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ABSTRACT

The main objective of this thesis is to build MPRK-type schemes based on the Oliver’s
approach. Modified Patankar Runge Kutta (MPRK) schemes adapt explicit Runge
Kutta schemes to ensure positivity and conservation of the solution of positive and
conservative production—destruction systems irrespective of the time step size. These
methods are highly stable and often outperform standard Runge-Kutta schemes.

Recently, Kopecz and Meister [23] give a general definition of MPRK schemes and
based on the fundamental work of Burchard et al. [4] obtained the necessary and
sufficient conditions for unconditionally positive and conservative first and second or-
der scheme. Then, they also obtained conditions for third-order schemes and solved
nonstiff and stiff systems of differential equations.

Inspired by the work of Kopecz and Meister, Huang et al. [18] modified the ex-
plicit Runge-Kutta scheme in the Shu and Osher form instead of the classical form
and they developed another class of second and third order MPRK schemes, which
have then been successfully applied to semi-discrete schemes arising from PDEs.

In this thesis, we extend MPRK methods, denoted MPRKO methods, using
Oliver’s [30] approach to improve the accuracy of these schemes in the field of nonau-
tonomous systems. The approach does not require Ae = c¢ in the Butcher tableau
(A,b,c), where e = (1,...,1)T. Following the general analysis of MPRK schemes
described by Kopecz and Meister, positivity and mass conservation fundamental prop-
erties are proven and even conditions concerning the Patankar weights are given to
get second and third order accuracy of the MPRKO methods. Finally, we consider
different linear models and a non-linear epidemiological SEIR problem as well as stiff
Robertson test to confirm the theoretical results and to give reliable statements about
the accuracy of the novel class of MPRKO methods.
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RESUMEN

El principal objetivo de esta tesis es construir esquemas del tipo MPRK basados en
el enfoque Oliver. Los esquemas Modified Patankar-Runge-Kutta (MPRK) adaptan
los esquemas explicitos de Runge-Kutta para asegurar positividad y conservacion de
la solucion de sistemas produccion destruccién positivos y conservativos irrespecti-
vamente del tamano de paso de tiempo. Estos métodos son altamente estables y a
menudo superan los esquemas estandar de Runge—Kutta.

Recientemente, Kopecz y Meister dan una definicién general de los esquemas
MPRK y basados en el trabajo fundamental de Burchard et al. obtuvieron las condi-
ciones necesarias y suficientes para el esquema incondicionalmente positivo y conser-
vativo de primer y segundo orden. También obtuvieron condiciones para esquemas
de tercer orden y resuelven sistemas de ecuaciones diferenciales nonstiff y stiff.

Inspirado por el trabajo de Kopecz y Meister, Huang et al. modifican el esquema
explicito de Runge-Kutta en la forma Shu y Osher en vez de la forma clasica y de-
sarrollan otra clase de esquemas MPRK de segundo y tercer orden los cuales han
sido satisfactoriamente aplicados a esquemas semi-discretos que surgen de ecuaciones
diferenciales parciales.

En esta tesis, extendemos los métodos MPRK a los métodos denotados MPRKO
utilizando el enfoque Oliver para mejorar la exactitud de estos esquemas en el campo
de los sistemas no auténomos. El enfoque no requiere Ae = c en la tabla de Butcher
(A,b,c),donde e = (1,...,1)T. Siguiendo el analisis general de los esquemas MPRK
descritos por Kopecz y Meister, las propiedades fundamentales de positividad y con-
servacion de masa son demostradas e incluso condiciones concernientes a los pesos
Patankar son dadas para obtener segundo y tercer orden de exactitud de los métodos
MPRKO. Finalmente, nosotros consideramos diferentes modelos lineales y un prob-
lema epidemiolégico no lineal SEIR como también el test de Robertson altamente
stiff para confirmar los resultados tedricos y dar pruebas confiables sobre la exactitud
de la nueva clase de métodos MPRKO.
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Chapter 1

Introduction

1.1 Scope of this thesis

Many science and engineering problems involve systems of ordinary differential equa-
tions, which are given in form of production—destruction systems

N

Cﬁlii(t) B Zpij(t’y“))_Zdz‘j(t,Y(t)), (1.1)

j=1

J S

g

—Py(ty(t)) =D;(t.y(t)

where y(t) = (y1(t),...,yn(t))T represents the solution vector, and the produc-
tion terms p;; and destruction terms d;; are nonnegative for ¢ > 0 and y > 0,
7,7 =1,...,N. In the following, we refer to production—destruction systems as PDS.
The term p;; > 0 is the rate at which the jth component transforms into the ith
component, while d;; > 0 is the rate at which the ¢th component transforms into the
jth component. Most of the PDS correspond to concentrations, which need the non
negativity of the solution. We will use the following definitions.

Definition 1.1. The PDS (1.1) is called positive if fori =1,..., N, positive initial
values y;(0) > 0 imply positive solutions y;(t) > 0 for all times t > 0. The PDS
(1.1) is called conservative if for all i,7 = 1,...,N and t > 0,y > 0, we get
pij(t,y) = d;i(t,y). In addition, the system is called fully conservative if we have
pii(t,y) = dii(t,y) =0 forally >0 andi=1,...,N.

If a PDS is positive and conservative, it is often essential to keep numerically
properties, as negative approximations may lead to meaningless numerical solutions
[3,25,32,37] and disregarding conservation might cause accumulation of large errors
over time [4,36]. In these cases, numerical schemes are unconditionally positive and
conservative in the following sense.
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Definition 1.2. Let y™ > 0 denote an approzimation of y(t") at time t", the scheme
defined by
y"t =y 4 At® (AL, Yy, y" T

is called unconditionally positive if it guarantees y™™* > 0 for all At > 0 and
y" > 0, and unconditionally conservative if

N

S rtt =y =0

i=1
for alln € N and At > 0.

The standard time integration schemes to numerically solve are Runge-Kutta
(RK), Rosenbrock, or multistep methods [7,12,13]. According to [12], an explicit
s-stage RK method applied to (1.1) has the form

k—1
y =yt ACY ag (P + e yW) — D" + e, Aty ™)) | (1.2a)
v=1
P = gl ALY by (Bt + Ay ™) — Dy(t" + Aty 1)) (1.2b)
k=1

Usually the parameters ¢; satisfy the conditions
i—1
ci:Zaij, ’izl,...,s, (13)
j=1

which particularly implies ¢; = 0. Oliver noticed in [30] that the conditions (1.3)
are unnecessary for convergence and he constructed second and third order schemes
with ¢; # 0. Recently, Oliver’s work was continued in [38] by introducing a general
formula for the order of such methods together with a 6-stage scheme of order 5.
For the general equation y/(t) = f(t,y), at the first stage, k; = f(to,yo) is always used.
Oliver [30], and recently Tsitouras [38], examined the case where ky = f(to+c1At, xo)
with ¢; # 0. As in [38], we refer to those methods of the form (1.2) that to do not
necessarily satisfy conditions (1.3) as Runge-Kutta—Oliver (RKO) schemes and to
those that do as RK methods. Clearly, RK schemes are contained in the larger class
of RKO schemes.

Classical schemes usually generate conservative approximations, but cannot ensure
unconditional positivity. Figure 1.1 show an example where the RK22(«) schemes
produce negatives approximations with a = %, when applied to solve the nonlinear
test problem (5.6) and clearly showing the effect of the nonpositivity of this scheme.

In particular, it is shown in [2,20] that no unconditionally positive RK or linear
multistep method of order p > 2 exists. Hence, high order RK methods need to
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Figure 1.1: Negative solutions of numerical approximations of the nonlinear test
problem (5.6) computed with RK(3) scheme with At = 1.

Table 1.1: Barriers in the order [38]

No. of stages ‘ 1 2 3
Max. attained order for RK 1 2 3
Max. attained order for RKO |1 2 3

o |
| o
SIS RO
=N BN
~ o o0
| ©

restrict the time step size to ensure positivity [1,16,17,20]. If positivity of a forward
Euler step can be guaranteed under some restriction on the time step size, then
this is also true for high order strong stability preserving (SSP) RK schemes [10].
Among the Rosenbrock methods, there are some schemes which favor positivity [21,
33], but unconditional positivity cannot be guaranteed. Modified Patankar-Runge—-
Kutta (MPRK) schemes [4,18,19,23,24,27, 28] adapt explicit Runge-Kutta methods
such that they are positive irrespective of the time step size At, while maintaining
their inherent property of being conservative. The key idea behind these methods is
Patankar’s trick [31], which is to multiply the destruction terms with weights making
the scheme linearly implicit. As this procedure destroys conservation, the production
terms must be weighted accordingly as well. MPRK schemes have been successfully
employed for a large number of different applications [5,6, 11,14, 15,22, 34, 40| and
their success is particularly based on the fact that they are able to solve stiff PDS.
All MPRK methods cited above can be used to integrate the Robertson test [13] with
only a few steps.

In this tesis, we will extend the work of [23] to nonautonomous systems. Fur-
thermore, we consider the more general class of RKO [30,38] methods as underlying
base scheme. Tsitouras [38,39] derived the arbitrary order conditions mentioning that
there is no fourth order four stage scheme (see Table 1.1). Moreover, he constructed
a bth order method at the cost of six stages per step. This method outperforms other
classical Runge-Kutta pairs with orders 5(4) when applied to problems with singu-
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Table 1.2: Number of conditions for order p [38]

Order p ‘ 1 2 3 4 5 6 7 8 9
No. of conditions for RK 1 1 2 4 9 20 48 115 286
No. of conditions for RKO |1 2 5 13 37 108 332 1042 3360

larity at the beginning. In Table 1.1, we summarize the barriers with the maximum
attained order with respect to the stage number. In Table 1.2, we show the order
conditions [38]. For achieving a fourth order RKO we must satisfy 1 + 2 + 5 + 13
= 21 order conditions. For RK method of the same order, only 1 + 1 4+ 2 4+ 4 =38
condition are required. This is a serious drawback for high order RKO.

1.2 Organization of this thesis

The thesis is organized as follows: the presentation of the work is described in this
first introductory Chapter. Then, in Chapter 2, we introduce unconditionally positive
and conservative modified Patankar Runge-Kutta (MPRK) schemes and we present
necessary and sufficient conditions on the PWDs to get a second and third order
accurate scheme. We present the one-parameter family of MPRK22(«) schemes,
which are second order accurate two-stage MPRK schemes. Also, we present two
third-order schemes, a two-parameter family of MPRK43I(«, ) and an one-parameter
family of MPRK43I(y) schemes.

Following the general analysis of MPRK schemes described in [24], positivity and
mass conservation fundamental properties are proven and even conditions concerning
the Patankar weights are given to get second order accuracy of the MPRKO methods
and improve the accuracy of these schemes in the field of nonautonomous systems.

The results presented in Chapter 3 led to the following publication

e A. Avila, G. Gonzalez, S. Kopecz, and A. Meister, Extension of modified
Patankar-Runge-Kutta schemes to nonautonomous production—destruction sys-
tems based on Oliver’s approach, Jour. Compu. Appl. Math., 389(2020).

Then, we extend our previous work in [26] and develop a third-order uncondition-
ally positivity preserving MPRKO method and the necessary and sufficient conditions
for the method are presented in Chapter 4, which are presented in the following paper:

e A. Avila, G. Gonzélez, A Third-Order unconditionally positive and conservative
modified Patankar Runge-Kutta schemes based on Oliver’s approach, in the
process of submit

Chapter 5 will show the numerical results of applying the novel MPRKO scheme
to linear and nonlinear models as well as stiff Robertson test to confirm the theo-
retical results and to give reliable statements about the accuracy of the new class of
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MPRKO methods. This chapter describes the nonautonomous and autonomous test
problems used for numerical experiments, which include parameter studies to exam-
ine the dependence of the MPRKO22(a, 8) schemes on « and 3 as well as numerical
verification of the second order accuracy and also examine the MPRKO43(5) schemes
to verification of the third order accuracy.

Finally in Chapter 6 we present conclusions, observations, and guidelines for
future works.



Chapter 2

Modified Patankar Runge Kutta
Schemes

Classical Runge-Kutta schemes usually generate conservative approximations, but
cannot ensure unconditional positivity. Thus to obtain scientific reasonably results,
a scheme must guarantee the positivity for all components and does not generate nor
destruct matter.

The scheme (1.2) with two stages is denoted RK («) and defined as

g = g (2.1a)
N
y =yl oAty (pyly™) — dy(y™)) (2.1b)
j=1
yrtt =y ALY ((1 = 5Py + %pij(y(”)) (2.1¢)
j=1

fori=1,...,N.

To achieve a positive scheme, one can modify the original Runge Kutta scheme by the
Patankar-trick [31]. This method consists of weighting the destruction term by the
quotient of the corresponding constituent at the consecutive time steps. In particular,
this procedure yields to the scheme
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gD = g, (2.2a)
N y(z)
N <pw ) ;n)) , 220)
7=1 yz
al 1
yH g 4 A My Ly (y® 2.2
0> (0= 50m ) + 5 (2:20

1 (y . L o)
(=5 )di () + 5o dis(y™) ) =

Y;

fori=1,...,N.
In the following, we will refer to this family of schemes as PRK22(«) schemes. This
scheme can be explicitly written as

y V= . (2.3a)
o _ Vit alt Zjv i (y™) (2.3b)
b LraAt S dy(yO) s
o) _ YA o1 (L= 50)pi (y™) + 900 (v™) (2.30)
' L+ ALY (1= 55)di(y W) + 55 dis(y@)) N 7
fori=1,...,N.

We immediately notice the positivity of the method if @ > % However, we see from
the numerical results depicted in Figure 2.1 that the scheme is not conservative when
applied to solve the nonlinear test problem (5.6).

To overcome this serious disadvantage. Burchard et al. also weighted production
terms and they built a scheme ensuring conservation and positivity. These schemes
were named Modified Patankar Runge Kutta and will be described in the following
section.

2.1 About modified Patankar—-Runge—Kutta schemes

In [23] the following definition of MPRK schemes for autonomous PDS is given.

Definition 2.1. A modified Patankar—Runge—Kutta (MPRK) scheme with s
stages is defined as

(k) (k)
1} v yz
=yl + AtZa,w Z (p” @) — di; (y™) (k>> : (2.4a)
T

] 7

n+1 n+1
yitt =yt 4 Atzbk Z (pm ) JU. — di;(y™) ) ) ; (2.4b)
J
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Figure 2.1: Negative solutions of numerical approximations of the nonlinear test
problem (5.6) computed with PRK(3) scheme.

for i = 1,..., N with nonnegative coefficients ay,,b, > 0 for k = 1,...)s, v =
1,...,k—1. The denominators o; and ng) are called Patankar—weight denomi-
nators (PWD) and must satisfy the conditions

(k)

1. ;" and o; are unconditionally positive fork=1,...,s andi=1,...,N.
2. ng) s independent of ygk) and o; is independent of y! for k =1,...,s and
i=1,...,N.

To illustrate this definition we give the following remarks.

Remark 2.1.1. The condition concerning the independence of PWDs enforces a lin-
early implicit scheme, in which the solution of s linear systems of size N x N is
required in each time step.

Remark 2.1.2. The PWDs o; and ﬂgk) are not constant during time integration. In
all the schemes cited in the introduction. They depend on the previous stage values,
1. €.

(1) Oy, 7l — 0 (, ) )

Ui:Ui<yi s Y ™ i Y

Remark 2.1.3. MPRK schemes as defined above require nonnegative parameters
Ay, bk, but MPRK schemes with negative parameters can also be developed by treating
production terms as destruction terms and vice versa as was done in [28].

Remark 2.1.4. The definition in [23] includes an additional parameter 6 € {0,1}.
Definition 2.1 corresponds to the case 6 = 1, proven to be superior in numerical
experiments.
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Kopecz and Meister [23] showed that s linear systems of size N x N need to
be solved to obtain the stage values and the approximation at the next time level.
Considering that p; = d;; = 0 for ¢ = 1,..., N, the scheme (2.4) can be written in
matrix-vector notation as

with P(y") = (P (y"), ..., Py(y"))T and

m{? = 1+AtZakUZdZ] (v)) o >0,i=1,.., N, (2.7a)
k—1 1

mi = —ALS Y arpy (x) 5 < 0,4, 5 = 1,..,N,i £ j, (2.7b)
v=1 i

for k=1,...,s, and

_1+AthkZdU 5> 0i=1 N, (2.8a)

— —AthkpU < 0,4,j=1,...,N,i#j. (2.8b)

The following two lemmas of [23] ensure that the MPRK scheme (2.4) are indeed
unconditionally positive and conservative for the case § = 1.

Lemma 2.1. A MPRK scheme (2.4) applied to a conservative PDS is unconditionally
conservative, that is Zi]\il(y@ —y")=0fork=1,... s

)

Lemma 2.2. A MPRK scheme (2.4) is unconditionally positive. The same holds for
all the stages of the scheme, that is, for all At > 0 and y" > 0, we have y*) > 0 for
k=1,...,s

2.2 Second order two-stage Modified Patankar Runge—
Kutta schemes

In [23], the MPRK22(«) schemes were introduced. This one-parameter family of
second order two-stage MPRK schemes is given by the Butcher tableau
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where a > 1/2 together with the PWDs
T =Y, 0;= (y?)lfl/a(y?))l/a, i=1,...,N.

Thereby, the choice a > % ensures that all parameters in the Butcher Tableau are
nonnegative. So far, MPRK schemes have only been studied for autonomous PDS
and defined as follows to the case 6 = 1:

D =y, (2.92)
o N y(2) y@)
) =y adty | py(yV) =g - du(y™") g ) (2.9b)
j=1 y] Yi
N n+1
1
i = gy Atz Y

T

(= iy + L (@ b
(0= gty + 55 W—a]

( 5P () + %m(y(?)))

Jj=1

fori=1,...,N.

The MPRK22(«) scheme, with o > %, have been successfully applied to solve phys-
ical, biogeochemical, and ecosystem models. They also proved the capability of the
MPRK22 schemes to integrate stiff PDS like the Robertson problem. The MPRK22(1)
scheme is equivalent to the original MPRK scheme introduced in [4].

The PWDs of the scheme 2.9 are not the only possible choices. In particular, we
can use convex combinations of PWDs as

y @\ O
T =Y, 0= wy; ? + (1 —w)y yl : i=1,...,N.

with 0 < w < 1, and s, = 2251,

2.3 Third-order four stage Modified Patankar Runge—
Kutta schemes

In [24], a one-parameter family of third order MPRK schemes given by the Butcher
tableau

wirwin O

5=
5=

W
PN | win
I
2
-2

>
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with
3o <3
8 _— ’7 — 47
and a two-parameter family
0
Q «
3 3af(l—a)=B2  B(B=a)
04(2—3(04)_’_5) agQB—SQa) —
2—3(« — — o
L+ 6ap 6a(B—a) ba(B—a)
with
2
2/3 <5 <3a(l —a) 2/3<a <y,
3a(l—a) < pB<2/3 for 2/3 < a < ap,
(Bar—2)/(6ar —3) < 5<2/3 a > ay,

where ag = £(3+ (3 — 2v/2)1/3 4 (3 +2v/2)'/3) = 0.89255, were introduced and called
MPRK43I(vy), MPRK43(«, 3) respectively.

They derived necessary and sufficient conditions for third order MPRK schemes and
introduce the first family of such schemes defined as follows when § = 1:

ORI (2.10a)
@) - v, v
y) =y an Aty py(y™) s - dy(y") 7 | (2.10b)
j=1 Y; Y
N y(3)
u =y + Ay (aapy (V) + asp (v?) —m T (2.10¢)
j=1 (yj )p (yj ) b
( (1) @))) v
— (asdij (") + asodij (y'™) 5 T _
W)e ()"
N o
i =y + Aty | (Bip (YD) + Bopis(y?)) (2);—]711_; (2.10d)
j=1 (Z/j )e (Z/j ) e
o)
- (616%(}’(1)) + Bde‘j(y@))) W]
(") (y) e
N ny-l
Yyttt =yt + At Z (b1pi; (y) + bapii (y?) + bspi; (y©))) ;A (2.10¢)
i=1 ’

o

n+1
— (b (y ") + badiy (y?) + bsdiy (y'?)) y,_]

Wlthp: 3@21(&31 +Cl32)bg, q = ao1, 52 = and ﬁl =1 —52 for ¢ = 1,...,N.

2a21

The MPRK scheme (2.10) can be understood as a four-stage MPRK scheme with
corresponding Butcher tableau
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0
21 21
agy + ase | a;n  as2
1 Bi Do

The extra stage to compute the PWDs o; requires of the MPRK22(asg) scheme, thus
az = o > 5 for the two parameter family. In [27], the authors proved that it is
impossible to construct third-order MPRK schemes with only three stages, when the
usual practice, which takes products of powers of previous stage values as PWDs.
Three specific MPRK43 schemes were used in [24] for the case § = 1. The MPRK43I(1, 1)
scheme is based on the Butcher tableau

0
111
L1 1
2 |4 1
‘112
6 6 3

which is based on Heun’s method. It is interesting that the above Butcher tableau
belongs to the optimal third order strong stability preserving SSP(3,3) scheme intro-
duced in [29]. The method MPRK43I(3, 2) utilizes the MPRK22(%) scheme, which
is adapted from the midpoint method and represented by the Butcher tableau

I loool— O

Q- Ol
D=

2
3

The MPRK43H(§) scheme is associated with the Butcher

olw i O

[0 [0 [N
I [ =

1
2

and it employs Ralston’s method MPRK22(2) to calculate the PWDs.

2.4 Related work

In the literature there are other schemes of the MPRK type. We first mentioned
Juntao Huang and Wang Shu [18], who constructed a family of modified Patankar
Runge-Kutta methods using the RK schemes of the Shu-Osher form instead classic
RK form.
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2.4.1 Modified Patankar Runge—Kutta in the Shu—Osher form

This scheme is conservative and unconditionally positivity for production—destruction
equations, and of second-order accuracy.
The scheme is defined as

y =y, (2.11a)
(2) (1) - (1) U N
) _ 00 At Ay gy Y 2.11b
Y, a10y; ~ + Bro ]Zl pi(y™) = i(y) o | ( )
N yn+1
v = gy + amy® +Atz (Boopi; (YD) + Barpis (v @) ; (2.11c)
=1 !
yn+1
— (Baodi(yV) + Bardi; () ZU_,
forv=1,..., N, with the coefficients satisfying the conditions
1
ann=a, fro=pB ap=1 ap=1—-a, ay=a pin=27>, 52021—%,
(2.12)
1 1 —af+ afp? 1
L g WPTY o<1, B0, — <1 (213
T T B ap o VE0sh P20 el =
and PWD

=y, Oi= (y§2)> (¥

This scheme was successfully applied to solve non-stiff and stiff problems of ODEs. In
addition, the solver was extended to solve a class of semi-discrete schemes for PDEs.

Remark 2.4.1. The scheme (2.11) is a generalization of the schemes in [], 25].
Taking o = 0 in (2.12,2.13), it reduces to the scheme in [23]. Furthermore, if we set
B =1, it reduces to the scheme in [4].

Remark 2.4.2. If a = % and 5 = 1, the coefficients of the optimal Strong Stability

Preserving Runge Kutta method are recovered:

1

g = Pro =1, ax=ag =P = > Pao =0 (2.14)

and accordingly s = 2.

Then, they extended their previous work and developed a third-order uncondition-
ally positivity preserving modified Patankar Runge-Kutta scheme. The necessary and
sufficient conditions for the methods to be third-order accurate are proved. A vari-
ety of numerical examples were conducted to validate the performance of the time
integration method. The third order scheme is defined by
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=, (2.152)
@ o) - e @
(2) _ ‘ At (YN — 4 (y D) E 2.15b
Y; atoy; ” + Bro ; pii(y"’) T i(y) _— ( )
N yn-i-l
3 1 2 j
! )= a2oyi( '+ omy§ "+ At Z (Ba0pis (¥ M) + Barpis () Jp (2.15¢)
j=1 J
i
- (52odz‘j(y(1)) + 521dz'j(y(2)>) Zp
N yn+1
n 1 2 3 j
yrtt = 0430%( )+ 0431%( )+ 0432y§ ) + Atz (5301%;‘ (y™) + 531]91']'(}’(2)) + ﬁszpij(y(g))) JJ‘
j=1 J
yn—l-l
- (53odz‘j (y™) + B31d;j (y®) + B3ad;j (y(g))) ?T
(2.15d)
fori=1,..., N, with the coefficients satisfying the conditions
3 1 1 2
ap = Bio =1, a20:Z> Qg1 = a1 :Z_l’ B0 = 0, CY30:§, a32:532:§,

as; = P30 = 531 =0,
and PWD satisfying

2 2 4
oi u 1\ (v 3\ 1 () 1Py
e Seal e -g) (e -g) (N ) i
Y; Y; 2 Y; 2 2\ v 4y pi

2 2
1, [y N y! DL, y?
i = =V, ,or yit | — 4 =
pi=ao¥ (I (4 S yi'

Another scheme of the MPRK type was introduced by Offner et al. and named
Modified Patankar Deferred Correction scheme. In the section next we will describe
this scheme.

2.4.2 Modified Patankar Deferred Correction (MPDeC) scheme

The Deferred Correction (DeC) method is based on the Picard-Lindeléf theorem in
the continuous setting. The DeC is an explicit, arbitrary high order method for
ODEs. Further extensions of DeC can be found in the literature, including semi-
implicit approaches. In [28], the authors proposed a method to solve PDS problems,
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using the explicit Deferred Correction (DeC) process as a time integration method
instead RK classic. Applying the modified Patankar approach to the DeC scheme
results in provable conservative and positivity preserving methods. Furthermore,
they demonstrated that these modified Patankar DeC schemes can be constructed up
to arbitrarily high order. Finally, they validated their theoretical analysis through
numerical simulations.

The MPDeC scheme is defined as

y " = yitn), (2.162)

m, (k) m, (k)
m r,(k— 1 7(3,3,07 ) r,(k—1 7(4,3,07)
Y 04 E 0" AtE <pu ! —ntion — iy ( ))m) (2.16b)
(i 07) Ynigiom)

fork=1,..., K,m=1,...,M,and i = 1,..., N, where y(a,b,0) = a if § > 0 and
v(a,b,0) =bif 6 < 0.

Remark 2.4.3. The modification of the scheme is done only through the coefficients
m, (k)

% on both the production and the destruction terms. These coefficients allow to
y,

choose each term O"'pi; and 07°d; ;, according to the sign of the 8 coefficient. The
index v takes care of the sign of the destruction and production terms, when negative
entries in the Butcher Tableau of the RK scheme appear interchanging the destruction
terms with the production ones to guarantee the positivity preserving property.

Offner and Torlo proved that the proposed scheme is unconditionally conservative
and positivity preserving.



Chapter 3
Second order MPRKO scheme

The goal of this chapter is the construction of unconditionally positive and conser-
vative second order methods for the solution of positive and conservative nonau-
tonomous PDS.

An explicit two-stage RKO scheme is given by the Butcher tableau

C1
Co | Q21

b b

and it is second order accurate if and only if the three conditions

1 1
by +by =1, bicy + bacy = % baag = 5

are satisfied, see [30,38]. Compared to RK schemes, there is one additional condition
due to the possibility to choose ¢; # 0. All explicit two-stage second order RKO
schemes can be parameterized by a family with two free parameters. To extend
the notation given for MPRK(«), we will use the following notation:  := ¢; and
« 1= ag;. From [30], all explicit two-stage second-order Runge-Kutta—Oliver schemes
can be represented by the Butcher tableau

B
a—2af+ Q@ (3.1)

with two parameters a # 0 and § € R. For § # 0, the schemes are general RK
methods with stages, which are not consistent. For g = 0, we obtain the usual
explict two-stage second order RK schemes. Well known examples of explict two-
stage second order RK schemes are Heun’s method (a = 1, 5 = 0), Ralston’s method
(e =2/3,8 =0), and the midpoint method (o =1/2,5 = 0).

16
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3.1 Second order MPRKO scheme

Introduced in [23]. The MPRK scheme (2.4) can be generalized to integrate nonau-
tonomous systems in a natural way and to be as general as possible, we allow for the
second order two-stage RKO schemes (3.1) as underlying base schemes. Altogether,
we obtain the family of schemes in natural way.

=, (3.22)
@) . i U y
R (4 Y21 n %
Y = +aAt; (pq(t + BALyW) - 5 (1" + BAt y D) - ) , (3.2b)
1 yT'H‘l
yitt =y + Atz [(( )pzj (t" + gAt, yO) + 5o (1 + (o= 208 + B)At,y@))) a
J
1 n (1) 1 n (2) ?J?H

(3.20)

fori=1,..., N with a > % We refer to this family of schemes as two-stage MPRKO
schemes.

3.1.1 Matrix form of the MPRKO scheme

These schemes can be written in matrix-vector notation as

yM =y, (3.3a)
M@ y@ — yn (3.3b)
My" ! =y, (3.3¢)
with matrix elements
Y 1
mi =1+ alty  dy(t" + BAt,y™) = >0, (3.4a)
Uy
j=1
n 1
mf) = —altp (£ + gaty) - <0 (3.4b)
and
my =1+ Ati (1 — L>d~(1t" + At yW) + idAA(t” + (a =208+ B)At, y?) R
i p 20 ij ) 20 i ; : ;
(3.5a)
1 At 1
mi; = —At (1 - _)pij (t" + BAt y W) + —pi; (" + (@ — 205 + B)At,y?) | — <0
2a 200 of

(3.5b)
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fori,j =1,...,N,i # j. The next lemma states that the two-stage MPRKO schemes
(3.2) are unconditionally positive and conservative as intended.

Lemma 3.1. The two-stage MPRKO schemes (3.2) applied to a positive and conser-
vative PDS are unconditionally positive and conservative numerical schemes.

Proof. The proof follows the proofs of Lemmas 2.7 and 2.8 in [23] using the represen-
tation (3.3) with (3.4) and (3.5). O

Remark 3.1.1. The matrices M and M® from (3.3b) and (3.3c) are M-matrices.
Therefore, M and M® are non-singular.

Next, the PWDs 7; and o; in (3.2) must guarantee second-order accuracy. We
show that the conditions given in [23, Theorem 3.4] are also necessary and sufficient
for the nonautonomous case.

3.2 Proof of second-order conditions

Theorem 3.2.1. The two-stage MPRKO scheme (3.2) is of second order if and only
iof the conditions

m =y + O(A?), (3.68)
i =y + At (P(t",y") — D,(t",y")) + O(A#?), (3.6b)

are satisfied fori=1,..., N.

Proof. To prove convergence, we study the local truncation errors and identify y
and y;(t") for ¢ = 1,..., N as usual. Furthermore, we assume y" > 0, since we
are dealing with positive PDS. We use Landau symbol O(-) when At — 0. To
shorten the notation, we use ¢* as an abbreviation for ¢(t*, y(t*)) and omit the index
i=1,...,N.

Before deriving the necessary and sufficient third order conditions, we consider a
specific class of PDS,

dy; 3 o
W1y = Putt () Ditt,y(0), (3.7
with initial values y;(0) = 1, for i = 1, ...N, and
pyf, i=J, j=1, _ pyy, i=1, j=1J,
pij(t,y) = dij(t,y) = (3.8)
0, otherwise, 0, otherwise,

where I, J € {1,2,.. . N} I # J, u>0forallt >0, ke {1,2}.
The PDS (3.7) is written as

dyr ko dys ko Ay :
— = — —= = =0 1.2,....N}Y/{I,J}.
dt ,Uy[, dt ,uyla dt ) (S { )< ) }/{ ) }
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The exact solution for k =1 is

and for k = 2, the exact solution is
1 1
t) = t)y=2— (t)=1,1€{1,2,.... N}/{I,J}.
yi(t) Tt ys(t) Tt yi(t) i€ AL T}

Thus, PDS (3.7) is positive and also fully conservative.

3.2.1 Necessary condition

Using (1.1), and denoting P* and D} by P;(t",y") and D;(t",y") respectively, the
exact solution at time ¢"™! can be written as

O = D) O = D7) n yn 3
o oy (P'=D; ))+0(gt9))-

1
BE7) = (") AP DY)+ 5 AR

Since the solver (3.2) is second-order accurate, from (3.2¢) and (3.9) we obtain

n+1
Yj

aj

n+1
Y;
0;

N
At; {((1 — %) pij (1" + BAL, y(l)) + %pij(t" + (o — 208 + ﬁ)At,y@)))

1 1
_ =Yg MWy L = 3 (4 _ ()
((1 2a) d;;(t" + BAty >+2ad”(t + (a —2af8 + B)At,y )>
At 0

9 [% (P —Dy) (P"—D")—FE(PZL_D?)} — O(A).

~ AL(P} - DY) -
(3.10)

Considering a Taylor expansion for p;;(t,y) and d;;(¢,y) around point (¢, y"), then
pij(t" + c1At,y™) and d;;(t" + 1 At, y™) can be written as

o opy;

n n n 2
pii(t" + At yW) = piy 4+ fAE— 2 4 (v —y") oy T OB,
Similarly,
pi(t" + (o = 2aB + B)At, y*”) = pj + (o — 2a8 + B) At BN + Y —-y") dy + O(At?),

n

od™ odr
dii(t" + (o — 2a8 + B)At, y?) = dis + (o — 2a8 + B)Ata—f + (y? — y")a—;’] + O(At?).

(3.12)
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Replacing (3.2a), (3.11), and (3.12) in (3.10), we obtain

N ) n+1
11 1 1 Ipi5 1 Ipi
I PN S (o — At—4 4 = (y(2) _
Atz l((l 2a+2a>p”+<(1 2a)ﬂ+2a(a 20‘54_@) ot +2a(y ") 8y)

= -
(3.13)
—~ ((1 — % + 2104) di; + ((1 - %)ﬁJr i(oz —~ 2a6+6)> Ata;? + i(y@) -y )a;; ) :rl}
~ae(pr = D) = S [ (B = oy (- D)+ 5 (e - D] = 08
(3.14)

We use PDS (3.7) from now on, with I,J € {1,2,.... N}, # J, p > 0 for all t > 0,
k € {1,2}. Equation (3.13) yields to

oD oD\ y"t' ~ At |9D? ~ 9Dr
Dn At I b (2) o\ 2T 1 )5 — 1 Dn) — Il _ O At2 ]
( +3 ot + Q(yl y[) ay[ or + 1 2 83/[ ( I) ot ( )
i i (3.15)
Owing to ﬁ? = py¥, we have %Z;’l = pkyi=! 85; = 0, replacing into (3.15), it
yields to
ko L k L @ n ZJ?Jrl At k 2
=\ + Aty + oy — yiuky; p + oy = = pEkyp T p(t)yr = O(AF).
(3.16)
Owing to (3.2b), we have
(2) A 9(2) k?/?)
i —yf = aAt(=Dp)"— = —altuy; . (3.17)
T T
Replacing (3.17) into (3.16),we get
k?ﬁ : y?ﬂ At k 2
1y + Atuyz - —Atuy - L pukyf~ s pyy — 7uky i = O(AF),
(3.18)
and subsequently since y¥ > 0, we simplify to
n+1 1 n+1, (2)
— 1 <y1 - 1> + Aty gr 9r g = O(A#?). (3.19)
or 2 or T

Since > 0, we get

n+1 1 nt+l (2)
. (yf . 1> + = Atpkytt (yf I 1) =0, (3.20)

2 oy Ty
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with p constant, we obtain the case of Theorem 3.4 of [23]. From Lemma 4 in [24],
we conclude that

L N )
ar
n+1  (2)
Ir 91— o(ae), (3.21)
oy Tg

hold true. Using Theorem 3.1 in [23], we conclude

o; =y + At(P" — DI") + O(At?). (3.22)

Equation (3.22) shows that (3.6a) and (3.6b) are the necessary conditions.

3.2.2 Sufficient condition

Let M~ 1 (mij)i,jzl ..... N and (M(Q))_l = (TTL(Z))” 1
(3.3c) can be written as

(2) Z m” y] 7 yrtl = Z o

Thus, Lemma 3.1 in [23] guarantees that 0 < m,;, m ( <lfor¢,j=1,...,N, and

~- Then, equations (3.3b) and

.....

i ~(2)95 _
= § 1: i - =0), (3.23a)
J:
n+1 n
Y; ~ Y
= = ii—— = 0(1), 3.23b
= L g =0 (3.230)

since ¥ > 0. Using (3.23a) in (3.2b), we obtain

(2) (2)
=Y +aAtZ < pi; + O( At)) Yo (di; + O(At))yz—> =y +O(At). (3.24)

7Tj v
Inserting into (3.6a) and (3.2b), we get
N
y =y ant > ((pl + O(AL) (1 + O(AY) — (di + O(AL) (1 + O(AL)))

j=1

=y + aAt(P" — D) + O(A#?). (3.25)
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Next, we focus on the expansion of the approximation step (3.2c¢). Using (3.24)
in combination with y") = y™ and the fact that «, # are fixed numbers, we find

g — g Atz K(l _ _> Pl + O(At)) + 210[ (s + 0(At))>

((1 _ 2i)(dn +O(AL) + (d” + O(At))) y—} (3.26)

and together with (3.23b) we conclude
yith =y + O(AY).

Replacing in (3.26) while considering (3.6b), we simplify it to

=yt A (0 + O(AR) (1 + O(AL)) — (d + O(A1)(1 + O(AL)))
=y + At(f_’i" — DI + O(AF?)

and hence
n+1

i _1+0(a8) (3.27)

g;

Due to (3.24), a higher order Taylor series expansion of p;; and d;; in (3.2c) yields

n+1 n ij 9 i
=y! +At2[( ) <pij + BAL— 2+ O(At )) .
—i—i (a—Qaﬁ+ﬁ)At%+%( (2 _ n)+O(At2) y?—H
2 pz] 875 ay y y _O'j
1 adw 2 yfﬂ
_(1—%)( -+ AL +O(At)> -

n

1 n adij 5%- 2) " ) Zn—i—l
~ 5 (dij+(a—2aﬁ+ﬁ)At T + Jy (y —y")+O(At )) —}

which simplify to

N 1
At ap” 1 8])” yn+
n+tl _ ,n At E n ) (2 _ n 0O ﬁtQ gy

Atody; 1 Odj; Yt
_ noy — 't — (2) _ m At2 i
(dw+2 8t+2048y<y y") 4+ O( t)) }
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Finally, inserting (3.25) and (3.27), we obtain

At@p”' At Oplk
n+1 ) %) n _ " 2 2
—yl+At§ K Pt G gt g gy (BT DY)+ O )) (1+O(A))

B (dn’ Atddy At ddy,

> 5t T2 oy (P" —D") + O(AtQ)) (1+ O(AtQ))]

AP (0P} —Dp) 0Py~ DY)
2 ot dy

=y + At(P" — D) + (P" — D”)) + O(A?)
_ yi(tn—i-l) + O(Atg),

where t"™! = " + At. Thus, the two-stage MPRKO scheme (3.2) is second order
accurate. [

3.3 Computations the Patankar weight denomina-
tors

The PWDs 7; and o; must be specified for ¢ = 1,..., N. One choice that satisfies
conditions (3.6) is given in the following theorem.

Theorem 3.3.1. The two-stage MPRKO scheme (3.2) is of second order if we choose

m=yt, o=y e (yf))a. (3.28)

Proof. The proof is similar to the one of Theorem 3.6 in [23] using as; = . O

Theorem 3.3.1 introduces a new two-parameter family of second order two-stage
MPRKO schemes given by

(1) =y, (3.29a)
(2) N (2) y(z)
=yl + aAtZl (p” t" + BAt, y<1>)ﬁ — di(t" + BAL, YD) 2(1)) : (3.29b)
J Yi
N 1 ynJrl
ytt =yt + Atz < 25 P (8" + BAL, y") + 2 Pi(t" + (@ —2af + B)At,y@))) @ s 1
J=1 ( ) (y_] )
(- i)d"(thrﬁAt y(l))+id»-(t”+(a72aﬂ+5)At y?) W
20é () 9 2a (¥ ’ (yz(z))% (yf)l_%
(3.29¢)

fori=1,..., N with a > % Although not necessary with respect to the method’s
order, we requiere

0<B<1, 0<a-2a8+8=a—-2a—-1)p<1
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0.8+

0.6

0.4

0.2

Figure 3.1: In blue, the feasible region FR containing all pairs («, 5) admissible for
the MPRKO scheme (3.29).

to ensure that functions are only evaluated at times ¢ € [t",t" 4+ At]. It is particularly
important for PDS in which the production and destruction terms P; and D; are only
defined on a closed time interval [0, Tiy.x] like problems (5.3) and (5.4) in Section 5.1.
Straightforward calculations including the general requirement o > % show that the
feasible region FR for admissible pairs («, ) is given by

FR:%%@GRQ SQSLOSES%U%mmERQ1§%a_1<5§ a },

1
2 20— 1~ 20 — 1

which is illustrated in Figure 3.1. We will refer to the family of schemes (3.29) with
(o, B) € FR as MPRKO22(a, 8) schemes.

We will base our methods using Oliver’s Runge-Kutta method (RKO) [30] to
construct the new class of MPRK scheme. These schemes must guarantee positivity
and conservation irrespectively of the time step size.



Chapter 4
Third order MPRKO scheme

Third order modified Patankar-Runge-Kutta (MPRK) schemes were introduced in
[24], which were developed to guarantee unconditional positivity and conservation,
when integrating positive and conservative production-destruction systems. They
introduced the first family of third-order MPRK schemes and its can be interpreted as
four-stage methods named MPRK43 schemes. Recently, Kopecz and Meister proved
that it is impossible to construct third-order MPRK schemes with only three stages in
the usual way, which takes products of powers of previous stage values as Patankar-
weight denominators [27].

We will base our methods using Oliver’s Runge-Kutta method (RKO) [30] to construct
the new class of MPRKO scheme. These schemes must guarantee positivity and
conservation irrespective of the time step size. It is well known that an explicit
three-stage RKO scheme can be represented by the following Butcher tableau

C1 7é 0
Co 21
C3 a3y a3z

b b by

and explicit RKO method uses f(to+ c1At, xo) with ¢; # 0 in the first stage contrary
to the RK method that uses f(to, zo).

It is well known that for achieving a third order, the explicit RKO method must
satisfy eigth conditions from [38].

25
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by + by + b3 =1,
baagy + b3(azy + asy) = %7
bici + bacy + b3cs = %7
b1+ bocs + bscs = %7
baagicy + bz(az: + azz)cs = %7
byaz, + bs(as: + azz)® = é?
bacraz + bs(cras: + caazs) = é,
1

bsagiazy = G

The last condition implies asy, age, bs # 0.

Lemma 4.1. If
j—1
C]:Zajka j:2737
k=1

then the equations (4.1) are equivalent to
bl + b2 + b3 - 1,

bacy + bzcg =

Y

blcl + bQCQ + b303

6262 + b303 =

Y

bsagiase =

Y

1
2
1
2
1
3’
1
3
1
6
0.

c1(baca + bsasy) =

26

(4.2)

(4.3a)
(4.3b)

(4.3c)
(4.3d)
(4.3e)

(4.3f)
(4.3g)

Proof. Replacing ag; by ¢, asy+ase by ¢ and using (4.1g) into (4.1f) we get (4.3). O

Remark 4.0.1. The previous lemma includes the usual conditions of the third-order

Runge-Kutta scheme [24] when ¢; = 0.

Oliver [30] found the conditions of a family of third-order schemes with ¢; # 0

and are summarized in the following lemma
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Lemma 4.2.

Co = a21, (44&)
C3 = az1 + a3, (4.4b)
b2 + bg = 1, (440)
1
bQCQ + bgCg = 5, (44d)
1
bacs + bscs = 3 (4.4e)
1
bsaziazs = 6 (4.4f)
C1 (bQCQ + b3a31) = U. (44g)
Proof. See [30]. O

To determine all third order Oliver-Runge-Kutta schemes, the following lemma
will be helpful.

Lemma 4.3. Given by and by non-negative parameters such that by + by = 1, the
nonlinear system

1
ngE + b3y = 5, (45&)
1
621'2 + bgy2 = g, (45b)
has two solutions
1 1 b3 b2 1 1 b2
_ > _ - 72 - 4] 2= 4.
=y TV T2 ay (4.6)
1 1bs /by 1 1 /by
it S Bt 2 - _ /= 4.6b
oo Van 2T 27 2V 3 (4.6b)

for 0 < by, bs < 1.

Proof. (4.5a) and (4.5b) represents a line and an ellipse respectively in the x-y-plane.
There are at most two intersections of the line and the ellipse, therefore, the system
(4.5) has at most two solutions. Substituting (4.5a) into (4.5b) and solving for variable

T we get
_ b2(4b2+4b3—3) b2(4b2+4b3—3)
= b2 bS \/ 3bs - b2 + b3 \/ 3b3 (47)

Ty = ) - ’
205 (by + b3) 2 2b2 (b2 + by)
and using by 4+ b3 = 1, it yields to
1 1 b3 b2 1 1 b3 b2
= — =4/ = = — 4+ =4/ = 4.
Ty TR VaEn P2 2n, V 3k (4.8)



CHAPTER 4. THIRD ORDER MPRKO SCHEME 28

and substituting (4.8) in (4.5a) we get

1 1 /by 1 1 /b
SRy 3 SR 4
=gtV g 2T 379\ 5, (4.9)

If by = 0 implies b5 = 1 and (4.5) is inconsistent. Similarly for b3 = 0. Thus, (4.8)
and (4.9) are valid for all by, by with 0 < by, b3 < 1 and (4.6) are the only solutions of
(4.5). O

Figure 4.1 shows the three possible cases: 0 < by < b3 < 1,0 < by = b3 < 1, and
0<by<by <.
All explicit three-stage third order Oliver-Runge-Kutta schemes are parameterized by
family with at one-free parameter and it is summarized in the following lemma. We
will use the following notation £ := ¢;.

— ()< by =by < 1
O<b<by<1

—_— 0y <<l

Figure 4.1: Possible intersections between the line (4.5a) and the ellipse (4.5b)

Lemma 4.4. All explicit third-order Runge-Kutta-Oliver schemes can be represented
by the following Butcher tableau:

—wli= D

1

B~y DN

1

3
| 0
Proof. According to Lemma 3.1, the solutions of equations (4.4c), (4.4d), and (4.4e)
are given by

1
4

1 1b3 bQ 1 1 62
_ 1 1bs by _ 1. 1 /0 4.10
=57 05,\V3 T2 T2\ 5, (4.102)
1 ]_bg bg 1 1 b2
_ 1 1bs by _2_L /0 4.10b
2=t oV T2 2\ 3, (4.10b)
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As ¢ # 0, using (4.10a), (4.4f) and (4.4g) into (4.4b) we get

-1
1 1 bg 1 b3 b2
=42y / X / 6b =20 411
22 2b3 3bs [ 3 ( 2b, 3b3>] (4.11)

and using by + bg = 1, (4.11) yield to g2 = /42, Thus, by = §, by = § implies
Co = Qg1 = é, c3 =1, a3 = —1 and azs = 2. On the other hand, using (4.10b), (4.4f)

and (4.4g) into (4. 4b ) we get

-1
1 1 b2 by 1 by [by
___/ 0 2 6y | = + 2, 22 4.12
2 2 2b3 30y [ 3( T2, \ 36 (4.12)

and using by + b3 = 1, (4.12) yield to —b—2 = 3”723 Thus, (4.4) is inconsistent for
(4.10b). Therefore, the only solution is represented by the Butcher tablue. O]

4.1 Third order MPRKO scheme

Now, we will develop MPRKO schemes based on third-order three-stage explcit
Runge-Kutta-Oliver schemes. The proposed MPRKO scheme with 5 # 0 is the
following

yf” =7, (4.132)
At al y(-2) (1) y(2)
=y + = (1 + BAL y W) — d (1" + BAL y) = |, 4.13b
y? =y, 32:: pi(t" + B Y)Wj (1" + Aty )T (4.13b)
N (3)
At :
=y + Atz K —pi (1" + BAL y V) + 2p; (1" + ?,y@))) y;—

At y(?’)
<—dij(t" + BALy W) + 21" + 5 y(z))) - }

Pi
(4.13c)
LA 1 it
n+1 n (2) . (47 3) J
_yz + At E {( p,] t 7y >+ 4pzy<t —|—At,y )) o;

3 At 1 yr
— (" + =,y + d (1" + At y3)) ) Z—
(Gas(er+ 5y 4 (e + ey ) 2

(4.13d)

for i =1, .., N, where the Patankar weight denominators 7;, p; and o; must be deter-
mined to ensure the third order of accuracy.
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4.1.1 Matrix form of the scheme MPRKO

MPRKO equations (4.13) can be written in matrix-vector notation

y® = yn (4.14a)
M@y — yn. (4.14b)
M®)y®) — yn (4.14c)
My" ! =y", (4.14d)
with
At & 1
@ _ 1 BN~y gm My L -
m =1+ ;dw(t + BAL,y )m >0,i=1,..,N, (4.15a)
At 1
m = —5 Pt + BAt,y(l)); <0,i,j=1,..,N,i#j, (4.15b)
J
N
3 _ (g W e Bt ey L
my) =1+ Aty ( —di (1" + BAE y W) + 2d;(t" + oY) ) —i=1 N,
j=1 i
(4.16a)
At 1
J
(4.16b)
and

(B A g @) Lo
mii:1+AtZ Zldij<t + =y )+ d(t"+ AL y™) ) — > 0,i=1,.., N,

= 3 4 ;
(4.17a)
3 At 1At 1 . L
mij = —At (Zpij(t +?,y(2))+1pij(t +?,y(3))) O'_j SO,Z,] = 1,...,N7Z7éj.
(4.17b)

Remark 4.1.1. By Taylor expansion, the term —d;(t" + BAt,yV) + 2d;;(t" +
%,y(g)) = dl(?) + ... 1s positive for small time step At. Therefore, mff’) > 0 for
i=1,...,N. Similarly, the term —p;;(t" + BAt, y V) + 2p;;(t" + &£, y?) = pg”) + ...
18 positive and ml(-?) <0 fori,j=1,...,N.

The next lemma states that MPRKO schemes applied to a conservative PDS is
unconditionally positive and conservative.
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Lemma 4.5. A MPRKO scheme (4.13) applied to a conservative PDS is uncondi-

n+1
i

N
tionally conservative with > (yi™ —yl') = 0 and also is unconditionally positive since

=1
for all At >0 and y, > 0, we get Y11 > 0.
Proof. The proof can be done following Lemma 2.7 and 2.8 in [23]. O

Remark 4.1.2. The transpose of the matrices M, M® and M® of the MPRKO
scheme (4.13) are strictly diagonally dominant. Moreover, they are M-Matriz. There-
fore, M, M@ and M® are nonsingular. See Lemma 3.1 in [23] for more details.

4.2 Proof of third-order conditions

The next theorem gives necessary and sufficient conditions for the PWDs of a third
order three stage MPRKO scheme.

Theorem 4.2.1. The MPRKO scheme (4.13) is of third-order, if and only if the
conditions

m =y +O(At), i=1,.., N, (4.184a)
pi =yr +O(At), i=1,.., N, (4.18Db)
Lyt + 1AH(PP — D) 1y*+ At(P* — D
| o Ly g AU 2 DY) | Lyt & AUPY - D) +O(A), i=1,.,N, (4.18¢)
2 i 2 Pi
A2 (P — D)

o, =y + AP — D;') + (P" —D")+ O(A#?), i =1,..,N,

(4.18d)

2 ay

are satisfied.

Proof. Denoting P and D! by P,(t",y™) and D;(t",y™) respectively, the exact solu-
tion of (1.1) at time ¢"*! can be written as

At? 9(Pp — D) A

yi(t"+1) =y (t") + AP — DP) + 5 oy (P™ —D™) + ?(Pn _ D”)TH;LDI.*"fDIY’V (P™ —D™)

N n n 13 n
A3 o(py — D}) o(Pg — D)

+ 2

P” — D) 4+ O(At?
2 oo By ( ) (At%)

(4.19)

forv=1,...,N. H}._p. denotes the Hessian matrix of P — D evaluated at y,.
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4.2.1 Necessary Conditions
Since the solver (4.13) is third-order accurate, from (4.13d) and (4.19) we get

A 1 n+1 A n+1
Atz [( ng tn 3t’y(2)) + 7pij(tn +At,y(3))> yJ _ (3d1](tn + i,y( )+ dz](tn +At y(3))> Jr

4 o 4 3 ;
n n Atz 0 Ijzn B D;n n n AtS n n n n n
ar(pp - pp) - BEME B o py - B e pryTg, (P - DY)
y
A N O(Pr — D) d(Pp — DY)
_ i i P" — D") = O(At*

i=1
(4.20)

fori=1,..., N. Now, we apply the scheme to the PDS(3.7), with I, J € {1,2,..., N}, I #
J,p>0forallt >0, ke {1,2}. Recalling that p;;(y) = 0 for any j (4.20), it yields

n+1 n 2 2 yn 2 n\ 2

471 Ty o1 2 Oy; 6 ay% 6 Oyr
(4.21)
Using Taylor expansion for k = 1,2, the destruction terms D¥ is written as
oD} 190°Dy
1 +a[(y y)+28y1(y Y1), (4.22)

where the higher two order terms vanish. Replacing (4.22) into (4.21), we get

n+1 n n+1 2 n\ 2
§ y D" (/3 1 y At A2 (0D
Dy (1 — L ) e ((Z(y?) — Y7 + 4(y§3) — )) T+ =D D" +—6 Dy (-

or oYy I Oyr
182Dn 3 (2) 2 1 (2) y?Jrl At2

- —yr - — — — (D7} = O(A?).
5 (GO -+ 3687 =) e = Shop?) = ot

(4.23)

By (4.13b), we have
)
y[ y[ 3 7T] ( : )

and substituting (4.24), (4.22) into (3.2c) we get

2
y = yr — At | Dy 4+ 25 (——AtD?yf ) + S ( Laeppii ) [ o

Oyr T ay[ T Pr
(4.25)
By DI = uy¥, we have 88 2’ = pk(k — 1)yk=2 for k € {1,2}. First setting k = 1, in
this case a; : = 0. Replacing (4.24), and (4.25) into (4.23), we have

(2) (3) n+1 2 n\ 2 (2) , (3)  n+1
it LODF aype ((Lvil lwr \ w1 AL (0D v ur yi 5
D7} AtDY - ——|+—D 1-— = O(At”).
I( gr 81 47‘(’] +4 PI1 gr 2 + 6 1 ay[ T PI agr ( )

(4.26)
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Dividing by D} = 88];]? = p >0, we get

n+1 142 1,4® ntl g A2 (2) , (3) , n+1
1- ) LA L2 I 7 B I S T O W B R TON
or 4 Tr 4 Pr or 2 6 Tr pPr Og

(4.27)
By Lemma 4 in [24], we have
yn+1
L —1=0(A¢), (4.28a)
or
(2) (3)\ ,ntl
ly; ly; v 1 9
—— — - =0(At 4.28b
(4 7T[ + 4 p[ ) O_I 2 ( )7 ( )
2),(3), nt1
| S SO TN (4.28¢)
Tr pr Or

Thus, (4.284a) 1mphes Y Substituting this into (4.28b) and (4.28c), we get

(2) 3)

1y, 1y, 1
s = 4.29
4m+4p1_>2’ (4.29)
@ ()
Ir 91 g, (4.29D)
T Pr
It follows that
o2
A1, (4.30a)
Tr
y®
A1, (4.30b)
PI

(4.25) is written as

) 92D @)% ,®
3) — " — At Dn _ _AtaDI Dnyl _AtQ D 2 [ Yr Y1 ) 4.31
y[ y[ 8y[ I T a % ( [) T p[ ( )

Using (4.30a) into (4.31), it yields to

(3) oDt @ 4@
) —yn _ Atpr¥L 4 2 LN T pndr I o(A). 4.32
v =yr o T3 e P (A7) (4.32)

Thus,
3 2
(v~ v})* = MDY (yp—) +O(AR). (433)
1
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Replacing (4.33) and ( into (4.23) yields

34

n+1 6Dn 1 (2) (3) aDn (2) ,.(3) n+1 At
D7 (1— (( 4AtD”< SR B I YNl D ) e ) A

(4.34)

-~ dyr pI 6 Oyr T pI or 2
19°Dy 1 yt) ntl A2 At2 D72
0 2 AtQ (DP)? | = | = U - ——(D?)? — D7 ODFN
2 Oy 3 pI or 3 6 Oyr
Furthermore,
oy (1- y?“)MtDn@D? L ﬁ+£ ytt 1 +MDH(8D?)2 B A
T T T
or Oyr \ 4\ my pI or 2 6 oyr T pr 01

2
1 oy ([ 1 (4 1P\ gt 1 ,
77At2 Dr 2 I - I - JI = Ats
R ATDT) dy? ((12<m 1 or 3 O(AL),

which implies

@)\ 2 ®3)\ 2
1 Yr L {y; 1
— | = -] ==+ 0(At
12<7T[> +4<p1 3+ ( )7

by (4.30a) and (4.30b).
Substituting (4.30a) and (4.30b) into (4.24) and (4.25), we find

y? =yl +O(AY),
u = g+ O0(AY),
and thus
1+ O(At) = o _yi £ 08D _ i, O(Al),
Ty Ty Ty
(3) n At n
1o = Y YETOBD _ur | oony,
PI PI PI

from which we conclude

T = y? + O(At)v
pr=y; + O(A?).

(4.36)

(4.37a)
(4.37b)

(4.38a)

(4.38b)

(4.39a)
(4.39b)

(4.35)
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As I was chosen arbitrary, we find that (4.18a) and (4.18b) are necessary conditions.
Taking into account that (4.30a, 4.30b), from (4.13b, 4.13c¢) it yields to

A N
b =y + 503 (puen + BALYY) — dy(t" + ALY D) ), (4.40a)
j 1
® _ R e NS Wy _ o (1 Bt L@
ur +Atz —pi (¢ + BALY W) + 2pi (1" + =,y @)+ dig (17 + BAL YY) — 235 (1" + =, y?)
(4.40D)
for i =1,.., N. By Taylor expansions
At
u? =y + 5 (B = DY)+ O(Ar), (4.41a)
=y + AL(P! — D) + O(AP), (4.41D)

for i = 1,..,N. Substituting (4.41a) and (4.41b) together with (4.28a) into (4.28b)
we have

Lyf + 5 (P = D}) | 1yp +At(P; — Dy)

— _'_ —

2 T 2 PI
Similarly to (4.38), we replace (4.28a) into (4.19) to get

=1+ O(A?).

At? (PP — DY)
2 dy

or = yi +At(P;'—Dy)+ (P"—D")+O(A#?), i=1,..,N. (4.42)

Thus, letting I run from 1 to N, we also see that conditions (4.18¢c) and (4.18d) are
necessary.

4.2.2 Sufficient Condition

Since matrices M, M® and M®) of the MPRKO scheme (4.13) are nonsingular, and
let M~ = (my;), (M®)™! = (i) M, MY for i,j=1,..,N, k € {2,3}, (4.14) can be
written as

N
=y Zm” v, oyt meyj, (4.43)
j=1

)
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and the Lemma 3.1 in [23] ensures that 0 < ffLi],m(Q) m(?’) < 1fori,j =1,.. N.

/AR
Then,

2) N o

S-S mP% = o), (4.44a)
T = Up;
(3) N n

SN w95~ on, (4.44b)
Pi et Pi
n+1 n

Y -3 gl = o), (4.44c)
o . 0

7j=1

for i =1,..., N. Using (4.44a) in (4.13b), it yields to

N (2 (2
7=1

J T
for i =1,..., N. By Taylor expansion, we have that
y(2) y(z)
=2 (d" + O(At)) . = y'+O(At). (4.46)

T Uy

R Atz ( P+ O(At)) =

Replacing (4.46) and (4.18a) again in (4.13b), we get

WD =g+ A0S (3 + O(AN) (14 O(A) — (dis + O(AN) (1 + O(A),
=7+ S DH(P) — D7)+ O(AF), (4.47)

Similarly, using (4.44b) and (4.18¢) in (4.13c) it yields to

N
y =y Aty (( 420+ O(At)) (1+O(At)) — (—d?j +2d? + O(At)) 1+ O(At)))
=1
=y = At(P! = D) + 24t (PP - D) O(Ar), (4.48)

for i = 1,..., N.. According to (4.46), we have y?) — y(® = O(At), and from (4.22)
we see
P® —D® = pr_ D' 4 O(AY). (4.49)

Hence
y® = yr 4 At (PP — D?) + O(AP). (4.50)
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Now we compute an expansion of y"*! using (4.13d) and (4.46)-(4.50) we get

yrtt =yl + Atz l( m iag};}( @ —y™) +0(A8) + ip?j + i?}%(y“’ -y + O(AtQ)) y%:l
- (id” + Za; (y® —y™) +O(A) + id;; iaad (y® — )+O(At2)> y’:l] .
(4.51)
By (4.44c), we can conclude
Yt =y + O(At), (4.52)
for i =1, ..., N. From (4.18d) and (4.52) it follows that
Yt =0, + O(AR). (4.53)
Inserting into (4.51), we get
Y = gt AHPY - DY) + O(AR), (454)
for i =1, ..., N. Now, we can conclude
Yt =0 + O(AF?) (4.55)

by (4.18d). Introducing this relation into (4.51) yields

i

o(Pr— D) (3 i
ot =+ sz - o) + a2 P (g gy

1
—(y® - y")) + O(At?)
for i =1, ..., N. Finally, replacing (4.47) and (4.50) into (4.56) results in

AR 9 (PP — DY)
2 ay

yrtt =y + AP — DI) + (P" —D") + O(At?) (4.57)

and with (4.18d) we can conclude
Yyt = o, + O(AP). (4.58)

By Taylor expansion, owing to (4.47) and (4.50) we have

S0 =y TR (" = y") + O(AF),  (4.59)

2 n 1 n n n
dij(y*) = dif + yj (y® —y") + ~(y® —y")THEL (P — y™) + O(AF),  (4.59b)
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fori,j =1,...,N and k = 2, 3. Finally, substitution this and (4.58) into (4.13d) yields

N n 2,1
opr /3 1 10%p /3 1
_n+1: n At n YN (2) _ - 3) _ I B g (2) _ n)\2 - (3) _ n)\2
Y; yi' + jE_l[p”Jray <4(y y") + 1 y))+2ay2 (4(y y") +50 Y)>
ap?. (3 1 10%p /3 1
—d7»1~ TPy [ 2 (2) - 3) _ - (%] e (2) _ n)\2 - (3) _ n)\2 9] At4
i By (4(3' .V)+4(y y") 5 By? it y") +0 y")* )| +O(AY),
(4.60)

Using (4.13b) with (4.44a), we get

o(Py — Dy

y? —yn = %At (P" — D7) + %A# 5y U )(P" —D") + O(AP?). (4.61)

Similarly with (4.13c) and (4.44b)

o(P" — D!
y® —yr = At(P" — D) + M(%a—l)(P" —D") + O(A#). (4.62)
y
Inserting (4.61) and (4.62) into (4.60), we get
2 n _ n 3
=) + e - o)+ S AP @ py 4 S8 - DY H, (P - DY)
A N (PP — D) d(Pp — DY) ,
il L 2 P" — D) + O(A#Y), 4.63
+ 2 o By ( ) + O(At7) (4.63)
fori =1,..., N. Thus, the MPRKO scheme (4.13) is third-order accurate. O

4.3 Computations the Patankar weight denomina-
tors

Based on the same idea used in [24] to compute the PDWs o;, we compute these
weights using a second order MPRKO(3, ) scheme, as condition (4.18d) of the The-
orem 4.2.1 requires. The following theorem defines a family of third order MPRK
schemes.

Theorem 4.3.1. Given an explicit three-stage third order Runge-Kutta-Oliver scheme
with nonnegative PWDs, the MPRKO scheme (4.13) is of third-order, if we choose
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=y i=1,...,N, (4.64a)

L i=1,...,N, (4.64D)

OAN
i =y <y1_> ,i1=1,...,N, (4.64c¢)

N
3 .
— yz + Atz ((——p” tn +5At Yy ) + ipij(t" -+ ﬂ_{- At )) ﬁ

— <—%d2‘j(tn+BAt,y )+ dm(t"+ﬁ%At ))) 2 i=1,...,N,

i
(4.64d)
Proof. Note that (4.18a) is obvious with condition (4.64a), which implies
2 _ ,n 1 1 n 2
v =y + gAt(Pi — D7) + O(At?), (4.65)
for i = 1, ..., N. Introducing this into (4.64b), we show
4
L (yr+ LALPY — D) + O(A?)
pi = y; < : . : (4.66)
Yi
By Newton binomial theorem, we have
W)+ 3 AP — DY) + O(A?)
)
Furthermore,
4
pi =y} + FAUP = D7) + O(AP), (4.68)

for i = 1,..., N. Thus, condition (4.18b) holds true as well. Now, we verify that
(4.64b) and (4.64c) satisfy the condition (4.18c). Defining f(At) = 1/(a + bAt) for
some constants a and b, we have that f(At) = f(0) + f(0)At + O(At?) =1 — b +
O(At?). Thus (4.68) implies

1 1 4AHP"—Dp) )
— = -t T L O(AY), 4.69
pi oy 3 W) (&%) (469)
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for i = 1, ..., N. Substituting this and (4.64a) into condition (4.18¢), we have

Lyl +gAE = D7) | 1y + AP = DY)

2 5 2 Pi
Ly +iAH(PP =D 1 < 1 4At(P"— Dp) ) )
S + = (y* + At(P" — D —s———5—= +O(At") |,
2 yr y W ( ) yioo3 (yh)? (85)
1 1A{P"—DP) 1 2AtP"—D") 1ALP"— D) )
_ .1 i i) - _z i iy : L4+ O(At
2 * 6 y? + 2 3 y? - 2 yzn + ( )7
1+ O(A#),

for i = 1,...,N. And (4.18b) is satisfied. Finally (4.64c) and (4.64d) satisfy the
conditions of a second order MPRKO(3, 3) scheme of [26] and thus the condition
(4.18d) is satisfied as well. O

Assuming [ is not restricted, Theorem 3.3.1 introduces a new one-parameter fam-
ily of third-order four-stage MPRKO schemes given by

y =y, (4.70a)
) 1 N y(Z) y(z)
y =y + SALY (pz-j (t" + BALy W)= — di(t" + BAL YY) T | (4.70b)
j=1 y] 7
N 1 y,”
=y + At Z [( pij (1" + BAL, y(l)) + 2p;; (1" + S At, y(2))> —
= 3 () (yp) 8
1 ygg)
- (—du’ (t" + pALy V) + 2d;, (8" + 34t y(z))) ()Z—}
(™) ()~
(4.70¢)
al 1 3 B+1 o
o, =y + At [(__pij (t" + BAL,y") + =pi; (1" + ——At, y(2))) —
Z 2 2 3 ()3 () 2

1 . . B+1 o;
(—adij(t + BALy") + dzj(t + 5o Aty )) W}

3 SR (yr
(4.70d)
yrtt = yr +Atz p (t" + At y())+1pu(t”+At y®) v
i z] 7 4 Zj ) UJ
3 At 1 yr !
_ n 2V @y, g (4 Gy) Y
<4dm(t + 7Y )+4dw(t + Aty )) p.
(4.70e)

fori=1,..,N.
Although not necessary with respect to the method’s order, we require 0 < g <1 to
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ensure that functions are only evaluated at times ¢ € [t", t" + At]. This is particularly
important for PDS in which the production and destruction terms P; and D; are only
defined on a closed time interval [0, T}, like problems (5.2) and (5.4) in Chapter 5.1.
In the following, we will refer to this family of schemes as MPRKO43(3) schemes.
Numerical experiments confirm the theoretical convergence order of the MPRKO43
scheme are presented in Chapter 5. Additionally, numerical solutions of the Robertson
problems will show that these schemes have the ability to integrate stiff PDS.



Chapter 5

Numerical results

In this chapter, we apply the second-order MPRKO22(«, 5) schemes (3.2) and the
third-order MPRKO43(3) schemes (4.13) to six numerical tests given in the literature
to compare numerical methods. To obtain reference solutions, we use the Matlab
function odelbs, see [35], with tolerances AbsTol = 107'? and RelTol = 107! in
all computations of this chapter. To compare different MPRKO22(«, 5) schemes from
the chapter 3 and MPRKO43(3) schemes from the chapter 4, we introduce a relative
error F taken over all state variables and all time steps, which is defined as

1 N 1 M ) % 1 M , 7%
E = N ZE“ E; = (M Z(Q;Zfz ) ) (M Z(yfgfz) ) , (5.1)
i=1 m=1 m=1

where M denotes the number of executed time steps and y v is the value of a reference
solution at time t™.

In the next section, we introduce the test problems used to assess the accuracy and
performance of our proposed schemes of second (3.29) and third (4.70) order.

5.1 Nonautonomous test

We consider a simple linear nonautonomous test modeling, salt exchange between
two very large tanks partly filled with brine, a two-compartment model describing
the interaction between the cytoplasm and the nucleus, and a Susceptible-Exposed-
Infectious-Recovered (SEIR) epidemiological model.

42
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5.1.1 Simple linear test

A simple linear nonautonomous test from [41, Sec. 3.3, Ex. 7] is given by

con _aya(t) by (¢)
N = 00T b—a)t 100+ (@ — D)t (5.22)
0 o) ays(?) (5.2b)

T 100+ (@—b)t 100+ (b—a)t’

with constant parameters a > b > 0 and initial conditions y;(0) = y? > 0 for i = 1,2
on the time interval [0, 7] with 7' < 100/(a — b). The system (5.2) can be written as
a fully conservative production-destruction system (1.1) with

ays(t by (t

pra(t.y (1) = dn (1, (1)) = Wél)t pan(t.¥(0) = dia(t.¥(0) = S
and p;(t,y(t)) = du(t,y(t)) =0 for i = 1,2.

Equations (5.2) describe a closed system exchanging brine between two 100 gallons
tanks A and B. Concentration y;(t) corresponds to the salt amount in tank ¢ for
i = 1,2 at any time. Initially, y{ pounds of salt are dissolved in tank A and y3
pounds of salt are dissolved in tank B. The well-stirred liquid is pumped between
tanks with exchange rates a [gal/min]| and b [gal/min], respectively.

In our numerical experiments we use ¢ = 3 and b = 2 on the time interval [0, 90]
with At = 10 and initial values y;(0) = 0.01 and y»(0) = 99.99 [26].

5.1.2 Linear JAK2/STAT5 model

This positive and conservative two-compartment model from [9] describes interactions
between cytoplasm and nucleus inside a cell. In this model y; and y, denote the
unphosphorylated and phosphorylated STAT5 concentrations in the cytoplasm, while
y3 and y4 denote the unphosphorylated and phosphorylated STAT5 concentrations in

the nucleus. The variables ys, . .., ys describe processes in the nucleus.
The model is given by

Ta T Te

u(t) = —U—PJAK<t)?/1<t) - U_yl(t) + U—y3(t), (5.3a)
T Ta

(1) = —"2ua(t) + EpIAK()p 1), (5.3b)
Te i T

ys(t) = ——Sus(t) + 41 (8) + s (D), (5.3¢)
Un Ve Un
Tq T

yu(t) = —U—?J4(t) + v—2y2(t)a (5.3d)
r r

%@:-f%@+f%4@,k=a”w& (5.3¢)
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Table 5.1: Parameter values used in model (5.3).

Parameter | Unit | Value
Ta min ! 11
r; min~* 39
Tio min~* 58
Te min~! | 265
Ty min~t | 225
Ve pm? 429
Up pm3 | 268

Table 5.2: Interpolation points (xy,yx), K = 1,...,10 used to obtain the function
pJAK in (5.3).

k| 1 2 3 4 > 6 7 8 9 10
g | 0 20 40 60 80 100 120 140 160 180
ye | 025 1.90 1.50 1.10 0.85 0.68 0.58 0.50 0.45 0.44

on the time interval [0, 180] with initial values
y1<0) - 501}67 y2(0) - 07 ?J3(0) - 18UTL7 yk(o) = 07 k= 47 s 78‘

The parameters rq, ve, 14, T'e, 2, U, and r4 are constants with values given in Table 5.1.
The function pJAK is given as the cubic spline interpolant, which interpolates the
points given in Table 5.2 and is shown in Figure 5.1. The interpolation points were
taken from measurements provided by E. Friedmann through personal communica-
tion.

Summing up all the equations (5.3), we see

8 8

Zy}c(t) =0 such that Zyk(t) =

k=1 k=1 k=1

yk(o)a

]

which proves that the system (5.3) is conservative. Moreover, it can be written in the
form (1.1) with

pra(t.y (1) = dar(t,y(0) = “yat), Pty (1) = dua(t, ¥ (1)) = “PIAK () (1),

n

p31(t:Y<t)) = d13(t,}’(t)) = %yl(t), P38(t,Y(t)) = d83<t7Y<t)) = :;—dys(t),

n

Pt y(1)) = daa(t, ¥ (1)) = ~29a(0), Prsca(,y(0) = dirat,y (1) = g (t). k=5,

n

and p;;(t,y(t)) = d;i(t,y(t)) = 0 in other cases.
In the numerical experiments, later presented in Section 5, we use At = 10.

.8
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Figure 5.1: Graph of the function pJAK used in model [9].

5.1.3 Epidemiological SEIR model

In [8] vaccination strategies for a Susceptible-Exposed-Infectious-Recovered (SEIR)
model are presented. The model is given by

i) = 2O i)+ a®) 4 ) — NV, ()
optt) = 2008 o), (5.40)
ys(t) = —(u +7)ys(t) + oya(t), (5.4c)
Ya(t) = —(u+ w)ya(t) +vys(t) + uNV(t), (5.4d)

with constant parameters N, u, w, 5, v and ¢ given in Table 5.3. The variables y,
Y2, y3 and y4 denote the susceptible (S), exposed (E), infectious (I) and recovered
(R) compartments, respectively. By V(t) we denote the vaccination strategy which
is used to decrease the S, F and I populations and to increase the R population.
Different from [8] we consider V(¢) as a given function. In particular, we use the

vaccination strategy
V() 22500 o ( 1t>
uN PUT4Y)

which models the progression depicted in [8, Fig. 5]. The initial conditions are
y1(0) = 9.8 x 10°,  4,(0) = 1.5 x 10*,  y3(0) =5 x 103,  y4(0) =0,

and the time interval of interest is [0, 60].
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Table 5.3: SEIR model parameters (5.4).

Parameter | Unit Value
N — 10°
1 day ™ | 5.48 x 10°
w day™* /7
B day™! 3.288
v day ™! 0.274
o day™' | 9.82 x 1072

P12(t,y(t)) = dai(t, y(1)) = pya(2), pus(t,y(t)) = dsi(t, y(t)) = pys(t),
Pty (1) = du(t.y(0) = (14 (D). par(3(0) = dia(t. (1)) = 2400,
paa(t,y(t)) = das(t, y(t)) = oya(t), pa(t,y(1) = du(t,y(t)) = uNV (1),
pas(t,y (1) = daa(t, y(t)) = vys(t)

and p;;(t,y(t)) = d;i(t,y(t)) = 0 in other cases.
Furthermore, we use At = 2 within the numerical computations presented in the
following section.

5.2 Autonomous test

We consired a linear model of mass exchange between two constituents, a non-linear
model for a phytoplankton bloom, the Brusselator problem for multimolecular re-
actions as well as Stiff Robertson test, one of the most prominent examples of stiff
ODEs.

5.2.1 Simple linear test

A linear model of mass exchange between two constituents from [4] is given by

Y1 (t) = ya(t) — ays (t), (5.5a)
Yo (t) = ayi(t) — yalt), (5.5b)

with the non-dimensional constant a > 0 initial conditions y;(0) = y? > 0 for i = 1, 2.
The system (5.5) can be written as a fully conservative production-destruction system
(1.1) with

pra(t,y (1) = dan(t,y(8)) = w2(t),  pu(t,y (1) = dia(t, () = ay(t),

and p;(t,y(t)) = dii(t,y(t)) = 0 for i = 1,2,
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In our numerical experiments we use a = 5 and At = 0.25 and initial values
y1(0) = 0.9 and y(0) = 0.1. The solution is approximated on the time interval
[0,1.75].

5.2.2 Nonlinear test

A simple non-linear geobiochemical non-dimensional model from [4] is presented. It
consists of the three constituents ¥y, ¥2 v y3, which might be interpreted as nutrients,
phytoplankton and detritus, respectively. The model is given by

Yi(t) = yl(() lt) (5.6a)

(L) +
%@-ﬁ%g—m@, (5:60)
44(E) = (). (560)

Here the production and destruction terms are defined as follows:

pmwwhmmwmzﬁ%ﬁymwmm:@mw»mmm

The system represents a biogeochemical model for the description of an algal bloom,
that transforms nutrients (y;) via phytoplankton (ys) into detritus (y3). Phytoplank-
ton (yz) is then lost by mortality and zooplankton grazing at a fixed non-dimensional
rate a, which is collected in the detritus pool. This simple system of equations might
be interpreted as a geobiochemical model for the upper oceanic layer in spring, when
nutrient rich surface water is captured in the euphotic zone.

In our numerical simulations we use a = 0.3 and the initial conditions y;(0) = 9.98,
y2(0) = 0.01 and y5(0) = 0.01. The solution is approximated on the time interval
[0, 30].

5.2.3 Robertson test problem

One of the most prominent examples of stiff ODEs is the Robertson test problem [13],
which describes the chemical reactions

yi(t) = 10"y (t)ys(t) — 4 x 107 (t), (5.7a)
Ya(t) = 4 x 1072y (t) — 10%y2(t)ys(t) — 3 x 1073(t) (5.7b)
ys(t) =3 x 107y5(2) (5.7¢)
with initial values y;(0) = ¢¥ > 0 for ¢ = 1,2, 3. In this problem, the production and

destruction terms are

p2(t,y(t) = dar (£, y() = 10%y2(t)ys(t),  par(t,y(t)) = dia(t,y(t)) = 4 x 10y (t),
P32(t,y(t)) = das(t, y(t)) = 3 x 107?/3(75)7
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and p;;(t,y(t)) = d;i(t,y(t)) = 0 for other sets of i, j

In the numerical simulations, we take y;(0) = 1 and y2(0) = y3(0) = 0. Following [23],
the time step size in the kth time step is chosen as At = 28" 1Aty with Aty = 1075,
The time interval of interest is [107, 101°] and to visualize the evolution of ys, it was
multiplied by 10%.

5.3 Numerical results for second-order scheme

We apply the MPRKO22(«, 3) (3.29) schemes to the three test problems introduced
in section 5.1. For each problem a parameter study is provided to find a close ap-
proximation to the optimal (a, ) pair. In all three cases the optimal pair contains a
nonzero parameter 3, which proves that MPRKO schemes can be more accurate than
MPRK schemes. In addition, we confirm numerically that MPRKO22(«, /) schemes
are second order accurate.

To avoid division by zero errors whenever zero initial values are given, we replace

the PWDs (3.28) by

1
m =y, + CoAt, o; = (yzn)l_é (yz@)) “+ CoAt27

with some constant Cy. Thereby, multiplying by At and At? is necessary to keep
the second-order accuracy of the scheme as shown from Theorem 1. In all numerical
computations of this section we use Cy = eps ~ 2.2204 x 1071°.

5.3.1 Parameter study

Table 5.4: Relative errors (E) and numerical convergence order (p) of optimal
MPRKO schemes applied to the simple linear test problem (5.2).

MPRKO022(0.975,0.825) MPRKO?22(1,0.715) MPRK022(0.69,0.5)

At

E P E P E p
7.0312e-01 2.9742e-05 - 6.3958e-05 — 1.1706e-04 —
3.5156e-01  7.9360e-06 1.9060 1.6821e-05 1.9268 3.2521e-05 1.8478
1.7578e-01 2.0525e-06 1.9510 4.3231e-06 1.9602 8.8918e-06  1.8708
8.7891e-02 5.2143e-07 1.9769 1.0967e-06 1.9789 2.3952¢-06 1.8923
4.3945e-02 1.3094e-07 1.9936 2.7612e-07 1.9899 6.3632e-07 1.9123
2.1973e-02 3.2487e-08 2.0109 6.9070e-08 1.9991 1.6690e-07  1.9308
1.0986e-02 7.8337e-09 2.0521 1.7057e-08  2.0177 4.3285e-08  1.9470
5.4932e-03 1.6863e-09 2.2159 4.0221e-09 2.0843 1.1151e-08  1.9568

In order to see the dependence of the error E of an MPRKO22(«, 3) scheme (5.1)
on the parameters o and (3, we perform parameter studies for the three test cases
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Figure 5.2: log,, E for the three test cases (5.2), (5.3) and (5.4) with (o, 8) € (]
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2
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49

2] x

[0, 1]) N FR. The red dots indicate the pairs («, ) with the lowest relative errors.

(5.2), (5.3) and (5.4). For this purpose, we discretize the rectangle [3,2] x [0,1]
with 301 equidistant grid points in direction of a and 201 equidistant grid points in
direction of (3, resulting in a mesh with 60501 grid points. Out of these, 42213 grid
points are contained in the feasible region FR. For each of these grid points («, [3)
we compute the relative error of MPRKO22(«, /3) applied to a specific test cases. In
the following, we refer to the pair («, 5) with the lowest relative error as the optimal
parameter pair (Qopt, Sopt). Indeed, this optimality is based on the selected grid.
Figures 5.2 (a)—(c) show the relative errors for the three test cases (5.2), (5.3)
and (5.4). The red dots indicate the optimal pairs (aopt, Fopt). We clearly see a
dependence on the parameter 5, which shows that MPRKO schemes are more ac-
curate than the MPRK schemes, which are restricted to § = 0. For the sim-
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ple linear test (5.2), we have (opt; fopt) = (0.975,0.825) with relative error E =
0.0018. The MPRK22 scheme with the lowest relative error is MPRK22(0.855) which
generates a relative error £ = 0.01580, which is about 8.7 times larger than the
one of MPRKO22(0.975,0.825). In case of the JAK2/STAT5 model (5.3) we find
(opts Bopt) = (1,0.715). The relative error of MPRKO22(1,0.715) is £ = 0.0241.
The MPRK22 scheme with the smallest relative error is MPRK22(0.995) for which
we have FF = 0.0438. Thus, the optimal relative error of the MPRKO schemes is about
half the size of the smallest error with respect to MPRK22. The optimal parameter
pair for the SEIR model (5.4) is given by (pt; Bopt) = (0.69, 0.5) for which we obtain
a relative error £ = 0.0124, for MPRK22(0.65) the relative error is £ = 0.0127.
In this test case there is no essential benefit by using MPRKO instead of MPRK
schemes.

From 5.2 (a)—(c), we observe that the optimal pair («, 5) depends on the test case
under consideration. To find an appropriate pair (o, 5) for all test cases, we also
consider a relative mean error defined as

(o) = ( Bof)  Bp) B )
e max g Fi(o, B) max(g) Ea(a, )  max(,g Es(a, )

3

where El, E2, Eg denote the relative errors of the three test cases. This mean error
is depicted in Figure 5.2 (d) and minimized for (copt, Bopt) = (1.005,0.84). Hence,
B # 0 is a proper choice for all test cases.

5.3.2 Convergence order

Next, we confirm the theoretical convergence order numerically. In order to do so,
we compute approximations of the simple linear test (5.2) with the three MPRKO
schemes identified in the parameter study of Section 5.3.1 and varying time step sizes
At. Let E; represent the local error corresponding to the step size At;, then we
compute the numerical convergence order p; as

p; = log Ei“ log %

Table 5.4 lists the relative errors and numerical convergence orders obtained with the
specified time step sizes. We see that all three MPRKO schemes are second order accu-
rate as expected. Moreover, among these three test problems, MPRKO022(0.975, 0.825)
for the linear test generates the least relative error for all time step sizes.

We apply the optimal MPRKO schemes to each of the three test cases (5.2), (5.3)
and (5.4) , to show that the numerical solutions are reasonable, positive and con-
servative approximations. The results are depicted in Figure 5.3. As expected, the
numerical solutions are positive and conservative. Moreover, we see that in each case
the numerical solutions provide good approximations of the reference solution.
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Figure 5.3: Numerical solutions for the three test cases (5.2), (5.3) and (5.4) computed
with the corresponding optimal MPRKO22(«, 8) schemes.

5.4 Numerical results for third-order scheme

In this section, we confirm the theoretical convergence order of the MPRKO43 schemes
introduced in the preceding sections. To assess the order of the MPRKO43 schemes,
we use a relative error E defined in section 5.1

5.4.1 Convergence order

Figure 5.4 shows error plots of six MPRKO43 schemes applied to the simple linear
test problem (5.2) Fig. 5.4a and SEIR model (5.4) Fig. 5.4b. The parameter [
takes the values £, = 0.2k, with £ = 0,1,...,5, in two cases, In all cases the third
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Figure 5.4: log,, E error plots of MPRKO43 schemes for various values of /3 for the
two test cases (5.2) and (5.4).

order accuracy is confirmed. Moreover, Fig. 5.4d shows that MPRKO43(1) is less
accurate than all MPRKO43 schemes in the case of the SEIR model problem 5.4 and
Fig. 5.4c shows that MPRKO43(0.6) is more accurate when applied to the simple
linear test problem. Fig. 5.4d shows error plots of all MPRKO43 schemes applied to
the SEIR model problem (5.4),we see that the error seems to increase monotonically
with the value of 5. This property is not shared when applied to the simple linear
test problem. We additionally show numerical solutions of the six MPRK43 schemes
applied to the SEIR model problem (5.4) in Figure 5.5.

5.4.2 Stiff problems

In the case of a highly stiff problem, we obtained excellent accuracy results of our
scheme for all £, values. For saving space, we present only the numerical results of
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Table 5.5: Error table for simple linear test (5.2). MPRKO43(f3,) scheme versus the
schemes MPRK43I(1, 1), MPRK43I(}, 2) and MPRK43I1(3) in [24]

273

At MPRKO43(5,) MPRK43I(1, %) MPRK431(%, %) MPRK43H(%)
Error p Error p Error P Error p
5,63 9,73e-04 —  1,79e-03 - 1,30e-03 - 1,41e-03  —

281 1,75e-04 248 4,09¢-04 2,13 2,65e-04 2,30 3,00e-04 2,24
1,41 2,87e-05 2,60 7,59e-05 2,43 4,58¢-05 253 532005 2,49
0,70 4,46e-06 2,69 1.20e-05 2,66 7,02e-06 271 821e-06 2,70
0,35 6,64e-07 2,75 1,70e-06 281 9,97¢-07 2,82 1,16e-06 2,83
0,18 9,63e-08 2,79 228¢-07 290 136e-07 2,88 1,55¢-07 2,90
0,00 1,37e-08 2,82 295¢08 295 181e-08 2,91 20308 2,94
0,04 1,90e-09 2,85 3,75¢-00 297 2,38¢-09 293 26le-09 2,96
0,02 2,56e-10 2,89 4,73¢-10 2,99 3,09e-10 2,95 3,32e-10 2,97
0,01 3,25e-11 2,97 588e-11 3,01 3.86e-11 3,00 4,13e-11 3,01

an MPRKO43(3,) scheme with 3, equal to the average of the gy for k =0,1,...,5.
Figure 5.6 shows numerical approximations of MPRKO43(,) scheme applied to the
stiff Robertson problem (5.7). We chosen, the time step size in the kth time step
as At, = 281Aty with Aty = 1075 Hence, only 55 time steps are necessary to
cover the time interval [107¢ 10'°]. The small initial time step was chosen to obtain
an adequate resolution of the component ys in the starting phase. To visualize the
evolution of ¥, it is multiplied by 10%.

5.4.3 Comparison to MPRK43 schemes

In this section we compares our scheme with the three MPRK43 schemes introduced
at the section 2 from [24]. We used the simple linear test (5.5) as a test problem and
the Table 5.5 shows that all four schemes generate adequate solutions and the third-
order accuracy is clearly obtained. The MPRKO43(f,) scheme generates the most
accurate approximations with the lowest relative error, but we cannot affirm that our
scheme is better than their schemes, because there may be parameters in the feasible
region of section 2 of [ [24], see Figure 2] that could generate better numerical results
than our MPRKO43(3,) scheme. Therefore, such a search for optimal parameters is
of great interest and will be a major research topic in the future.
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Figure 5.5: Numerical solutions of the SEIR model problem (5.4) for different
MPRKO43 schemes with time step size At = 0.2. (a) MPRKO43(0). (b)

MPRKO43(0.2). (c) MPRKO43(0.4). (d) MPRKO43(0.6). (e) MPRKO43(0.8).
(f) MPRKO43(1).
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Figure 5.6: Numerical solutions of the Robertson problem (5.7) for MPRKO43(5,)
with £, = 0.5.



Chapter 6

Concluding remarks and future
work

In this thesis we have studied Modified Patankar Runge Kutta schemes that are nu-
merical methods for the solution of positive and conservative production—destruction
systems. The first schemes were introduced in [4] adapting explicit Runge-Kutta
schemes to ensure positivity and conservation irrespective of the time step size. Next
in [18], instead of using the Runge Kutta schemes in the classical form, they apply
the Runge Kutta schemes of the Shu-Osher form and develop another class of MPRK
scheme. Another scheme of the MPRK type uses the Deferred Correction method.
They proved that the obtained mPDeC schemes are positive preserving, conservative
and arbitrary high-order accurate. In contrast, we use approach Oliver to improve
the accuracy of these schemes in the field of nonautonomous systems.

6.1 Concluding remarks

We introduced novel two-stage MPRKO schemes, which generalize the MPRK schemes
of [23] to integrate nonautonomous PDS and proved their unconditionally positivity
and conservation property as well as necessary and sufficient conditions with respect
to the PWDs to obtain second and third order accuracy. Additionally, we followed
Oliver [30,38] and allowed Butcher tableaus (A, b, c), which do not satisfy ¢ = Ae
with e = (1,...,1)T. Altogether, this led to the introduction of the two-parameter
family of MPRKO22(«, 3).

The numerical experiments confirm the second order accuracy of MPRKO22(«, /3)
schemes. Indeed, the set of MPRK22(«) schemes is contained within the set of
MPRKO22(«, ) by choosing 5 = 0. Hence, we have shown the benefit of the ad-
ditional  parameter since in all considered test cases the optimal pair (a, §) has a
nonzero 3 component. Furthermore, numerical experiments with autonomous prob-
lem did not show improvements respect to MPRK(«).

Since the order conditions of the RKO scheme increase very fast respect to the order,

26
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building schemes of the MPRKO type would not be encouraging for schemes of order
higher than four, for example, we must solve 166 equations for the six-satges schemes.
We still do not known if there are sixth-order or higher RKO schemes .

We have extended the work of [26] to third-order by deriving necessary and sufficient
conditions for three-stage third order schemes. Moreover, this led to the introduction
of the one-parameter family of MPRKO43(/3) scheme. Similarly to [24], these schemes
can be regarded as four stage third order MPRK schemes.

This ODE solver is successfully applied to integrate nonautonomous and autonomous
PDS and proved their unconditionally positivity and conservation property. The
numerical experiments have shown that the MPRKO43 schemes are capable of in-
tegrating stiff ODEs, such as the Robertson problem. The numerical experiments
confirm the third-order accuracy of MPRKO43(3) schemes.

6.2 Future Work

In general, we are interested in the stability of MPRK schemes. Since the usual
approach by means of Dahlquist’s equation is not feasible, an analytic investigation
of the stability is still missing. One probable scenario that are of interest in future
research in the context of the analytic investigation of the stability problems is to
study the Lyapunov stability of the MPRK scheme.

Another interesting research topic is to use a convex combination of the PWDs to
find other second order MPRK schemes. Following [23], we take

y@) B1 y@) B2
™=y, 0p=wy y—n + (1 — w)y? yn : i=1,...,N,

with 0 < w < 1, and f = 22

Combined with the MPRK(«) scheme, we get a two-parameter family of second-order

schemes, denoted by WMPRK22(;,w) and defined by

yl(l) =P, (6.1a)
@ y(2) y(2)
Y, =y —i—aAtZ (p” y) j(l) — dij(y(l))’(l)> , (6.1b)
Y;

N yn+1

Yl = oy, Lo @ i

=y + ALY ( 5P (YD) + i (v )>

= 2a w(y PP (=B 4 (1 — w) (D) ()15

— ((1 — i)d. ,(y(l)) + id. .(y(2))> ZJ?H
2a 19 2a 13 w( (2))ﬁ1 (y‘;@)lfﬁl + (1 _ W)(y§2))ﬁ2 (y;L)17B2

(6.1c)
fori=1,...,N.
To understand the dependence of the error £ (5.1) of an WMPRK22(3;,w) scheme
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Figure 6.1: log,y E error for the test case (5.5) for o € {3,2,1} with (8,w) €
([0,2] x [0,1]). The red dots indicate the pairs (1, w) with the lowest relative errors.

on the parameters §; and w, we perform parameter studies for the test case (5.5)
for v € {3, 2,1}. For this purpose, we discretize the rectangle [0,2] x [0, 1] with 201
equidistant grid points in direction of 5; and 101 equidistant grid points in direction
of w resulting in a mesh with 20301 grid points. We compute the relative error
of WMPRK22(;,w) for each of these grid points (/31,w) applied to a specific test
case. In the following, we refer to the pair (8;,w) with the lowest relative error as
the optimal parameter pair (Siopt, Wopt). Of course, this optimality is based on the
grid used. Figures 6.1 (a)-(c) show the relative errors for the test case (5.5), for
a € {%, %, 1}. The red dots indicate the optimal pairs (Biopt, Wopt). We clearly see a
dependence on the parameters (31, w), which shows that WMPRK22 schemes can be
more accurate than the MPRK22 schemes.

We apply the optimal MPRKW22 schemes to nolinear test case (5.6) for o € {%, %, 1},
to show that the numerical solutions are positive and conservative approximations.
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The results are shown in Figures 6.2, we see that in each case the numerical solutions
of WMPRK?22 (right column) is more accurate than numerical solutions of MPRK22
(left column) for a € {%, %, 1}. Therefore, we propose to study: The effect of the
convex combination of PWDs in the MPRKO22(«, ) scheme.
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Figure 6.2: Numerical solutions of the nonlinear test problem (5.6) for different

MPRK22 and WMPRK22 schemes
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