projections of those points � 2 ⌦n such that � and J(�) = � 2 ⌦n are Gn-equivalents.
This is equivalent to have some T 2 Gn such that T (�) = �, that is, if � is a fixed point of
bT = T � J, which is an anti-holomorphic automorphism of ⌦n. So, we have the following
definition.

Definition 20 (The real locus ofM0,[n+1]). The locusM0,[n+1](R) of the fixed points of the

real structure of M0,[n+1] (the real points) consists of the isomorphism classes of those

marked spheres admitting an anti-holomorphic automorphism. Inside this locus is the real
locusMR0,[n+1], consisting of those classes of marked spheres admitting an anti-holomorphic

involution.

Remark 6. We have that,
MR0,[n+1] =

[
⇡n(Fix(S )),

where S runs over all the symmetries of ⌦n and Fix(S ) is the set of fixed points of S .

Remark 7. A point � = (�1, . . . , �n�2) 2 ⌦n is fixed by an anti-holomorphic automorphism
if and only if the collection {1, 0, 1, �1, . . . , �n�2} is invariant under an anti-holomorphic
automorphism of the Riemann sphere (that is, an extended Möbius transformation) which
is of the same order. (1) If n is even, then an anti-holomorphic automorphism keeping
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invariant a collection of n + 1 points must be a reflection (each orbit under the action of
an anti-holomorphic automorphism of order 2m, where m � 2, is of even cardinality), so
M0,[n+1](R) =MR0,[n+1]. (2) If n is odd, then in generalM0,[n+1](R) andMR0,[n+1] are di↵erent
(see example 19 for n = 9). In this case, if the above collection of points is invariant under
some anti-holomorphic automorphism of order 2m, where m � 2, then we may assume (up
to conjugation by a suitable Möbius transformation) that such an automorphism is given
by T (z) = e

⇡i/m/z. It is possible to move all the points continuously to the unit circle,
keeping the invariance under T . This, in particular, asserts that every connected component
ofM0,[n+1](R) intersects the real locusMR0,[n+1].

Example 19. Let n = 9, suppose we have a sphere marked in 10 points, given by the
collection

C =

(
1, 0, 1,�1, i,�i, � := 2 + i,�� = �2 � i,

i

�
= �1

5
+

2i

5
,� i

�
=

1
5
� 2i

5

)
,

the extended Möbius transformations ⌧(x) =
i

x
of order four leaves invariant the collection

of points, that is, the sphere admits a anti-holormorphic automorphism. Also we have
that ⌧2(x) = �x is a Möbius transformation. This marked sphere does not admit an anti-
holomorphic automorphism of order two because, if there is a ⌘ involution that leaves the
collection C invariant then ⌘ � ⌧ must leave this collection invariant, and also ⌘ � ⌧ = M is a
Möbius transformation distinct than ⌧2, therefore we must find a Möbius transformation M

such that M(C) = C. If we see the collection in the extended complex plane,bC = C [ {1}
the points {1, 0, 1,�1} and the points {1,�1, i,�i} are in two circles, besides the points in
the sub-collection

P =

(
� := 2 + i,�� = �2 � i,

i

�
=
�1
5
+

2i

5
,
�i

�
=

1
5
+
�2i

5

)

are not in a circle, so Möbius transformations M must permute the elements of the circles
or take the one circle in the other, for so for the rest of the sub-collection P the only option
is that M permute between them. It is verified that the Möbius transformations that leave
invariant the sub-collection P do not leave invariant all the collection C or in its defect M =
⌧2, which leads to a contradiction, verifying that the sphere does not admit an involution.
Thus, we observe that in generalM0,[n+1](R) andMR0,[n+1] are di↵erent.

As initially commented, we are interested in studying the connectivity of the branch
locus and the real locus, here we will describe some known results.

In [5] it was proved that Bg,[0] ⇢ Mg,[0] = Mg is connected only for g 2
{3, 4, 13, 17, 19, 59}. In [20] it was proved thatMg,[0](R) ⇢ Mg is also connected but that
Mg,[0](R) rMR

g,[0] is not in general connected.
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If n = 3, then M0,4 can be identified with ⌦3 = C r {0, 1}. In this case, G3 � S3
(the action of S4 onM0,4 is not faithful as it contains a normal subgroup K3 � C

2
2 acting

trivially). In particular, B0,[4] = M0,[4]. The quotient orbifold M0,[4] = ⌦3/G3 can be
identified with the complex plane C with two cone points, one of order two and the other
of order three, (the two cone points corresponds exactly to those 4-marked spheres whose
of conformal automorphisms is bigger than C

2
2), this is given by considering the classical

Klein modular j-function j = 4(�2 � � + 1)3/(27�2(� � 1)2), which is a regular branched
cover with deck group G3 � S3 (see [41]). Also,MR0,[4] = R (see the figure II.6).

If n � 4, thenM0,n+1 can be identified with the domain ⌦n ⇢ Cn�2. In this case, Gn �
Sn+1 acts faithfully as the full group of holomorphic automorphisms ofM0,n+1 [46, 25] and
⌦n/Gn = M0,[n+1]. If Sing0,[n+1] ⇢ M0,[n+1] is the locus of non-manifold points, then: (i)
for n � 6, Sing0,[n+1] = B0,[n+1] [43] and (ii) for n 2 {4, 5}, the singular locus consists of
exactly one point [35]. If, for T 2 Gn \ {I}, we denote by Fix(T ) ⇢ ⌦n the locus of its fixed
points, then in [47] it was observed that, for Fix(T ) , ; (which might not be connected),
its projection toM0,[n+1] is connected. In Section III.1 we study the connectivity of B0,[n+1]
(see Theorem 6).

M0,4 = ⌦3 = C r {0, 1}

B0,[4] =M0,[4] = ⌦3/G3 = C

3
3

3

2
2
2

2

j

S3 = G3

Figure II.6. Branch locus for n=3





CHAPTER III

Results

III.1. The connectivity of the Branch locus

From now on, we assume n � 4. The branch locus B0,[n+1] ⇢ ⌦n/Gn consists of the
images under ⇡n of those points with non-trivial Gn-stabilizer. For � = (�1, . . . , �n�2) 2 ⌦n,
we set

C� = {p1 = 1, p2 = 0, p3 = 1, p4 = �1, . . . , pn+1 = �n�2},
we denote by G

+
� be the group of Möbius transformations keeping invariant the set C�, and

by G� the group generated by G
+
� and those extended Möbius transformations (composi-

tions of complex conjugation with a Möbius transformation) keeping invariant C� (so either
G� = G

+
� or [G� : G

+
� ] = 2). As the cardinality of C� is bigger than three, it follows that

G� is finite. For the generic case, G� is trivial and in the non-generic case (that is, when we
place them properly), G

+
� is isomorphic to a finite group of Möbius transformations, which

can be a cyclic group Cm, a dihedral group Dm (of order 2m), an alternating group A4 or
A5 or the symmetric group S4 (see for example [36]). If G� , G

+
� , then G� is isomorphic

to either Dm, Cm ⇥C2, Dm oC2,A4 ⇥C2,A5 ⇥C2, S4 or S4 ⇥C2.
As already seen in the previous section, for each � 2 Sn+1, such that ⇥n(�) 2 Gn fixes

� 2 ⌦n, there is a (unique) Möbius transformation M�,� 2 G
+
� . In the other direction, each

M 2 G
+
� induces a permutation �M 2 Sn+1 by the following rule:

⇣
M(p��1

M
(1)), . . . ,M(p��1

M
(n+1))

⌘
= (p1, . . . , pn+1) ,

that is, M = M�M ,�, this is verified, since if M 2 G
+
� , for i 2 {1, ..., n + 1} we have that

M(pi) = pj for any j 2 {1, ..., n + 1}, so M induces a permutation �M 2 Sn+1 such that
�M(i) = j, with this we have that M(p��1

M
( j)) = M(pi) = pj for j 2 {1, ..., n + 1}. The above

provides of an injective homomorphism

⇠� :
(

G
+
� ! Sn+1

M 7! �M

,

the injectivity of ⇠� is given, because if M1,M2 2 G
+
� are such that ⇠�(M1) = ⇠�(M2), this

is, �M1 = �M2 , we have that to �M1 corresponds to (unique) Möbius transformation M�M1 ,�

such that M�M1 ,�
= M1 = M�M2 ,�

= M2, therefore M1 = M2. On the other hand, ⇠� is a
homomorphism since it is fulfilled that ⇠�(M1 � M2) = ⇠�(M1) � ⇠�(M2), this is, �M1�M2 =
�M1 � �M2 = �M2�M1 ( product of permutations on the left). Thus, we must verify that the
permutation associated with M1 �M2 is equal to the product of the permutations associated

27
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with M2 and M1. Since (�M2�M1)�1 = ��1
M1
��1

M2
, according to the procedure described in

section (II.3.1) we have that, given the tuple (p1, ..., pn+1), acts on this first the permutation
��1

M1
and then the permutation ��1

M2
, thus there is a (unique) Möbius transformation, M,

such that sends the points p��1
M2

(��1
M1

(1)) = 1, p��1
M2

(��1
M1

(2)) = 0 and p��1
M2

(��1
M1

(1)) = 1, and since
M 2 G

+
� we have that,

(M(p��1
M2

(��1
M1

(1))), ...,M(p��1
M2

(��1
M1

(n+1)))) = (p1, · · · , pn+1).

Also, as M1 �M2(p��1
M2

(��1
M1

(i)) = pi), for i 2 {1, ..., n+ 1}, and by the uniqueness of M we
have that M = M1 � M2 which verifies that ⇠� is a homomorphism (see the next figure).

(p1, ..., pn+1)
_

��1
M1
✏✏

(p��1
M1

(1), ..., p��1
M1

(n+1))
_
��1

M2
✏✏

(p��1
M2

(��1
M1

(1)), ..., p��1
M2

(��1
M1

(n+1)))
_

M2PS L2(C)

✏✏

(M(p��1
M2

(��1
M1

(1))), ...,M(p��1
M2

(��1
M1

(n+1)))) = (p1, ..., pn+1)

Figure III.1. Möbius transformation, M, associated to the permutation �M2�M1

So, after post-composing ⇠� with the isomomorphism ⇥n : Sn+1 ! Gn, defines an
injective homomorphism

⇥n � ⇠� :
(

G
+
� ! Gn

M 7! ⇥n(⇠�(M)) = ⇥n(�M) ,

whose image, (⇥n � ⇠�)(G+� ) ⇢ Gn, is the Gn-stabilizer, StabGn
(�), of the point � =

(�1, . . . , �n�2), this is (⇥n � ⇠�)(G+� ) = StabGn
(�), thus,

StabGn
(�) = {M 2 PS L2(C) | M(C�) = C�}.

Remark 8. The above (where n � 4) permits to observe the following facts (see also [47]).
(1) Let � 2 Sn+1 be di↵erent from the identity permutation and T = ⇥n(�) 2 Gn. It

follows that T has order m � 2 and it has fixed points in ⌦n if and only if � is in
the conjugacy class of one of the following permutations.

(1.a) (1, 2, . . . ,m)(m+1, . . . , 2m) · · · (rm+1, . . . , (r+1)m), where n = (r+1)m�1,
some r 2 {0, 1, . . .}.
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(1.b) (1, 2, . . . ,m)(m+1, . . . , 2m) · · · (rm+1, . . . , (r+1)m)(n+1), where n = (r+1)m,
some r 2 {0, 1, . . .}.

(1.c) (1, 2, . . . ,m)(m + 1, . . . , 2m) · · · (rm + 1, . . . , (r + 1)m)(n)(n + 1), where n =
(r + 1)m + 1, some r 2 {0, 1, . . .}.

This is verified, since, for the collection C� to remain invariant under a finite
Möbius transformation, the points marked on the Riemann sphere bC are located
appropriately according to the figures (1.a), (1.b) and (1.c) of III.2 respectively.
In each case the Möbius transformation (rotation around the vertical axis) leaves
the collection of points invariant, which are arranged in cycles of m points, in the
first case (1.a) the rotation does not fix any points, in the second case (1.b) the
rotation fixes only one point and in the third case fixes two points. In this way
the permutations described in (1.a), (1.b) and (1.c) respectively are associated for
each case. See the figure III.2.



30 III. RESULTS

12
..

.. .. m

m + 1
m + 2..

.. .. 2m

rm + 1
rm + 2..

.. ..
(r + 1)m

12
..

.. .. m

m + 1
m + 2..

.. .. 2m

rm + 1
rm + 2..

.. ..
(r + 1)m

n + 1

case1 : (1.a) case2 : (1.b)

12
..

.. .. m

m + 1
m + 2..

.. .. 2m

rm + 1
rm + 2..

.. ..
(r + 1)m

n

n + 1

case3 : (1.c)

Figure III.2. Location of the n+ 1 marked points on the sphere whose rota-
tion of order m induces the permutations of the classes (1.a) or (1.b) or (1.c)
respectively

(2) About the Gn-stabilizers, we have the following.
(2.a) If n + 1 ⌘ � mod (m), where � 2 {0, 1, 2}, then we may find � 2 ⌦n with

StabGn
(�) � Cm.

This is a consequence of the above item, we have that the n+1 marked points
remain invariant for a rotation of order m if n + 1 = k ⇤m + �, with k 2 N and
� 2 {0, 1, 2}, where � = 0 means that the case (1.a) occurs, � = 1 corresponds
to case (1.b) y � = 2 corresponds to case (1.c).
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(2.b) If n + 1 = 2mr + m�1 + �2, where �1 2 {0, 1, 2} and �2 2 {0, 2}, then we may
find � 2 ⌦n with StabGn

(�) � Dm.
(2.c) If n + 1 = 12r + 6�1 + 4�2, where �1 2 {0, 1} and �2 2 {0, 1, 2}, then we may

find � 2 ⌦n with StabGn
(�) � A4.

(2.d) If n + 1 = 24r + 12�1 + 8�2 + 6�3, where �1, �2, �3 2 {0, 1}, then we may find
� 2 ⌦n with StabGn

(�) � S4.
(2.e) If n + 1 = 60r + 30�1 + 20�2 + 12�3, where �1, �2, �3 2 {0, 1}, then we may

find � 2 ⌦n with StabGn
(�) � A5.

For the cases (2.c), (2.d) and (2.e) related to the groups A4, S4 and A5 re-
spectively, correspond to the rotations groups of a regular tetrahedron, octahedron
or icosahedron inscribed in Riemann sphere bC respectively. Thus, it is enough
to verify how the n + 1 marked points in each of these polyhedra can be placed,
so that the collection of points is invariant under the action of these groups. In
addition, since the octahedron is conjugated from the cube and the icoshedron is
conjugated from the dodecahedron. Below we will analyze the cases: (2.d) (S4)
and (2.c)(A4).

The symmetries of the cube are: rotations around the axes that pass through
the midpoints of opposite faces, of the axes passing through opposite vertices, and
of the axes passing through midpoints of opposite edges. Therefore, we have 8
vertices that are in the same orbit, 6 medium points of faces that are in the same
orbit, 12 average points of axes in the same orbit and finally we can place 4 points
for each face that give a total of 24 points that are in the same orbit, like this:
n + 1 = 24r + 12�1 + 8�2 + 6�3, where �1, �2, �3 2 {0, 1} (see the figure III.3).

A regular tetrahedron has four axes of symmetry of order three, the straight
lines perpendicular to each face by the opposite vertice of the tetrahedron, and 3
axes of symmetry of order two, these are the lines that join the midpoints of edges
opposite. Therefore, we have 4 vertices that are in the same orbit, 4 medium points
of faces that are in the same orbit, 6 average points of axes in the same orbit and
finally we can place 3 points for each face that give a total of 12 points that are in
the same orbit, like this: n+1 = 12r+6�1+4�2, where �1 2 {0, 1} and �2 2 {0, 1, 2}
(see the figure III.4).
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Figure III.3. Marked points invariant under the action of the symmetric
group S4.

X

X

X
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: Average points of faces

: Vertices

: 3 points for each face

Figure III.4. Marked points invariant under the action of the alternating
groupA4.
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Example 20. For n = 4, consider the order five automorphism B = ⇥4(�), where � =
(1, 2, 3, 4, 5). Then,

B(z1, z2) =
 

z2

z2 � 1
,

z2

z2 � z1

!
2 G4,

Fix(B) =

8>><
>>:� :=

0
BBBB@

1 +
p

5
2
,

3 +
p

5
2

1
CCCCA , µ :=

0
BBBB@
1 �
p

5
2
,

3 �
p

5
2

1
CCCCA

9>>=
>>; ⇢ ⌦4.

The order four element

S (z1, z2) =
 

1
1 � z2

,
z1 � 1
z2 � 1

!
2 G4

satisfies that S �B�S �1 = B
3 and it permutes �with µ. Each of these two points is stabilized

by the dihedral group hB, S 2i � D5.

As observed in the above example, for an element T 2 Gn di↵erent from the identity
and with fixed points in ⌦n, it might happen that its locus of fixed points is non-connected.
But the two components (two points) are G4-equivalent. In [47] Schneps proved that the
connected components of the locus of fixed points of T (each one a complex submanifold)
forms an orbit under the action of the normalizing subgroup of hT i inGn (for completeness,
we provide a sketch of the proof since in [47] it is explicitly given only one of the cases).

III.1.1. The connectivity of the locus of fixed points.

Theorem 5. For n � 4, let ⇥n(�) = T 2 Gn, of order m � 2 and Fix(T ) , ;. Let r + 1,

where r � 0, be the number of cycles of length m in the decomposition of � (as in Remark

8). Then the following hold.

(1) Each connected component of Fix(T ) is a complex submanifold of⌦n of dimension

r.

(2) If m = 2, then Fix(T ) is connected.

(3) If m � 3, then Fix(T ) has exactly: (i) '(m)/2 connected components if m divides

n + 1, and (ii) '(m) connected components otherwise. Moreover, if F1 and F2 are

any two of the connected components, then there is an element S 2 Gn, normaliz-

ing hT i, such that S (F1) = F2.

Proof. Let � 2 Sn+1 be such that T = ⇥n(�). Up to conjugation, we may assume that
� has one of the forms (see (1) of Remark 8)

(1) � = (1, 2, . . . ,m) · · · (rm + 1, . . . , (r + 1)m), if n = (r + 1)m � 1.
(2) � = (1, 2, . . . ,m) · · · (rm + 1, . . . , (r + 1)m)(n + 1), if n = (r + 1)m.
(3) � = (1, 2, . . . ,m) · · · (rm + 1, . . . , (r + 1)m)(n)(n + 1), if n = (r + 1)m + 1.

Note that, for m � 3, only one of these possibilities may happen. For m = 2, both cases
(1) and (3) happen for n odd and case (2) only happens for n even (see the figure III.5).
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The image of a point � = (�1, . . . , �n�2) 2 ⌦n under T is given by

T (�1, . . . , �n�2) =
⇣
M�,�(p��1(4)), . . . ,M�,�(p��1(n+1))

⌘
,

where M�,� is the (unique) Möbius transformation with M�,�(p��1(1)) = 1, M�,�(p��1(2)) =
0, M�,�(p��1(3)) = 1 and p1 = 1, p2 = 0, p3 = 1, p4 = �1, . . . , pn+1 = �n�2. Moreover,
⇠�(M�,�) = �. In this way, Fix(T ) consists of the tuples (�1, . . . , �n�2) 2 ⌦n such that the set
C� = {1, 0, 1, �1, . . . , �n�2} is kept invariant under M�,�.

3

12

4

6 5

12

34

5

6

case(1) : n + 1 = 6 case(3) : n + 1 = 6
� = (1, 2)(3, 4)(5, 6) � = (1, 2)(3, 4)(5)(6)

3

12

4

6 5

7

case(2) : n + 1 = 7
� = (1, 2)(3, 4)(5, 6)(7)

Figure III.5. For m = 2, cases (1),(2) and (3).
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Case m = 2. Let us consider a point � 2 Fix(T ). In this case, M�,�(x) = �1/x, whose
set of fixed points is Fix(M�,�) =

n
±
p
�1

o
.

Case (1), that is, n�1 = 2r, where r � 2. We have that � = (1, 2)(3, 4)...(2r+1, 2r+2) =
��1, thus, given (z1, . . . , zn�2) 2 ⌦n, we follow the procedure to find T 2 Gn:

(1, 0, 1, �1, �2, �3, . . . , �n�3, �n�2)
_

��1=(1,2)(3,4)...(2r+1,2r+2)
✏✏

(0,1, �1, 1, �3, �2, . . . , �n�2, �n�3)
_

M�,�=�1/x

✏✏

(1, 0, 1, �1, �1/�3, �1/�2, . . . , �1/�n�2, �1/�n�3)

) T (�1, . . . , �n�2) = (�1, �1/�3, �1/�2, . . . , �1/�n�2, �1/�n�3).

We must have �2 j+1 = �1/�2 j, for j = 1, . . . , (n � 3)/2. So, the locus Fix(T ) is home-
omorphic to ⌦r+2 by identifying the tuple (�1, �2, �3, . . . , �n�2) 2 Fix(T ) with the tuple
(�1, �3, �5, . . . , �n�2) 2 ⌦r+2. Since for any pair of elements of Fix(T ) we can find a path
that connects them, so it is arc-connected and therefore connected.

Case (2), that is, n � 2 = 2r, where r � 1. We must have �2 j+1 = �1/�2 j, for j =

1, . . . , (n � 4)/2 and �n�2 2
n
±
p
�1

o
. We can move continuously �1 around the origin

to pass from one of its square roots to the other. So, the locus Fix(T ) is connected and
provides a two fold cover of ⌦r+2 by projecting the tuple (�1, �2, �3, . . . , �n�2) 2 Fix(T ) to
the tuple (�1, �3, �5, . . . , �n�3) 2 ⌦r+2.

Case (3), that is, n � 3 = 2r, where r � 1. We must have �2 j+1 = �1/�2 j, for
j = 1, . . . , (n � 5)/2 and �n�3, �n�2 2

n
±
p
�1

o
. Similarly as above, we may move con-

tinuously �1 around the origin to pass from one of its squre roots to the other. So, the locus
Fix(T ) is again connected and provides a two fold cover of ⌦r+2 by projecting the tuple
(�1, �2, �3, . . . , �n�2) 2 Fix(T ) to the tuple (�1, �2, �4, . . . , �n�4) 2 ⌦r+2.

Case m = 3. Let us consider a point � 2 Fix(T ). In this case, M�,�(x) = 1/(1 � x),
whose set of fixed points is Fix(M�,�) =

n
(1 ± i

p
3)/2

o
.

Case (1), that is, n � 2 = 3r, where r � 1. We must have �3 j�2 = 1/(1 � �3 j) and
�3 j�1 = (�3 j � 1)/�3 j, for j = 1, . . . , (n � 2)/3. So, the locus Fix(T ), in this case, is
homeomorphic to⌦r+2 by identifying the tuple (�1, �2, �3, . . . , �n�2) 2 Fix(T ) with the tuple
(�3, �6, �9, . . . , �n�2) 2 ⌦r+2.

Case (2), that is, n�3 = 3r, where r � 1. We must have we must have �3 j�2 = 1/(1��3 j)
and �3 j�1 = (�3 j � 1)/�3 j, for j = 1, . . . , (n � 3)/3 and �n�2 2

n
(1 ± i

p
3)/2

o
. We can

identify a tuple (�1, �2, �3, . . . , �n�2) 2 Fix(T ) with the tuple (�3, �6, �9, . . . , �n�3, �n�2) 2
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⌦r+2 ⇥
n
(1 ± i

p
3)/2

o
. This provides two connected components, each one homeomorphic

with ⌦r+2, these being permuted by the generator A in Lemma 1.
Case (3), that is, n � 4 = 3r, where r � 0. We must have �3 j�2 = 1/(1 � �3 j) and

�3 j�1 = (�3 j � 1)/�3 j, for j = 1, . . . , (n � 4)/3 and �n�3, �n�2 2
n
(1 ± i

p
3)/2

o
. We can

identify a tuple (�1, �2, �3, . . . , �n�2) 2 Fix(T ) with the tuple (�3, �6, . . . , �n�4, �n�3, �n�2) 2
⌦r+2⇥

n⇣
(1 + i

p
3)/2, (1 � i

p
3)/2

⌘
,
⇣
(1 � i

p
3)/2, (1 + i

p
3)/2

⌘o
(where ⌦2 is just a single-

ton). This agains provides two connected components, each one homeomorphic with ⌦r+2
which are permuted by the generator A in Lemma 1.

Case m � 4. Let us consider a point � 2 Fix(T ). In this case, M�,�(x) = �m�3/(�m�3� x)
and its set of fixed points is

Fix(M�,�) =
(

p
+
�,� =

�m�3 +
p
�m�3(�m�3 � 4)

2
, p��,� =

�m�3 �
p
�m�3(�m�3 � 4)

2

)
.

As M�,�, of order m � 3, must preserve the set {1, 0, 1, �1, . . . , �m�3}, there is an M�,�-
invariant circle ⌃ containing these points. As 1, 0, 1 2 ⌃, it follows that ⌃ = R [ {1} and
also that M�,� leaves invariant the upper half-plane H. Let p�,� 2 Fix(M�,�) be the fixed
point belonging to the upper half-plane H.

Let C0 (respectively, C1) be the arc of circle starting at p�,� and ending at 0 (respectively,
ending at 1) which is orthogonal to the real line. The angle between these two circles at
p�,� is 2↵�⇡/m, for some ↵� 2 {1, 2, . . . ,m � 1} relatively prime with m. This value ↵�
determines uniquely the value of �m�3 = �m�3(↵�).

Let Lm be the set of points in {1, 2, . . . , [(m � 1)/2]} relatively primes to m. As M�,�

sends1 to 0 and 0 to 1, and it must preserve the orientation on the real line, it follows that
↵� 2 Lm. Set Fix↵�(T ) ⇢ Fix(T ) the set of those e� 2 Fix(T ) with ↵e� = ↵� (so � 2 Fix↵�(T )).

Case (1), that is, n + 1 = m(r + 1). If r = 0, then the tuple (�1, . . . , �n�2) 2 Fix↵�(T ) is
uniquely determined by ↵�. If r = 1, then (�1, . . . , �n�2) 2 Fix↵�(T ) is uniquely determined
by ↵� and �2m�3 2 ⌦3. If r � 2, then the tuple (�1, �2, �3, . . . , �n�2) 2 Fix↵�(T ) is uniquely
determined by the tuple (�2m�3, �3m�3, . . . , �(r+1)m�3 = �n�2) 2 ⌦r+2. In this way, Fix↵�(T )
is homeomorphic to ⌦r+2 (where ⌦2 is just a singleton), and the number of connected
components of Fix(T ) is the cardinality of Lm, that is, '(m)/2.

Case (2), that is, n = m(r + 1). If r = 0, the tuple (�1, . . . , �n�2) 2 Fix↵�(T )
is uniquely determined by ↵� and the value of �n�2 2 Fix(M�,�). If r = 1, then
(�1, . . . , �n�2) 2 Fix↵�(T ) is uniquely determined by ↵�, �2m�3 2 ⌦3, and �n�2 2 Fix(M�,�).
If r � 2, then the tuple (�1, �2, �3, . . . , �n�2) 2 Fix↵�(T ) is uniquely determined by the
tuple (�2m�3, �3m�3, . . . , �(r+1)m�3 = �n�3) 2 ⌦r+2 and �n�2 2 Fix(M�,�). In this way, we
obtain that Fix↵�(T ) is homeomorphic to two disjoint copies of ⌦r+2. These two compo-
nents are permuted by the element ⇥n(⌧), where ⌧ 2 Sn+1 is such that ⌧�1�⌧ = ��1 (so,
⇥n(⌧) � T �⇥n(⌧)�1 = T

�1). In this way, the number of connected components of Fix(T ) is
two times the cardinality of Lm, that is, '(m).
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Case (3), that is, n � 1 = m(r + 1). If r = 0, the tuple (�1, . . . , �n�2) 2 Fix↵�(T ) is
uniquely determined by ↵�, and the value of the pair (�n�3, �n�2) 2

n
(p
�
�,�, p

+
�,�), (p

+
�,�, p

�
�,�)

o
.

If r = 1, then the tuple (�1, . . . , �n�2) 2 Fix↵�(T ) is uniquely determined by ↵�, the
value of �2m�3 2 ⌦3, and the valuer of the pair (�n�3, �n�2) 2

n
(p
�
�,�, p

+
�,�), (p

+
�,�, p

�
�,�)

o
.

If r � 2, then the tuple (�1, �2, �3, . . . , �n�2) 2 Fix↵�(T ) is uniquely determined by the tuple
(�2m�3, �3m�3, . . . , �(r+1)m�3) 2 ⌦r+2 and (�n�3, �n�2) 2

n
(p
�
�,�, p

+
�,�), (p

+
�,�, p

�
�,�)

o
. We obtain

that Fix↵�(T ) is homeomorphic to two disjoint copies of ⌦r+2. These two components are
permuted by an element ⇥(⌧) conjugating T to its inverse (as in the previous case). Again,
the number of connected components of Fix(T ) is two times the cardinality of Lm, that is,
'(m).

Let �, µ 2 Fix(T ) in di↵erent connected components. There are integers ↵�,↵µ 2 Lm

such that M�,� = R
↵�
� and M�,µ = R

↵µ
µ , where R� (respectively, Rµ) is the Möbius transfor-

mation of order m fixing the points p�,� and p�,� (respectively, fixing the points p�,µ and
p�,µ) which is rotation at angle 2⇡/m at p�,� (respectively, rotation at angle 2⇡/m at p�,µ).
It follows that there are integers ��, �µ 2 {1, . . . ,m � 1}, relatively primes to m, so that
R� = M

��
�,� and Rµ = M

�µ
�,µ (in fact, ↵��� ⌘ 1 mod(m) and ↵µ�µ ⌘ 1 mod(m)). The image

under ⇥n � ⇠� of the transformation R� is T
�� and the image under ⇥n � ⇠µ of Rµ is T

�µ .
As T

�� and T
�µ both generates the cyclic group hT i, there is an element S 2 Gn such that

S �T
�� �S

�1 = T
�µ . It happens that S sends the set Fix↵�(T ) containing � to the set Fix↵µ(T )

containing µ. ⇤

Corollary 2. Let T = ⇥n(�) 2 Gn, of order m � 2, with fixed points in ⌦n, where n � 4,

and let r � 0 be such that in the decomposition of � there are (r + 1) cycles of length

m. Then the projection ⇡n(Fix(T )) = Bm,r ⇢ ⌦n/Gn is a connected complex orbifold of

dimension r.

Next, we will see an example of Theorem 5 for m � 4.

Example 21 (m � 4 case (1)). Let n = 6, m = 7. Then � = (1, 2, 3, 4, 5, 6, 7) (� does not
fix any point), T = ⇥6(�),

M�,�(x) =
�4

�4 � x
,

and

T (�1, �2, �3, �4) =
 

�4

�4 � 1
,

�4

�4 � �1
,

�4

�4 � �2
,

�4

�4 � �3

!
.

As L7 = {1, 2, 3}, then Fix(T ) has three connected components, that is,

Fix(T ) = Fix1(T ) [ Fix2(T ) [ Fix3(T ),

where
Fix1(T ) =

�
�1 := (�1,1, �1,2, �1,3, �1,4)

 
,
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Fix2(T ) = {�2 := (�2,1, �2,2, �2,3, �2,4)}

and

Fix3(T ) = {�3 := (�3,1, �3,2, �3,3, �3,4)},

where �1,4, �2,4 and �3,4 correspond to the roots of the cubic equation x
3 � 5x

2 + 6x � 1 = 0
(these are x1, x2 and x3 respectively), and for j = 1, 2, 3 we get � j,1, � j,2 and � j,3 as:

� j,1 =
� j,4

(� j,4 � 1)
,

� j,2 =
(� j,4 � 1)
(� j,4 � 2)

,

and

� j,3 =
� j,4

(� j,4 � � j,2)
,

So, we have that

M�,�1(x) =
�1,4

�1,4 � x
,

M�,�2(x) =
�2,4

�2,4 � x
,

and

M�,�3(x) =
�3,4

�3,4 � x
.

And the fixed points are:

Fix(M�,�1) = {p+�,�1
, p��,�1

},

Fix(M�,�2) = {p+�,�2
, p��,�2

}

Fix(M�,�3) = {p+�,�3
, p��,�1

}.

Look the following figures that indicate the rotations of each M�,� j
with respect to its fixed

point p
+
�,� j

, where j = 1, 2, 3. In the three cases we have that each M�,� j
leaves invariant of

collection C� j
= {1, 0, 1, � j,1, � j,2, � j,3, � j,4} sending 1 7! 0 7! 1 7! � j,1 7! � j,2 7! � j,3 7!

� j,4 7! 1.
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0 1 �1,1 �1,2 �1,3 �1,4

p
+
�,�1

1

✓1 =
2⇡
7

Figure III.6. Rotation M�,�1 with angle of rotation ✓1 =
2⇡
7

0 1 �2,1�2,2 �2,3 �2,4

p
+
�,�2

1

✓2 =
4⇡
7

✓2

Figure III.7. Rotation M�,�2 with angle of rotation ✓2 =
4⇡
7
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0 1�3,1 �3,2�3,3 �3,4

p
+
�,�3

1

✓3 =
6⇡
7

✓3

Figure III.8. Rotation M�,�3 with angle of rotation ✓3 =
6⇡
7

As, M�,�1 = R�1 , M�,�2 = R
2
�2

and M�,�3 = R
3
�3

with R�1 , R�2 and R�3 are rotations of
order m = 7. Also we have that M

1
�,�1
= R�1 , M

4
�,�2
= R�2 and M

5
�,�3
= R�3 , then, to R�1

corresponds to the application T
1 2 G6, to R�2 corresponds to the application T

4 2 G6 and
to R�3 corresponds to the application T

5 2 G6.
The application S 2 G6 such that permute the connected components Fix1(T ) and

Fix2(T ), this is, S (Fix1(T )) = (Fix2(T )) satisfies that S � T
1
S
�1 = T

4, so, we must find
the permutation ⌧ 2 S7 such that ⌧�1�1⌧ = �4. We have that ⌧ = (1, 7, 3)(2, 4, 5) , with
this, to the permutation ⌧ corresponds the application,

S (�1, �2, �3, �4) =
 
�2(�4 � 1)
(�4 � �2)

,
(�1 � �2)(�4 � 1)
(�1 � 1)(�4 � �2)

,
(�3 � �2)(�4 � 1)
(�3 � 1)(�4 � �2)

,
(�4 � 1)
(�4 � �2)

!
,

which sends �1 in �2.
Similarly, to find Q 2 G6 such that permute the connected components Fix2(T ) and

Fix3(T ), we should find the permutation � 2 S7 such that ��1�4� = �5. We have that
� = (1, 2, 5, 7, 6, 3) , with this, to the permutation � corresponds the application,

Q(�1, �2, �3, �4) =
 
�3 � 1
�1 � 1

, 1 � �3,
�3 � 1
�4 � 1

,
�3 � 1
�2 � 1

!
,

which sends �2 in �3, therefore ⇡n(Fix(T )) = B7,0 is connected.

Remark 9 (On Patterson’s theorem). Let us assume n � 6. Part (1) on the above theorem
asserts that the locus of fixed points of a non-trivial element ⇥n(�) 2 Gn has dimension r,
where � is a product of (r + 1) disjoint cycles, each one of length m � 2, with (r + 1)m 2
{n � 1, n, n + 1}. It can be checked that n � 4 � r, so the codimension of the locus of fixed
points is at least two and, in particular, that B0,[n+1] has codimension at least two. It follows
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from [44] that the singular locus of M0,[n+1] coincides with the branch locus, obtaining
Patterson’s theorem [43, Theorem 3].

III.1.2. Main theorem connectivity of the Branch locus.

Theorem 6. The branch locus B0,[n+1] is connected if either (i) n � 4 is even or (ii) n � 6
is divisible by 3. It has exactly two connected components otherwise.

Proof. (A). Let us denote by B2 the locus in ⌦n/Gn obtained as the projection of those
points being fixed by some involution. We proceed to see that it is a connected set. For
n � 4 even, there is only one conjugacy class of involutions in Gn with fixed points, this
corresponding to the permutation

� = (1, 2)(3, 4) · · · (n � 1, n)(n + 1).

So B2 = ⇡n(Fix(⇥n(�))) = B2,(n�2)/2, which is connected. Let us now assume n � 5 to
be odd. In this case, there are two conjugacy classes of involutions in Gn with fixed points,
these corresponding to the following two permutations in Sn+1:

�1 = (1, 2)(3, 4) · · · (n � 2, n � 1)(n)(n + 1)

�2 =

(
(1, 2s + 1)(2, 2s + 2) · · · (2s � 1, 4s � 1)(2s, 4s)(n, n + 1), n = 4s + 1
(1, 2s + 1)(2, 2s + 2) · · · (2s � 1, 4s � 1)(2s, 4s)(n � 2, n � 1)(n, n + 1), n = 4s + 3

The involutions ⇥n(�1) and ⇥n(�2) induce, respectively, the connected sets B2,(n�3)/2
and B2,(n�1)/2 in ⌦n/Gn, so B2 = B2,(n�3)/2 [B2,(n�1)/2. In order to get the connectivity of B2,
we proceed to show that B2,(n�3)/2 \ B2,(n�1)/2 , ;.

As h�1,�2i � C
2
2, we have that V4 := h⇥n(�1),⇥n(�2)i � C

2
2. First, let us observe that

[� = (�1, . . . , �n�2)] 2 B2,(n�3)/2 \ B2,(n�1)/2 if and only if the set C� = {1, 0, 1, �1, . . . , �n�2}
is invariant under the Möbius trasnformations M1(x) = �1/x and M2(x) = (�2s � �2s�2)(x �
�2s�1)/(�2s � �2s�1)(x � �2s�2) (and none of the points in the set C� is fixed by M2). For
instance, invariance under M1 is guaranteed if �2 j = �1/�2 j+1, for j = 1, . . . , (n � 5)/2,
�n�3 =

p
�1 and �n�2 = �

p
�1. In this way, we have freedom in the choices for the

parameters �1, �3, �5, . . . , �n�6, �n�4. Now, assuming the above conditions, M2 has order two
exactly if �1��2s�1�2s+1��2s�1+�2s+1 = 0. Under this extra assumption, we also have that
hM1,M2i � C

2
2, M2(0) = �2s�1 and M2(�1) = �2s+1. If we set �3 = M2(�2s+3), . . . , �2s�3 =

M2(�4s�3) and, in the case n = 4s+3, the points �n�4 and �n�5 are the fixed points of M2�M1,
that �2s�1 ±

q
�2

2s�1 � �1, then C� will be invariant under hM1,M2i � C
2
2 as desired.

In the figure III.9, for n is odd, the two possible cases for �1 and �2 are shown, as well
as the distribution of points in the sphere. In this figure the rotations are observed M�1 and
M�2 associated with �1 and �2 respectively and as the collection remains invariant under
the action of the dihedral group D2 = C

2
2 � hM�1 ,M�2i.
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�1 = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11)(12) �1 = (1, 2)(3, 4)(5, 6)(7, 8)(9)(10)
�2 = (1, 5)(2, 6)(3, 7)(4, 8)(9, 10)(11, 12) �2 = (1, 5)(2, 6)(3, 7)(4, 8)(9, 10)

n = 11(n = 4s + 3) n = 9(n = 4s + 1)

Figure III.9. When n is odd, Z2 grows to a dihedral D2.

(B). Let T 2 Gn be of even order 2k, where k � 1. If � 2 Fix(T ), then � is fixed under the
involution T

k, in particular, ⇡n(Fix(T )) intersects B2.

(C). If T = ⇥n(�) has odd order m � 3, then we may assume, up to conjugation, that
(1) � = (1, 2, . . . ,m) · · · (rm + 1, . . . , (r + 1)m), if n = (r + 1)m � 1.
(2) � = (1, 2, . . . ,m) · · · (rm + 1, . . . , (r + 1)m)(n + 1), if n = (r + 1)m.
(3) � = (1, 2, . . . ,m) · · · (rm + 1, . . . , (r + 1)m)(n)(n + 1), if n = (r + 1)m + 1.

As before, ⇡n(Fix(T )) = Bm,r. Let ⌧ 2 Sn+1 be the permutation, of order (r + 1)m,
defined as

⌧(lm + j) = (l + 1)m + j, j = 1, . . . ,m, l = 0, . . . , r � 1,
⌧(rm + j) = j + 1, j = 1, . . . ,m � 1, ⌧((r + 1)m) = 1.

In this way the permutation ⌧ is the permutation of a cycle, whose matrix representation
is as follows:

⌧ =

 
1 2 . . . m m + 1 m + 2 . . . 2m . . . rm + 1 rm + 2 . . . (r + 1)m

m + 1 m + 2 . . . 2m 2m + 1 2m + 2 . . . 3m . . . 2 3 . . . 1

!

That is, the permutation ⌧ sends each cycle of length m to the Ecuator circle (see the
Figure: III.10 (b)).
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(a) To the permutacion � corre-
sponds the rotation M� of order m.

M⌧

M⌘

M⌧ � M⌘

1

611271238

13 4 9 14 5 1015

16
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(b) To the permutacion ⌧ corresponds the rotation
M⌧ of order (r + 1)m. And hM⌧,M⌘i � D(r+1)m.

Figure III.10. (C) The relation between the permutations � and ⌧ is � = ⌧r+1.

Remark 10. (a) Note that ⇥n(⌧) has a non-empty locus of fixed points, contained inside
the locus of fixed points of T , and: (i) for n = (r + 1)m � 1, ⌧ does not fixes any of the
symbols, (ii) for n = (r + 1)m, ⌧ only fixes n + 1 and (iii) for n = (r + 1)m + 1, ⌧ only fixes
n and n + 1. (b) It can be seen that � = ⌧r+1, in particular, that B(r+1)m,0 \ Bm,r , ;. (c) If
n 2 {(r + 1)m � 1, (r + 1)m + 1}, then there is a permutation ⌘ 2 Sn+1 of order two (of the
same conjugacy class of either �1 or �2) such that h⌧, ⌘i � D(r+1)m.

As a consequence of part (c) of Remark 10, if � is as in cases (1) or (3), then B(r+1)m,0
intersects B2. Now, part (b) of the same remark asserts that Bm,r \ B(r+1)m,0 , ;. It follows
that the sub-locus of B0,[n+1], consisiting of the projections under ⇡n of the points being
fixed by those automorphisms ⇥n(�), where � is either as in (1) or (3), is connected.

In order to obtain connectivity (or not) of B0,[n+1], we need to study the locus of fixed
points of those automorphisms coming from situation (2) above. So, let us assume n =
(r + 1)m and � as in (2).

The case n � 4 even. By part (b) of Remark 10, Bm,r \ B(r+1)m,0 , ;, and by (B)
B(r+1)m,0 \ B2 , ;. All the above then asserts that B0,[n+1] is connected.

The case n � 5 odd. In this case, r � 0 is even and m � 3 odd. If Bm,r \ B2 , ;,
then there is a point � 2 Fix(T ) \ Fix(S ), where S = ⇥n(⇢), ⇢ 2 Sn+1 is in the same
conjugacy class of either �1 or �2 (so it has no fixed points or exactly two), and h�, ⇢i being
isomorphic to either a cyclic group, a dihedral group, A4, A5 or S4. The cyclic situation
cannot happen as, in this case, ⇢ should also have only one fixed point, a contradiction. In
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the dihedral situation, ⇢will have to permute two fixed points of�, again a contradiction. In
the casesS4 andA5, there should be an involution in h�, ⇢i permuting two fixed points of�,
a contradiction. So the only possible situation is h�, ⇢i � A4, m = 3 and n = 3(1+2(s+2t)),
for a suitable s 2 {0, 1} and t � 0, in which case, B3,2(s+2t) \ B2 , ;. As, by part (b) of
Remark 10, B3,2(s+2t) \ Bn,0 , ;, we again obtain connectivity of B0,[n+1] in the case n is
divisible by 3.

In the complementary cases, that is, for n � 5 odd, relatively prime to 3, there is
not a permutation in Sn+1 (in the conjugacy class of either �1 or �2) normalising h�i, in
particular, Bm,r\B2 = ;, for all possibilities n = m(r+1). AsBn,0\Bm,r , ;, we obtain that
B0,[n+1] has exactly two connected components (one containing B2 and the other containing
Bn,0).

⇤

Next we will see two examples for n odd, in the first case we have that the branch locus
has two connected components since n is not divisible by 3 and in the second example, n is
divisible by 3, thus the branch locus is connected.

Example 22 (Theorem 6, n odd not divisible by 3). Let n = 11, then n + 1 =
12 and we have that the cyclic groups admissible as stabilizers of � 2 ⌦11 are
C2,C3,C4,C5,C6,C10,C11,C12 ⇢ S12. Now we will analyze cases (A), (B) and (C) of
the proof of the previous theorem.

(A)For m = 2, in this case, there are two conjugacy classes of involutions in G11 corre-
sponding to the permutations �1 and �2:

�1 = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)

�2 = (1, 5)(2, 6)(3, 7)(4, 8)(9, 10)(11, 12)

with this B2 = B2,4 [ B2,5 is connected.
(B)If m is even, this is if m 2 {4, 6, 10, 12},we have that each of the projections

B4,2,B6,1,B10,0,B12,0 intersects with B2.
(C)If T = ⇥11(�) has odd order m � 3, this is if m 2 {3, 5, 11}, each associated permu-

tation corresponds to case (1), (3) and (2) respectively,

m = 3 � = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12) case(1), r = 3
m = 5 � = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)(11)(12) case(3), r = 1

m = 11 � = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)(12) case(2), r = 0

so, for m = 3 or m = 5, we have that B3,3 \ B12,0 , ; and B5,1 \ B10,0 , ;. For m = 11,
we have that B11,0 \ B2 = ;. Therefore we have two connected components (see the next
figure).
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B2

B4,2B6,1

B10,0 B12,0

B5,1 B3,3

B11,0

Figure III.11. Example conectivity of the Branch locus, n=11 , two con-
nected components

Example 23 (Theorem 6, n odd divisible by 3). Let n = 27, then n + 1 =
28 and we have that the cyclic groups admissible as stabilizers of � 2 ⌦27 are
C2,C3,C4,C7,C9,C13,C14,C26,C27,C28 ⇢ S28. Now we will analyze cases (A), (B) and
(C) of the proof of the previous theorem.

(A)For m = 2, we have that B2 is connected.
(B)If m is even, this is if m 2 {4, 14, 26, 28},we have that each of the projections

B4,6,B14,1,B26,0,B28,0 intersects with B2.
(C)If T = ⇥27(�) has odd order m � 3, this is if m 2 {3, 7, 9, 13, 27}, each associated

permutation corresponds the following cases:

m = 3 � = (1, 2, 3)...(25, 26, 27)(28) case(2), r = 8
m = 7 � = (1, ..., 7)...(22, 23, 24, 25, 26, 27, 28) case(1), r = 3
m = 9 � = (1, ..., 9)...(19, 20, 21, 22, 23, 24, 25, 26, 27)(28) case(2), r = 2

m = 13 � = (1, ..., 13)(14, .., 26)(27)(28) case(3), r = 1
m = 27 � = (1, ..., 27)(28) case(2), r = 0

so, for m = 7 and m = 13 (this is case (1) and (3)), we have that B7,3 \ B28,0 , ;
and B13,1 \ B26,0 , ;. For m = 3, we have that B3,8 \ B2 , ;, also B3,8 \ B27,0 , ; and
B9,2 \ B27,0 , ; . Therefore we have the connectivity of the branch locus B0,[28].
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B2

B4,6B14,1

B26,0 B28,0

B13,1 B7,3

B27,0

B3,8 B9,2

Figure III.12. Example conectivity of the Branch locus, n=27 , one con-
nected component

III.2. The connectivity of the real locus

In this section we will present the results regarding the connectivity of the real locus,
then we enunciate the main theorem:

Theorem 7. If n � 4, then the following hold.

(1) The space ⌦n has exactly [(n + 3)/2] symmetries.

(2) The locus of fixed points of a symmetry of ⌦n is non-empty and each of its con-

nected components is a real submanifold of real dimension n � 2.

(3) If n is even, then the projection inM0,[n+1] of the locus of fixed points of a symmetry

of ⌦n is a connected real orbifold of dimension n � 2. If n is odd, then the same

holds for a symmetry, with the exception of those conjugated to

S (z1, . . . , zn�2) =
 
z1,

z1

z3
,

z1

z2
,

z1

z5
,

z1

z4
, . . . ,

z1

zn�2
,

z1

zn�3

!
,

for which the projection of its fixed points has two connected components, each

one intersecting the projection of fixed points of the symmetry J(z1, . . . , zn�2) =
(z1, . . . , zn�2).

(4) The real locus MR0,[n+1] is connected for n � 5 odd and it is not connected for

n = 2r, r � 5 odd. If p � 5 is a prime, then MR0,[2p+1] has exactly (p � 1)/2
connected components.

As a consequence of Remark 7, the above permits to obtain the following connectivity
property of the locus of the real points of moduli space.
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Corollary 3. If n = 2r, where r � 5 is odd, thenM0,[n+1](R) =MR0,[n+1] is not connected. If

n � 5 is odd, thenM0,[n+1](R) is connected.

In this section we proceed to prove Theorem 7.

III.2.1. Proof of Part (1) of Theorem 7. As previously noted, a symmetry of ⌦n has
the form T � J, where T = ⇥n(�) 2 Gn satisfies that T

2 = I (that is, �2 is the identity
permutation). As J commutes with every element of Gn, two symmetries S 1 = T1 � J and
S 2 = T2 � J are conjugated by elements of Gn if and only if the elements T1 and T2 are
conjugated. It follows that the number of symmetries, up to conjugation by holomorphic
automorphisms, is equal to one plus the number of conjugacy classes of elements of order
two in the symmetric group Sn+1, that is, [(n + 3)/2] (this provides part (1) of Theorem 7).

III.2.2. Proof of Part (2) of Theorem 7. Up to conjugacy, we may assume

� = (1, 2)(3, 4) · · · (2� � 1, 2�)(2� + 1) · · · (n + 1), � 2 {0, 1, . . . , [(n + 1)/2]},
where for � = 0 we mean � the identity permutation. In this case,
(III.1)

T (�1, . . . , �n�2) =

8>>>>>>><
>>>>>>>:

(�1, . . . , �n�2), � = 0.⇣
1
�1
, 1
�2
, . . . , 1

�n�2

⌘
, � = 1.⇣

�1,
�1
�2
, �1
�3
, . . . , �1

�n�2

⌘
, � = 2.⇣

�1,
�1
�3
, �1
�2
, �1
�5
, �1
�4
. . . , �1

�2s+1
, �1
�2s

, �1
�2s+2
, �1
�2s+3
, �1
�n�2

⌘
, s = � � 2, � � 3.

and

(III.2) S (�1, . . . , �n�2) =

8>>>>>>>>>>><
>>>>>>>>>>>:

(�1, . . . , �n�2), � = 0.✓
1
�1
, 1
�2
, . . . , 1

�n�2

◆
, � = 1.

✓
�1,

�1
�2
, �1
�3
, . . . , �1

�n�2

◆
, � = 2.

✓
�1,

�1
�3
, �1
�2
, . . . , �1

�2s+1
, �1
�2s

, �1
�2s+2
, �1
�2s+3
, �1
�n�2

◆
, s = � � 2, � � 3.

Let us denote by Fix(S ) ⇢ ⌦n the locus of fixed points of a symmetry S . The real locus
MR0,[n+1] ⇢ ⌦n/Gn is the union of all the ⇡n-images of these fixed sets. Set F0 = ⇡n(Fix(J)).

Proposition 3. If S is a symmetry of ⌦n, then Fix(S ) , ; and every connected component

of Fix(S ) is a real submanifold, of dimension n � 2.

Proof. Up to conjugation by a suitable element of Gn, we may assume S = T � J,
where T and S have the forms as in (III.1) and (III.2), respectively. In this way, � =
(�1, . . . , �n�2) 2 ⌦n is a fixed point of S if and only if T (�) = �. Now, as Fix(J) =
⌦n \ Rn�2 , ;, we only need to take care of the case when T is di↵erent from the identity
(so of order two). Let � = (�1, . . . , �n�2) 2 ⌦n. If � = 1, then � 2 Fix(S ) if and only
if |� j| = 1, j = 1, . . . n � 2. If � = 2, then � 2 Fix(S ) if and only if �1 2 (0,+1) \
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{1}, |� j| =
p
�1, j = 2, . . . , n � 2. If � � 3, then � 2 Fix(S ) if and only if �1 2 (0,+1) \ {1},

�3 =
�1
�2
, �5 =

�1
�4
, . . . , �2s+1 =

�1
�2s

, and |� j| =
p
�1, j = 2s + 2, . . . , n � 2. As in any of the

above situations, the equations on the coordinates have solution, so we are done (see also
Remark 11). ⇤

III.2.3. Proof of Part (3) of Theorem 7.

Remark 11 (Fixed points description). The above proof also permits to obtain a descrip-
tion of the locus of fixed points of the symmetries of ⌦n. For each � = (�1, . . . , �n�2) 2 ⌦n

we set C� = {p1 = 1, p2 = 0, p3 = 1, p4 = �1, . . . , pn+1 = �n�2}. Let us consider a sym-
metry S = ⇥n(�) � J, where � 2 Sn+1 is either the identity or a permutation of order two.
Then

(1) If � is the identity, that is, S = J, then � 2 Fix(S ) if and only if C� ⇢ R [ {1},
that is, C� is point-wise fixed by the usual complex conjugation map x 7! x. In this case,
the connected components of fixed points corresponds to all possible orderings that the
collection {�1, . . . , �n�2} has in R � {0, 1}. To be more precise, let L be the collection of
triples (I1, I2, I3), where I1 = (i1, . . . , ia), I2 = (ia+1, . . . , ia+b), I3 = (ia+b+1, . . . , in�2) and
{i1, . . . , in�2} = {1, . . . , n � 2} (we permit some of them to be empty tuples). For each tuple
(I1, I2, I3) 2 L we let L(I1, I2, I3) be the set of points (�1, . . . , �n�2) 2 Fix(J) = ⌦n \ Rn�2

such that �i1 < · · · < �ia
< 0 < �ia+1 < · · · < �ia+b

< 1 < �ia+b+1 < · · · < �in�2 . We may observe
that Fix(J) is the disjoint union of all the sets L(I1, I2, I3), where (I1, I2, I3) 2 L. Observe
that, for a given tuple (I1, I2, I3) 2 L as above, we may find an element T = ⇥n(�) 2 Gn

(where the permutation � is chosen to keep fix each of the indices 1, 2 and 3) such that
T (L(I1, I2, I3)) = L((1, . . . , a), (a + 1, . . . , a + b), (a + b + 1, . . . , n � 2)) := L. Now, given a
point (�1, . . . , �n�2) 2 L, we have the ordered collection

�1 < · · · < �a < 0 < �a+1 < · · · < �a+b < 1 < �a+b+1 < · · · < �n�2.

We may find a Möbius transformation in PSL2(R) sending �n�4 to 0, �n�3 to 1 and
�n�2 to 1. Such a Möbius transformation induces an element T 2 Gn that sends L to
L((1, 2, . . . , n � 2), ;, ;). This permits to observe that all the connected components of
Fix(J) are Gn-equivalent.

(2) If � has order two, it is a product of � � 1 disjoint transpositions, 2� < n + 1, and
fixes each of the points { j1, . . . , jn+1�2�} ⇢ {1, . . . , n+1}, then � 2 Fix(S ) if and only if there
is a reflection (that is, conjugated to z 7! z) keeping invariant the set C� and fixing exactly
the n + 1 � 2� points pj1 , . . . pjn+1�2� . In this case, the connected components of fixed points
corresponds to all possible ordering that the collection {pj1 , . . . pjn+1�2�} has in the circle of
fixed points of the reflection.

In the following figure, we see an example for n = 6, the collection of points C� in the
extended complex plane bC = C[ {1} is invariant under the reflection z 7! �1/z (conjugated
to z 7! 1/z and z 7! z), fixing the points in the circle of radius

p
�1 and permuting two to

two the rest the points.
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�2
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�4

�6
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z 7! �1

z

p
�1

Figure III.13. Collection of points in bC = C [ {1} invariant under the re-

flection z 7! �1

z
, with �1 2 (0,+1) r {1}

(3) If n � 5 is odd, 2� = n + 1, and � is a product of � disjoint transpositions,this is, �
does not fix points, then � 2 Fix(S ) if and only if there is either an imaginary reflection (that
is, conjugated to z 7! �1/z) or a reflection keeping invariant the set C� (and the reflection
fixing none of them). By considering the model of S as in (III.2), we observe that Fix(S )
has exactly three connected components:

A1 :=
(

(�1, . . . , �n�2) 2 ⌦n : �1 2 (�1, 0), �2k+1 =
�1

�2k

, k = 1, . . . , (n � 3)/2
)

A2 :=
(

(�1, . . . , �n�2) 2 ⌦n : �1 2 (0, 1), �2k+1 =
�1

�2k

, k = 1, . . . , (n � 3)/2
)

A3 :=
(

(�1, . . . , �n�2) 2 ⌦n : �1 2 (1,1), �2k+1 =
�1

�2k

, k = 1, . . . , (n � 3)/2
)

The component A1 corresponds to the imaginary reflection case and the others two, A2
and A3, to the reflection one. The automorphism L(�1, . . . , �n�2) = (��1

1 , �
�1
2 , . . . , �

�1
n�2) 2 Gn

normalizes S and permutes A2 with A3. We may observe that inside each Aj there are
points with all of its coordinates being real, in particular, Aj \ Fix(J) , ;. It follows, from
Proposition 3, that ⇡n(Fix(S )) consists of exactly two real analytic submanifolds ⇡n(A1) and
⇡n(A2) = ⇡n(A3), each one of dimension n � 2, each one intersecting F0.

In the following figures (figures III.14 and III.15) we can see an example of elements
of the connected components A1, A2 and A3 for n = 9, seen as collections of points in the
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extended complex plane bC = C[{1}, each collection remains invariant under the reflection
z 7! �1/z with �1 < 0, 0 < �1 < 1 and �1 > 1 respectively, furthermore it is observed how
the application L(z1, ..., z7) = (1/z1, ..., 1/z7) 2 G9 sends the element

� =

 
1
4
,

1 � i

4
,

1 � i

2
,�1 + i

4
,�1 + i

2
,
�1 + i

5
,
�5 + 5i

8

!

of the connected component A2 into another element

�̃ =

 
4, 2 + 2i, 1 + i,�2 + 2i,�1 + i,

�5 � 5i

2
,
�4 � 4i

5

!

of the connected component A3 (see the figures III.15 (a) and (b)).

0 1 1�1

�3

�2

�5

�4

�7

�6

z 7! �1

z

Figure III.14. Configuration of points of the connected component A1 in-
variants under z 7! �1/z with �1 < 0
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z

(a) A2: Collection of points in bC invariant under the reflec-

tion z 7! �1

z
, with 0 < �1 < 1.

0 1 1b�1

b�3

b�2

b�5

b�4

b�6

b�7

z! �̃1

z

p
�̃1

(b) A3: Collection of points in bC invariant under the reflec-

tion z 7! �̃1

z
, with �̃1 > 1.

Figure III.15. The application L(z1, ..., z7) = (1/z1, ..., 1/z7) sends the com-
ponent A2 in A3, so they are G9�equivalents. Note that T (z) = 1/z conju-
gates z 7! �/z to z 7! ��1/z.
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Proposition 4. Let S = ⇥n(�) � J be a symmetry of ⌦n, where n � 4, and let � 2
{0, 1, . . . , [(n + 1)/2]} be such that � is the product of � transpositions.

(1) If 2� , n+1 and F1 and F2 are any two connected components of the locus of fixed

points of S , then there is an element L 2 Gn, normalizing S , such that L(F1) = F2.

In particular, the locus F� := ⇡n(Fix(S )) is a connected real orbifold of dimension

n � 2.

(2) If 2� = n + 1, then Fix(S ) consists of three connected components, A1, A2 and

A3 (as described in Remark 11). There is an element L 2 Gn, of order two and

normalizing S , permuting the two components A2 and A3. There is no element of

Gn that normalizes S and sending A1 to any of the other two. Each Aj intersects

Fix(J). In particular, ⇡n(Fix(S )) consists of two connected real orbifolds of dimen-

sion n � 2, say ⇡n(A1) and F(n+1)/2 := ⇡n(A2) = ⇡n(A3), each of them intersection

F0. Moreover, if n � 5 is odd, then ⇡n(A1) \ F� , ;.

Proof. Up to conjugation, we may assume S to be as in (III.2). Part (1), for the case
� = 0 (respectively, part (2)) was already observed in part (1) (respectively, part (3)) of
Remark 11.

Let us prove part (1) for � > 0. In the case � = 1, we may see that the di↵erent
connected components of Fix(S ) correspond to the many di↵erent ways to display the
values �1, . . . , �n�2 in the unit circle. But, by considering permutations of the form ⌧ =
(1)(2)(3)b⌧ 2 Sn+1, we may see that ⇥n(⌧) normalises the symmetry S and permutes these
connected components. The situation is similar for cases � = 2 and � � 3. In the first case
we need to use the permutations of the form ⌧ = (1)(2)(3)(4)b⌧, ⌧ = (1)(2)(3, 4)b⌧ 2 Sn+1 and
in the second one case we need to use permutations of the form ⌧ = (1)(2)(3)(4)⌧1⌧2, ⌧ =
(1)(2)(3, 4)⌧1⌧2 2 Sn+1, where ⌧1 is the identity permutation on the set {5, . . . , 2�} and ⌧2 a
permutation on the set {2� + 1, . . . , n + 1}.

Last part can be checked just by considering the Klein group G = hU(z) = �1/z,V(z) =
1/zi � C

2
2. Then we only need to observe that it is possible to find a G-invariant collection

of n+1 points with the property that n+1�2� are fixed under the reflection V and the other
2� are permuted under it. So the result follows from the fixed point description in Remark
11. ⇤

By Proposition 4 we observe the following. Let S = ⇥n(�) � J be a symmetry of ⌦n

and � 2 {0, 1, . . . , [(n + 1)/2} as above.
(1) If 2� , n + 1, then F� = ⇡n(Fix(S )) is connected.
(2) If n � 5 is odd and 2� = n + 1, then F(n+1)/2 := ⇡n(A2) = ⇡n(A3) and ⇡n(A1) are

both connected, they intersect and ⇡n(Fix(S )) = F(n+1)/2 [ ⇡n(A1).
(3) If n � 4 is even, then the real locusMR0,[n+1] is the union the [(n + 3)/2] connected

real orbifolds F�, where � 2 {0, 1, . . . , [(n + 1)/2]}.
(4) If n � 5 is odd, then the real locus is the union the (n + 1)/2 connected real

orbifolds F�, where � 2 {0, 1, . . . , (n + 1)/2}, together the extra one ⇡n(A1). The
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component F0 intersects both F(n+1)/2 and ⇡n(A1) and, moreover, ⇡n(A1) intersects
all the other ones. In Figure III.16 we see a graph of connectivity of the irreducible
components for this case.

F1 F2 F0 F3

⇡n(A1)

Figure III.16. Real locus connectivity graph for n = 5

The above asserts that in order to study the connectivity of the real locus, we only need
to study the possible intersections between the components F� (for n odd we must also
consider the extra component ⇡n(A1)). We call all these sets the “irreducible” components
ofMR0,[n+1]. The following result provides conditions for two of the irreducible components
F�1 and F�2 to intersect.

Proposition 5. Let �1, �2 2 {0, 1, . . . , [(n + 1)/2]}, �1 , �2. Then F�1 \ F�2 , ; if and only

if there are integers m � 1 and � 2 {0, 1, 2} such that

(III.3) 2m(�1 + �2) = (2m � 1)(n + 1 � �).

Proof. Let us start noting that F�1 \ F�2 , ; is equivalent (see Remark 11) to have a
point � 2 ⌦n such that the set C� is invariant under two reflections, ⌧1 and ⌧2, which are
non-conjugated by a Möbius transformation keeping invariant the collection C� and

(i) ⌧1 fixes pointwise n + 1 � 2�1 of the points and permutes 2�1 of them;
(ii) ⌧2 fixes pointwise n + 1 � 2�2 of the points and permutes 2�2 of them.

The group G = h⌧1, ⌧2i is a subgroup of the stabilizer of C�, so it is a finite group; in
fact a dihedral group of order 2r, where r is the order of ⌧2 � ⌧1. As ⌧1 and ⌧2 are assumed
to be non-conjugated, necessarily r = 2m, for some m � 1. In this way, there must be
non-negative integers �1 and �2 and � 2 {0, 1, 2}, such that on the circle of fixed points of
⌧1 there are 2�1 + � of the points of C� and on the circle of fixed points of ⌧2 we must see
2�2 + � of points of that set, � corresponds to if the fixed points of ⌧1 and ⌧2 intersect, that
is, they could intersect in 1, 2 or no points, with respect to 2�1 and 2�2 are even numbers
because they must be exchanged 2 to 2 with those of the other circle, that is (from first parts
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of (i) and (ii) above),

(⇤) n + 1 � 2�1 = 2�1 + �, n + 1 � 2�2 = 2�2 + �,

and (from the second part of (i) and (ii)) that

(⇤⇤) 2�1 = 2m�2 + (2m � 2)�1, 2�2 = 2m�1 + (2m � 2)�2.

The equation (⇤⇤) is verified because, if we take the first circle of fixed points and
transform it through a Möbius transformations to line L1 and similarly take the other circle
as the line L2, they must intersect, let ⌧1 and ⌧2 be the reflections with respect to lines L1
and L2 respectively as in (i) and (ii) above, such that the order of ⌧2 � ⌧1 is r = 2m, we have
that

2�1 = (r�1 � 2�1) + r�2 = 2m�2 + (2m � 2)�1,

2�2 = (r�2 � 2�2) + r�1 = 2m�1 + (2m � 2)�2,

where (r�1 � 2�1) are the points that are on the lines (⌧2 � ⌧1)k(L1), for k = 1, ..., (r � 1)
and r�2 are the points that are on the lines (⌧2 � ⌧1)k(L2), for k = 0, ..., (r � 1), similarly for
2�2(see next example).

Equalities in (⇤) impliy that

2�1 = n + 1 � 2�1 � �, 2�2 = n + 1 � 2�2 � �.

Plugging these in the equalities in (⇤⇤), we obtain the desired result. ⇤

Below we see an example of the above proposition:

Example 24. Let n = 7, �1 = 2 and �2 = 3, then the collection C� of n + 1 = 8 points is
invariant for the reflections ⌧1 and ⌧2, where ⌧1 fixed pointwise n+1�2�1 = 4 of the points
and permutes 2�1 = 4 of them, similarly ⌧2 fixes pointwise n + 1 � 2�2 = 2 of the points
and permutes 2�2 = 6 of them. Of (⇤) we have that �1 = 1 and �2 = 0 with � = 2 (� fixed
points in common) and by formula III.3 we have that m = 3. Let L1 be the fixed point line
of the reflection ⌧1 related to �1 and let L2 be the fixed point line of the reflection ⌧2 related
to �2, the order of the rotation ⌧2 � ⌧1 is r = 2m = 6, with angle of rotation ✓ = 2⇡/r = ⇡/3
(see the next figure).
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L2

L1

✓ =
⇡

3
⌧2

⌧1

�1

�1

1

1

Figure III.17. Reflections ⌧1 and ⌧2 with respect to the lines L1 and L2

Remark 12. For equation (III.3) to have a solution, necessarily n+ 1� � must be divisible
by 2m, in particular: (i) for n even, we have � = 1 and m a divisor of n/2, and (ii) for n

odd, we have � 2 {0, 2} and m a divisor of (n + 1 � �)/2. So, for instance, (1) F0 \ F1 = ;,
for n � 4, (2) F1 \ F2 , ;, if and only if n 2 {4, 5, 6, 7} and (3) F0 \ F� , ;, if and only if
� 2 {n � 1, n, n + 1}.

III.2.4. Proof of the connectivity ofMR0,[n+1] for n � 5 odd. If � 2 {0, . . . , (n � 1)/2},
then (n � 1)/2 � � 2 {0, . . . , (n � 1)/2} and , by using m = 1 and � = 2 in (III.3), we
obtain that F� \ F(n�1)/2�� , ;. Now, by using m = 1 and � = 0, we obtain that F(n�1)/2�� \
F�+1 , ;. In this way, we may connect using two edges the vertices F� and F�+1, for
� 2 {0, . . . , (n�1)/2}. Since the component ⇡n(A1) intersects F0 (in fact, it intersects all the
other irreducible components), we obtain the connectivity ofMR0,[n+1].

III.2.5. MR0,[n+1] is usually non-connected for n � 4 even. In the case n � 4 even,
the connectivity ofMR0,[n+1] is described by the intersection graph Gn ofMR0,[n+1], whose set
Vn of vertices are the values � 2 {0, 1, . . . , [(n + 1)/2]}. Two di↵erent vertices �1, �2 2 Vn

are joined by an edge if the irreducible components F�1 and F�2 intersect. The intersection
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graph Gn describes how the di↵erent irreducible components intersect. Proposition 5 states
necessary and su�cient conditions for two di↵erent irreducible components to intersect,
in particular, it permits to describe the edges of the graph intersection Gn. Some of these
graphs are despicted in the Figures III.18, III.19 and III.20.

0 3 12

Figure III.18. Intersection graphs G6

051 4

23

Figure III.19. Intersection graphs G10

0

14

1

13

2

12

3114 10

5
9

6
8

7

Figure III.20. Intersection graphs G28

Proposition 6 (Non-connectedness for n = 2r � 4, r odd). If n = 2r, where r � 5 is an

odd integer, thenMR0,[n+1] is not connected. Moreover, for r = p, where p is a prime integer,

the real locusMR0,[2p+1] has exactly (p � 1)/2 connected components.
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Proof. In this case [(n + 1)/2] = r. By formula (III.3) and part (i) in Remark 12, for
�1, �2 2 {0, 1, . . . , r}, �1 , �2, the condition F�1 \ F�2 , ; is equivalent to have �1 + �2 =
(2m � 1)r/m, where m � 1 is a divisor of r (so m must be odd). By taking m = 1, we
obtain that F(r�1)/2 \F(r+1)/2 , ;. We claim that none of these two can intersect other of the
components. We check this for (r � 1)/2 as for the other the argument is similar. Assume
F(r�1)/2 intersects F� for some � , (r + 1)/2. Then, there must be a divisor m � 1 of r such
that (r � 1)/2 + � = (2m � 1)r/m. It follows that � = (m(3r + 1) � 2r)/2m, and as �  r,
it follows that m  2r/(r + 1) < 2, a contradiction. If r = p, where p � 3 is a prime, then
formula (III.3) reads as m(�1 + �2) = (2m � 1)p, so m 2 {1, p}. In this way, F�1 \ F�2 , ;
if and only if �1 + �2 2 {p, 2p � 1}. Using m = 1, we obtain that F� \ Fp�� , ;, for every
� 2 {0, . . . , p}. By using m = p, we obtain that F� \ F2p�1�� , ;, for � 2 {p � 1, p}. It can
be seen that {0, p, p � 1, 1} corresponds to one connected component ofMR0,[2p+1] and the
others correspond to the sets {2, p� 2}, {3, p� 3}, . . . , {(p� 1)/2, (p+ 1)/2}. So, the number
of connected components is exactly (p � 1)/2. ⇤

All the above finishes the proof of Theorem 7.

Remark 13. As it was mentioned by one of the referees of the paper [2], where this part of
the thesis is published, it is possible to state a more precise description of the connectivity
ofMR0,[n+1], for n = 2r and r � 5 odd in a similar way as in Theorem 5. We leave this task
to the curious reader.

Proposition 7. If n = 4p, where p � 2 is a prime integer, thenMR0,[n+1] is not connected if

and only if p � 7.

Proof. If A, B ⇢ {0, . . . , 2p}, a map E : A ! B is called a connectivity operator if
for � 2 A we have that F� \ FE(�) , ;. Formula (III.3) asserts that F�1 \ F�2 , ;, for
�1, �2 2 {0, . . . , 2p}, �1 , �2, if and only if �1 + �2 = (2m� 1)2p/m, where m 2 {1, 2, p, 2p}.
Each of the values of m induces a connectivity operator as follows

E1 : � 2 {0, 1, . . . , 2p} 7! 2p � � 2 {0, 1, . . . , 2p},
E2 : � 2 {p, p + 1, . . . , 2p} 7! 3p � � 2 {p, p + 1, . . . , 2p},
Ep : � 2 {2p � 2, 2p � 1, 2p} 7! 4p � 2 � � 2 {2p � 2, 2p � 1, 2p},
E2p : � 2 {2p � 1, 2p} 7! 4p � 1 � � 2 {2p � 1, 2p}.

Using the above connectivity operators, it can be checked that, for k 2 {3, . . . , p�3} and
p � 7, the vertices in {k, 2p�k, p+k, p�k} defines a connected component. The connectivity
for cases p 2 {2, 3, 5} can be checked directly by the connectivity operators. ⇤

Remark 14. In the case that n = 4r, where r � 1 is odd, but di↵erent from a prime, we may
use Proposition 5 in order to observe thatMR0,[n+1] is connected for r = 1, 9, 15, 21, 27, 33
and it is not connected for r = 25, 35. In particular, all the above permit to see that there are
exactly 32 values of n 2 {4, . . . , 100} having not connected real locus, these values being
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given by 10, 14, 18, 22, 26, 28, 30, 34, 38, 42, 44, 46, 50, 52, 54, 58, 62, 66, 68, 70, 74, 76, 78,
82, 84, 86, 88, 90, 92, 94, 98, 100.

Remark 15 (On the field of moduli and fields of definition). The group Gal(C), of field
automorphisms of C, acts naturally on ⌦n by the following rule: if ⌫ 2 Gal(C) and � =
(�1, . . . , �n�2) 2 ⌦n, then ⌫(�1, . . . , �n�2) := (⌫(�1), . . . , ⌫(�n�2)). The field of moduliM� of
the point � 2 ⌦n is the fixed field of the group {⌫ 2 Gal(C) : ⌫(�) = T (�); some T 2 Gn}. A
field of definition of � is any subfield K of C such that there is an irreducible non-singular
projective algebraic curve X of genus zero defined over K and there is an isomorphism  :
bC ! X such that the set { (1), (0), (1), (�1), . . . , (�n�2)} is invariant under the action
of Gal(C/K) (the subgroup of all those field automorphisms of C acting as the identity on
K). It can be seen thatM� is contained inside every field of definition of it and that it is
the intersection of all its fields of definition [37]. In particular,M�  R if and only � is the
fixed point of an anti-holomorphic automorphism of ⌦n, and R is a field of definition of �
if and only if {1, 0, 1, �1, . . . , �n�2} is kept invariant under an anticonformal involution of
the Riemann sphere, that is, if and only if � is a fixed point of a symmetry of ⌦n. Then, as
observed in Remark 7, if is n � 4 is even, thenM�  R implies that R is a field of definition
for � 2 ⌦n.



CHAPTER IV

Applications

IV.1. Application 1: Generalized Fermat curves of type (k, n)

Definition 21 (Generalized Fermat curves of type (k, n)). A closed Riemann surface S is

called a generalized Fermat curve of type (k, n), where k, n � 2 are integers, if it admits a

group H � C
n

k
of holomorphic automorphisms (see I.2.3.2) such that the quotient orbifold

S/H has genus zero (then you can identify with the Riemann sphere bC) and it has exactly

n + 1 cone points, each one necessarily of order k; we say that H is a generalized Fermat

group of type (k, n). If (k � 1)(n � 1) > 2, then in [29] it was observed that S is non-

hyperelliptic and in [34] it was proved that S has a unique generalized Fermat group of

type (k, n).

As a consequence of the Riemann-Hurwitz formula [40, Theorem 4.16], the genus of a
generalized Fermat curve of type (k, n) is:

(IV.1) g = gk,n = 1 +
k

n�1((k � 1)(n � 1) � 2)
2

.

When gk,n > 1, that is, (k � 1)(n � 1) > 2, it is said that Fermat’s generalized curve of
type (k, n) is hyperbolic (that is, its universal coverage is the hyperbolic plane H, so it is
standardized by a Fuchsian group).

An example of generalized Fermat curve of type (k, 2) is given by the classic Fermat
curve

X = {[x; y; z] 2 P2 : x
k + y

k + z
k = 0} ⇢ P2,

which is hyperbolic when k � 4.

Remark 16. Generalized Fermat curves of type (k, n) of genus gk,n  1 correspond to the
pairs (k, n) 2 {(2, 2), (2, 3), (3, 2)}. These cases will not be considered in this project since
they are very well studied (the Riemann sphere and elliptic curves).

The generalized Fermat curves of the type (k, n) generalize in a certain sense to the
classic curves of Fermat, and the concept of hyperelliptic surface.

59
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IV.1.1. Algebraic description of generalized Fermat curves. Consider the fiber
product of (n � 1) Fermat’s classic curves, that is, an algebraic curve of the form:

(IV.2) Ck(�1, ..., �n�2) :=

8>>>>>>>>><
>>>>>>>>>:

x
k

1 + x
k

2 + x
k

3 = 0
�1x

k

1 + x
k

2 + x
k

4 = 0
[x1; ...; xn+1] 2 Pn : �2x

k

1 + x
k

2 + x
k

5 = 0
...

�n�2x
k

1 + x
k

2 + x
k

n+1 = 0

9>>>>>>>>>=
>>>>>>>>>;

⇢ Pn,

where k � 2, and � j 2 Cr{0, 1} such that � j , �i, for i , j. The conditions in the parameters
� j ensure that Ck(�1, ..., �n�2) is a smooth algebraic curve, then a compact Riemann surface.
In addition, this admits as a subgroup of holomorphic automorphisms to the group H0 � Zn

k
,

which is generated by the linear transformations a1, ..., an 2 GLn+1(Q(!k)), where !k =
e

2⇡i/k and,

aj ([x1; ...; xn+1]) =
h
x1; ...; x j�1;!kx j; x j+1; ...; xn+1

i
, j = 1, ..., n.

If an+1 ([x1; ...; xn+1]) = [x1; ...;!kxn+1], then a1a2...an+1 = 1.

The fixed points of aj, on Ck(�1, ..., �n�2), are given by:

Fix(aj) =
nh

x1; ...; x j�1; 0; x j+1; ...; xn+1

i
2 Ck(�1, ..., �n�2)

o
, j = 1, ...n + 1.

The application:

e⇡ : Ck(�1, ..., �n�2)! bC : [x1; ...; xn+1] 7! �
 

x2

x1

!k

,

is a regular branched covering with deck group H0 such that

e⇡(Fix(a1)) = 1, e⇡(Fix(a2)) = 0, e⇡(Fix(a3)) = 1,

e⇡(Fix(a4)) = �1, ..., e⇡(Fix(an+1)) = �n�2,

i.e., the branched values of e⇡ are {1, 0, 1, �1, ..., �n�2} .

Remark 17. If a point in Ck(�1, ..., �n�2) is fixed by a non-trivial element of H0, then it is
fixed by some aj.

Proposition 8. [29] The Riemann surface defined for Ck(�1, ..., �n�2) is a Generalized Fer-

mat curves of type (k, n) where H0 is a Generalized group of Fermat of type (k, n). Let

AutH0(Ck(�1, ..., �n�2)) the normalizer of H0 en Aut+(Ck(�1, ..., �n�2)). Then,

(1) AutH0(Ck(�1, ..., �n�2))/H0 is isomorphic to the subgroup of Möbius transforma-

tions that preserves the set {1, 0, 1, �1, · · · , �n�2}; and
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(2) AutH0(Ck(�1, ..., �n�2)) < PGL(n + 1,C).

Like every pair of generalized Fermat (S ,H) of type (k, n) is uniquely determined by
the orbifold S/H, we obtain the following description of Fermat pairs of generalized type
(k, n):

Theorem 8. [29] Let S be a generalized Fermat curve of type (k, n), let HS be a generalized

Fermat group of type (k, n) for S and let ⇡ : S ! bC be a regular branched cover with deck

group HS . If p1, . . . , pn+1 are the branch values of ⇡ and M is the Möbius transformation

so that M(p1) = 1,M(p2) = 0,M(p3) = 1,M(p4) = �1, ...,M(pn+1) = �n�2, then S is

isomorphic to Ck(�1, ..., �n�2). Moreover, such an isomorphism can be chosen to sent HS to

the generalized Fermat group H associated to the curve.

Remark 18. The theorem 8 indicates that every Generalized pair of Fermat type (k, n)
you can see, modulo isomorphisms, as a pair (Ck(�1, ..., �n�2),H0), for certain values
�1, . . . , �n�2.

IV.1.2. Hyperbolic generalized Fermat curves. Let S be a hyperbolic generalized
Fermat curve of type (k, n). In [34, 29] it was observed that S has a unique generalized
Fermat group H of type (k, n). Because of the uniqueness of the group H, we have that H is
a normal subgroup of Aut

+(S ). In this way, we can consider the quotient group Aut
+(S )/H

(which is a finite group of transformations of Möbius), called the reduced group of auto-
morphisms of S . As the finite subgroups of Möbius transformations are: the trivial group,
the cyclic group Cn, the dihedral group Dm (from order 2m), the alternating groupsA4 and
A5 and the symmetric group S4 (see, for example, [6, 52]), we have the structure of the
reduced group of holomorphic automorphisms of a hyperbolic generalized Fermat curve of
type (k, n).

As mentioned in IV.2, a compact Riemann surface S of genus g � 2 is called hyper-
elliptic if admit a unique holomorphic involution with exactly 2(g + 1) fixed points, called
the hyperelliptic involution. A hyperbolic generalized Fermat curve of type (k, n) is not
hyperelliptic [29].

IV.1.2.1. Fuchsian representation of hyperbolic generalized Fermat curves. Given a
hyperbolic generalized Fermat curve of type (k, n), we proceed to describe a description of
the pair in terms of Fuchsian groups.

A Fuchsian group � is a discrete subgroup of PSL2(R) (group of holomorphic auto-
morphisms of H), and it is said that � is co-compact if the quotient H/� is a compact
surface.
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Proposition 9. [36] Let � a subgroup of PSL2(R). Then

(1) � is a Fuchsian group if and only if act properly discontinuously on H.

(2) If � is a Fuchsian group, then the quotient H/� is a orbifold and has the Riemann

surface structure for which the canonical projection ⇡ : H ! H/� is a branched

covering.

(3) A Fuchsian group acts freely on H if and only if � it is free of torsion (that is, it

does not have nontrivial elements of finite order). In this case, H/� has no conical

points, that is, it is a Riemann surface (whose fundamental group is isomorphic to

�).

Let (S ,H) be a pair of hyperbolic generalized Fermat of type (k, n). As a consequence
of the Uniformization Theorem of Klein-Koebe-Poincaré, there is a Fuchsian group co-
compact free of torsion L  PSL2(R) such that S � H/L.

If N(L) is the normalizer of L on PSL2(R) (which is a Fuchsian group), then there is a
surjective homomorphism

✓ : N(L)! Aut
+(S )

con Ker(✓) = L. So, N(L)/L � Aut
+(S ).

If � = ✓�1(H), then L  �  N(L) (and � is a Fuchsian group) and

✓ |�: �! H

is a surjective homomorphism with kernel L. So, �/L � H y S/H � H/�. Also, as the
orbifold quotient S/H has a signature (0; k, n+1... , k), then the group � have a presentation of
the form:

(IV.3) � = hx1, ..., xn+1; x
k

1 = ... = x
k

n+1 = x1x2...xn+1 = 1i.

If �0 is the subgroup derived from �, then �/�0 � Zn

k
� H � �/L. So, �0 = L and

H � �/�0, that is, (S ,H) � (H/�0,�/�0) [29].
The above, together with the uniqueness of the generalized Fermat group , allows us to

obtain the following fact.

Theorem 9. [29][Isomorphism of generalized Fermat curves] Let k, n � 2 be integers such

that (k � 1)(n � 1) > 2, S j a generalized Fermat curve of type (k, n), with Hj � Zn

k
its only

generalized Fermat group of type (k, n) y ⇡ j : S j ! bC a regular branched covering with

deck group Hj, for j = 1, 2. Then S1 and S2 they are isomorphic if and only if there is a

Möbius transformation that sends the branching values of ⇡1 in the branching values of ⇡2.
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IV.1.2.2. Moduli Space of hyperbolic generalized Fermat curves. Of Theorem 8 and
of Theorem 9, we observe the following:

Let S be a hyperbolic generalized Fermat curve of type (k, n) and H < Aut+(S ) its
generalized Fermat group of type (k, n). Let ⇡ : S ! bC be a regular branched covering with
deck group H and branching values p1, ..., pn+1 and M 2 PSL2(C) a Möbius transformation
such that M(p1) = 1,M(p2) = 0,M(p3) = 1,M(p4) = �1, ...,M(pn+1) = �n�2. Then
(�1, ..., �n�2) 2 ⌦n and there is an isomorphism � : S ! Ck(�1, ..., �n�2) that conjugates H

on H0.

As in the hyperbolic case, the generalized Fermat group is unique, and in the case of
genus one all its groups of Fermat generalized with conjugates by a holomorphic automor-
phism, the above gives us the following.

Corollary 4. [29] If k � 2 and n � 3 are integers, then ⌦n provides a parameter space for

generalized Fermat curves of type (k, n).

As a result of the previous results we have the following fact.

Theorem 10. [29] Let k � 2 and n � 3 be integers. Then two points of ⌦n define general-

ized Fermat curves of type (k, n) isomorphic if and only if they are in the same Gn-orbit. In

particular, the Moduli space of the generalized Fermat curves of type (k, n), Fk,n, is isomor-

phic to the quotient space ⌦n/Gn. And the branch locus B0,[n+1] consists of those admitting

more conformal automorphisms than the generalized Fermat group of type (k, n).

Theorem 11 (Corollary of the theorems 6 and 7). The locus in Fk,n, consisting of those

admitting more conformal automorphisms than generalized Fermat group of type (k, n), is

connected for n � 4 even and for n � 6 divisible by 3, and it has exactly two connected

components otherwise. Its real locus is connected for n � 5 odd, and it is not connected for

n = 2r, r � 5 odd.

Remark 19. This results can be applied as well to the more unknown (and di�cult to work
with) generic p-gonal curves, simple generic p-gonal curves [17, 18, 39, 21].
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IV.2. Application 2: Hyperelliptic Riemann surfaces

Definition 22 (Hyperelliptic Riemann surfaces). A Riemann surface compact of genus g �
2 is called hyperelliptic if it admit a single holomorphic involution with exactly 2(g + 1)
fixed points, called the hyperelliptic involution. Equivalently, S is hyperelliptic if and only

if there is a regular branched covering of two sheets ⇡ : S ! bC with 2(g + 1) branched

values.

Remark 20. Let S be a Hyperelliptic Riemann surfaces of genus g � 2, let a regular
branched covering of two sheets ⇡ : S ! bC with 2(g + 1) branched values, let’s say
{p1, ..., p2(g+1)}. The branched values can be normalized, this is, there is a Möbius transfor-
mation that send the branched values to the set of points {1, 0, 1, �1, ..., �2g�1}. Every time
we have a holomorphic automorphism of S induces a holomorphic automorphism of bC (a
Möbius transformation) keeping invariant the 2(g+ 1) points (branched values), and on the
contrary also, that is, every time we have a Möbius transformation keeping invariant the
2(g + 1) points then comes from a holomorphic automorphism of S .

IV.2.1. Algebraic model of the hyperelliptic Riemann surfaces. The algebraic equa-
tion of a hyperelliptic Riemann surface S is of the form (if all pj 2 C)

y
2 =

2(g+1)Y

j=1

(x � pj),

where pj are the branched values of the regular branched covering of two sheets ⇡ :
S ! bC.

IV.2.2. Moduli space of the hyperelliptic Riemann surfaces. Let S 1 and S 2 be hy-
perelliptic Riemann surfaces of genus g � 2, with its regular branched coverings of two
sheets ⇡1 : S 1 ! bC with the branched values the set of points {1, 0, 1, �1, ..., �2g�1} and
⇡2 : S 2 ! bC with the branched values the set of points {1, 0, 1, µ1, ..., µ2g�1} respectively,
then, if there is an isomorphism f between S 1 and S 2 then it will conjugate the hyper-
elliptic involution of S 1 to the hyperelliptic involution of S 2 with exactly 2(g + 1) fixed
points, then f descends to a Möbius transformation that sends the set {1, 0, 1, �1, ..., �2g�1}
in {1, 0, 1, µ1, ..., µ2g�1}. And the opposite also happens, that is, if we have a Möbius trans-
formation that sends the set {1, 0, 1, �1, ..., �2g�1} in the set {1, 0, 1, µ1, ..., µ2g�1} then we
can construct an isomorphism f of S 1 in S 2.

Theorem 12. [12, §2] Two hyperelliptic Riemann surfaces S 1 and S 2 are isomorphic if

and only if there is a Möbius transformation that sends the set of branched values of ⇡1 :
S 1 ! bC to set of the branched values of ⇡2 : S 2 ! bC.

Remark 21. Let n + 1 = 2(g + 1), with g � 2, then the following holds.
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(1) For every (�1, ..., �2g�1) 2 ⌦n we may build the set {1, 0, 1, �1, ..., �2g�1} and ob-
tain a hyperelliptic Riemann surfaces S. Moreover, each hyperelliptic Riemann
surface of genus g is isomorphic to one as above. So ⌦n parametrizes the set of
hyperelliptic Riemann surfaces.

(2) As a consequence of the above theorem, the quotient ⌦n/Gn provides a model for
the moduli spaceHg of the hyperelliptic Riemann surfaces of genus g.

The above asserts that if n = 2g+1, where g � 2, thenM0,[n+1] can be identified with the
moduli space Hg of hyperelliptic Riemann surfaces of genus g. The branch locus B0,[n+1]
consists of those hyperelliptic Riemann surfaces admitting more conformal automorphisms
than the hyperelliptic one. The description of the groups of conformal automorphisms of
hyperelliptic Riemann surfaces can be found in [10]. Theorems 6 and 7 assert the following
simple fact.

Theorem 13 (Corollary of the theorems 6 and 7). The locus in Hg, consisting of those

hyperelliptic Riemann surfaces admitting more conformal automorphisms than the hyper-

elliptic one, is connected if 2g + 1 is divisible by 3 and it has exactly two connected com-

ponents otherwise. The real locus inHg is connected.

The above result is related to the ones obtained in [19] by Costa, Izquierdo and Porto,
where they prove that the hyperelliptic branch locus of orientable Klein surfaces of alge-
braic genus g � 2 with one boundary component is connected (in the case of non-orientable
Klein surfaces they proved that it has (g+ 1)/2 components, if g is odd, and (g+ 2)/2 com-
ponents otherwise).
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