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Introduction

The concept of G-module was developed by H. Ochsenius and W.H. Schikhof in the
late 1990’s. It arose as a consequence of the study of Banach spaces over fields with a
Krull valuation when the value group has infinite rank. The aim was to give conditions that
enabled to generalize in this context the theory of Hilbert spaces.

Previous work had been done in the theory of quadratic forms. Here the emphasis was
placed on the Projection Theorem: Every orthogonally closed subspace X is an orthogonal
summand of the space E. That is,

1) X=X" - E=Xe&X"

Such a space, over a field different from R or C was described by H. Keller its numer-
ably orthogonal base could not be normalized ([6]).

M. P. Soler proved that this was a central requirement. Her theorem [[18]] state that if a
space E has an orthonomal base and satisfies (LI]) then the base field must be R or C and E
is a classical Hilbert space.

In [10] the problem was studied in the context of a field K with a Krull valuation in
which the value group G has infinite rank. The norms of a K-vector space E would be
elements of a G-module X. This structure is a linearly ordered set, different from G, and
where an action G X X — X is defined. Adequate selection of X ensures that E can never
have an orthonomal base. These spaces were termed Norm-Hilbert spaces.

New concepts included G-cyclic modules, morphisms between G-modules, topological
types (see [11], [12], [13] and [14]). And it is in this context that the questions that are
studied in this thesis appear.

The first one refers to the totally ordered group G. Denote by G* its completion. In
[11]] the authors introduced a set (G*), which was proved to be the largest group contained
in G*, in [13]] they gave examples in which (G*), was properly contained in G*, and others
in which they were equal. The interest lies in the characterization of these cases.

The second one asked for an extension of the results of E. Olivos and W. H. Schikhof
in [14] where the set of all G-module maps from G* to G* were described. Now if X is any
G-module, what can be said of the set of all G-module maps ¢ : X — G* ?

In order to attain these goals, Chapter 1 summarizes the main definitions, properties
and theorems about totally ordered groups, convex subgroups, G-modules and G-module
maps. This chapter with preliminaries contains the necessary concepts for the development
of the work and results in chapters 2 and 3.

Chapter 2 deals with (G*),. We will present two interesting examples in order to guide
the analysis and conclusions. We will determine the necessary and sufficient conditions
that G must satisfy in order to have G ¢ (G*)y. The convex subgroups of G played a crucial
role in this study.

Further, in Chapter 3, we are interested in extending the results in [14]. We show
that if X is any G-module M (X, G*), the set of all G-module maps X — G¥, is a totally
ordered group. The results in this chapter are a consequence of the ordering of the two
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subsets of M(X, G*); M(X, G*),p and M(X, G*)iy¢. In addition, it will be essential to know
if min{g € G : g > 1} = 1 and to analyze the orbits of X. Finally, we present the next steps
for the results of this thesis that could be addressed in future research.



CHAPTER 1

Preliminaries

This chapter contains definitions, notations and main properties of a totally ordered
group G, G-modules and G-module maps. These concepts are the basis for the study of
this thesis: the group (G¥), and G-module maps over any G-module X. Most of the proofs
of the results in this chapter will be referenced to books and classic articles.

We start in the first sections with the theory about totally ordered groups. We are
specially interested in convex subgroups, Dedekind completions and the extension of the
multiplication of the group G to its completion G*. Later, it is introduced G-module with
some examples in order to present, in the last section, the main results about G-module
maps.

I.1. Totally ordered groups and convex subgroups

Definition I.1.1.
Let A be a subset of a totally ordered set X. A is called cofinal in X if for all x € X there is
an element a € A such that x < a.

Definition 1.1.2.
Let (G, -, <) be an abelian multiplicatively written group equipped with a total order <. We
will call G a totally ordered group, if x,y,z € G, x <y implies xz < yz.

In a totally ordered group G we say that the order < is compatible with the multiplica-
tion defined in G. Also,

(1) G is atorsion free group. Indeed, every element of G has infinite order because if
thereisg € Gwithg > 1 andm € Z* such that g” = 1then 1 < g < g> < --- <
g™ =1, a contradiction.

(2) If G # {1} then G has no smallest or largest element. In fact, suppose that g < 1 is
the smallest element of G then g?> < g and necessarily g” = g, itistosay g = 1, a
contradiction.

Example 1. Some typical examples of totally ordered groups are:

(1) R, +, <), (R, -, <), any multiplicative subgroup of R* where < is the natural or-
dering on R.
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(2) (R™)? with componentwise multiplication and lexicographical ordering, where for
(a,b), (c,d) € (R*)* we have that (a, b) < (c,d) if and only if eithera < bora = b
and c < d.

(3) The direct sum G = ®;cnG;, where for every i € N, G; is a totally ordered group
and G is equipped with the lexicographical ordering and componentwise multipli-
cation.

(4) Let (R, +, ) be the Levi-Civita field (see [17] for background). For f € R with
f # 0, we put A(f) = min(supp(f)) and we define 1(0) = +oo. Let R* be the set
of all non-zero elements x € R that satisfy x[A(x)] > 0.

R ={x e R: x[A(x)] > 0}.

Let x,y € R be given. We say thaty > x if x # y and (y — x) € R*; and we say
y>xify=xory > x. Also,wesayy < xifx > yandy < xif x > y. With
the relation >, (R, +, -) becomes a totally ordered field. Furthermore, the order
is compatible with the algebraic structure of R, that is, for any x,y, z, we have:
x>y=>x+z>y+z;andifz>0,thenx>y=x-2>y-z

Definition 1.1.3.
Let C be a subgroup of G. Let x,y € C and z € G, if x < 7 <y implies 7 € C, we will call C
a convex subgroup of G. We denote by I the set of all convex subgroups of G.

In addition, we have that

(1) Each proper convex subgroup C of G is bounded from below and from above (if
we assume otherwise, it leads us to C = G).

(2) T is totally ordered by inclusion. Indeed, let C;,C, € I'; such that C; € C,.
Then there is an element x € C; with 1 < x and x ¢ C,. Picky € C,, withy > 1.
Then x £ y, otherwise x belongs to the convex subgroup C,. Thus 1 <y < x and
therefore y € C| because C| is convex. We conclude that C, C C;.

C

1

O
o

G

Ficure I.1. A convex subgroup C of a totally ordered group G can be rep-
resented as an open interval of elements in G.

Example 2.

(1) Every totally ordered group G # {1} contains two trivial convex subgroups,
namely {1} and G.
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(2) C = {1} x (3) is the unique proper convex subgroup of the totally ordered group
G = (2) x (3) with the lexicographical order and componentwise multiplication

(see Figure [[2).

—t— i i G
(LD (1.3) (1,3%) (1,37 2,1

Ficure 1.2. foralln e Z, (1,3") < (2,1)

(3) Let G ¢ Q x Q be the additive group generated by the vectors (p;l, np;l), n=
1,2,3, ..., where p, is the nth prime number, i. e., p; =2,p> =3,p3 =95,..., and
let G be lexicographically ordered and with componentwise addition.

The set C = {0} X Z is a convex subgroup of G. Indeed, for all b € Z, the
element (0, b) € C can always be written as

12 11
= Z 2ol =
0,b) 3b(3,3) b(z,z)eG
Now, let n € N and (a, ) € G such that (0,0) < (a,b) < (0,n). This implies
that a = 0, because the order of the elements in G is lexicographic. On the other
hand, by the definition of C there are integers ny, n,, ..., n; such that

1 1 1
0,b) = ny (—,’—1) +n2(—,l—2) +---+nk(—,’—"),
pil pi1 piz piz pik pik

ni ny N
hence0 = — + —+---+ —

pil piz pik'
For j=1,...,klet
Pj=p; “Pit Pigy Pt Pies
and thus O = ny Py + no Py + -+ - + mi Py or
I’lej = —(l’l1P1 +"'I’lj_1Pj_1 +}’lj+1Pj+1 +"'I’lkPk).

Asforall j=1,...,k, pi; divides P, if and only if j # r, we deduce thatn; = A;pi;»
with A; € Z forall j. So, b = i1A4; + - +i;d; + - -1 Ak € Z, 1. e., (0,b) € C. For
details see ([3,19]).

Definition 1.1.4.

A convex subgroup C is called principal if there is a g € G such that C is the smallest
convex subgroup of G containing g. The order type of the set of all principal nontrivial
subgroup is called the rank of G and denoted by rank(G).
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Definition I.1.5.

Let K be a field and let G be an ordered group. A Krull valuation on K is a surjective map
|-|: K = G U{0} satisfying:
1) 10=0iffx=0,
(i) |x + yl < max{lx], |[yl},
(i) |xyl = |xllyl,
where 0 is a symbol such that 0 < g and Og = g0 = 0 for all g € G. The rank of | - | is the
rank of G, and G is called the value group of (K, | - |).

Example 3.

(i) Let p be a prime number. The p-adic valuation | |, on Q is defined by

r 1
0, =0 and [p"Z|=—,
q p
where n, r, q € Z, and r, g are not divisible by p. This valuation has rank 1.
(ii) Let us consider F, = R with its usual ordering, and the set of variables

{X1,X,,X;5,...}. Forn € Ndefine F,, := Fo(X;,...,X,) and

Fo = QFH

F, is ordered by powers of X,,. A polynomial p(X,) =a,X| +...+a; X, +ay €
X, .

p (X ; with p(X,,)
and ¢(X,) in F,_(X,) and g(X,) # 0, we say that 3 is a positive elenment in F, if
and only if p(X,,)q(X,) > 0. Notice that the ordering of F, extends the ordering of
F, 1. F is an ordered field (see [7] for background).

Now, we will define a valuation v on F,. First, we describe the value group of
v: for every i € N, let us consider the multiplicative cyclic group G; generated by
gi > 1 and ordered by

F,_1[X,] is positive in F, if and only if a, > 0 € F,,_,. For 8 =

gi<g iff r<t
Let G be the direct sum

G:= {y = (g1, 8,.85..) € 1_[ G, : «a; € Z,such that supp(y) is ﬁnite}
i=1

where supp(y) :={i € N : @; # 0}. G is a totally ordered group with the com-
ponentwise multiplication and antilexicographical ordering.

After that, we define v : F, — I' U {0} such that v|i is the trivial valuation,
v(X,) :=(,...,1,g,1...) and 0 is a minimal element such that0- g =g -0 = 0.

The valuation v is a Krull valuation on F',, with rank w, the first infinite ordinal.
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Definition 1.1.6. An ordered group G is called archimedian if for every a,b € G with b > 1,
there exists an integer n such that a < b".

Proposition L.1.1. ([1]], Chapter III, 3.2 )
A totally ordered group (G, -) has rank(G) = 1 if and only if G is archimedian.

Proor.

(&) Let C # {1} be a convex subgroup of G, and ¢ € C with ¢ > 1. Forevery g € G
there exists a n € Z* such that 1 < |g| < ¢", with |g| = max{g, g~'}, hence g € C.
Therefore C = G.

(=) Let g,h € G\ {1} with g > 1. There exists n € Z" such that 1 < | < g".
If we assume otherwise, C = (g) would be a proper convex subgroup of G, a
contradiction.

O

Definition 1.1.7. Two ordered groups G and G’ are called order-isomorphic if there exists
an isomorphism f : G — G’ such thata < b = f(a) < f(b) forall a,b € G.

Theorem 1.1.1. ([15], 1.1 ; [1l], Chapter III, 3.4)
A totally ordered group (G, -) has rank(G) = 1 if and only if it is isomorphic to a subgroup
of (R*,").

Thus, for valuations of rank 1 we can always assume that the ordered group G is a
subgroup of (R*, -) with the natural ordering.

Example 4.

(1) Any subgroup of R* has rank 1.
(2) The group C in Example 2l has rank 2.
(3) Let G be the direct sum

6=PG=6e60Ge..
ieN
where for each i € N, G; is an infinite cyclic group generated by g; > 1. Each
element in G has the form
(815885 )
where @; € Z and {i € N : a; # 0} is finite. With componentwise multiplication
and lexicographical order, G has infinite rank. The subgroup

Ci={1}eG,G:®---
is the largest non trivial convex subgroup of G. Also,
C, = {Ile{l}eG;0G4®---
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C; = {I}e{l}e{1}0G,®Gs---
C, = {1}9---0{1}®G1 1 ©Gpr ®---

are convex subgroups of G for all n € N. They are ordered by inclusion
---CpqpcC,c---cCicCycg@Gg

and G has a decreasing sequence of convex subgroups.
Note that, if we consider the same group G with componentwise multiplication
and antilexicographical order, then G also has rank w. In this case, the subgroup

Di=Gie{l}e{l}®---
is the smallest non trivial convex subgroup of G,
GeGe{ljs{lie{l}e---
GieG,eG:ae{l}je{l}®---

5o
([

D, = GGG, {1}

are convex subgroups of G for all n € N and we have that
{lcDicDyc---cD,CD,,;C---CG.

Thus, with the antilexicographical order, G has an increasing sequence of con-
vex subgroups.
(4) Let (R, +, -) be the Levi-Civita field (see Example[1l4 ). The multiplicative group
(R, ) has infinite rank. In fact, the set

L={xeR" : Ax) =0}

is the largest convex subgroup of (R*,-). The largest proper convex subgroup
contained in L is

LY ={xeR": Ax) = 0,x[0] = 1}.
Let A;(x) := min (supp(x) \ {A(x)}). For each r € Q*, the sets
L2={xeR": Ax)=0,x[0] = 1,2;(x) > r}
is a convex subgroup of (R, -).

Proposition 1.1.2. ([15], /. 2)_
If C is a subgroup of G then G = G/C is in a natural way a totally ordered group. C is
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a convex subgroup of G if and only if the canonical quotient map n : G — G/C is an
increasing homomorphism.

ProoF.
The quotient map is given by
n:G —» G/C
g = g=gC
C is a subgroup of the abelian group G and therefore G/C is a group with the multipli-
cationgy - g, = g1 - &2
Let P be the positive cone of G, thatis, P = {g € G : g > 1}, we will show that

P = m(P) satisfies that PN ﬁ_l = {1} and for all py, p; € P then Pip2 € P and therefore P
defines an order on G/C.

e since | € Pwehave (1) =1 € P.

e If p1, 7> € Pthen py, p, € Pand Py - p3 = p1ps € P, because p,p, € P.

o Ifp € (P N (P)™") then there are p1, P> € P such that n(p)) = n(p,)™' = P.
Thus 7(p;p,) = 1 and therefore p;p, € C. Since C is a convex subgroup and
1 < p; < p1p» we have that p; € C and therefore p = n(p;) = 1.

Then P defines an order in G with positive cone (P) = P, therefore 7 is an order
homomorphism.

Reciprocally, if P is a set of positive elements by an order in G, then for every ¢ € C
and g € G such that 1 < g < ¢ we have that 1 < n(g) < n(c) = 1, n(g) = L and so g € C.
Therefore C is a convex subgroup of G.

The order relation defined on G is: g7 < g;in G & thereis c € C such thatg, < g,c. O

L.2. Dedekind completion of a Totally Ordered Set

Let A, B be totally ordered sets with A € B. We say that s € B is the supremum of A in
B and denote s by supgz A, if s is the smallest upper bound of A in B. Similarly we define
t ;== infz A.

Definition 1.2.1.
A totally ordered set S is called Dedekind complete if each non-empty and bounded above
subset of S has a supremum.

Likewise, we can say that a totally ordered set S is Dedekind complete when every
non-empty and bounded below subset of S has an infimum.

In the next proposition, it will be useful to remember the following property about
supremum: Let G # () be a totally ordered group and A, B # () two subsets of G such that
supA,sup B € G. Then sup A - sup B = sup(AB) where AB ={ab :a € A,b € B}.
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Proposition 1.2.1.
Let G be a totally ordered group. If rank(G) > 1 then G is not Dedekind complete.

ProoF.
If rank(G) > 1 then G has a proper non trivial convex subgroup C. By the convexity of
G, we know that C is bounded (above and below). If we suppose that G is complete, then
there exists s = sup C € G. It follows that

s-8=(supC)(supC) =sup(C-C)=supC=s€G

and so, s # 1 is an idempotent element of G, a contradiction since G is a group. O

Definition 1.2.2.
Let X # 0 be a totally ordered set. A non empty subset S of C is called a cut if

1. S is bounded above
2. IfxeS,y<xthenye€S.
3. If supy S exists then supy S € § .

Now, the cuts in X are used for the construction of the completion of X (for details see
[10] pp. 5). Let X* the collection of all cuts of X, and we consider the order by inclusion
in X*. With this order X* is a totally ordered set. Let A C X* be non-empty and bounded
above. There is a cut T such that S c T, forall S € A. Then V := UgesS is non-empty
and bounded above by 7', and by adding sup,(V) (if it exists) to V we obtain a cut equal to
supy+ A. We have the natural embedding ¢ : X — X* given by ¢(x) = {s € X : x < s5}. ¢ is
strictly increasing and therefore an order-preserving embedding. X* is called the Dedekind
completion of X. X* is the smallest totally ordered set, Dedekind complete, containing X.

The previous construction is a generalization of the classic construction by cuts of the
real numbers (for details see [16], appendix of chapter 1).

Some basic properties about X* are listed in the next Proposition.

Proposition 1.2.2. ([10], [4])
Let X be a totally ordered set and X* its completion by cuts. We have the following state-
ments:
(1) X is complete if and only if X = X*.
(2) X is cofinal and coinitial in X*.
(3) Forevery s € X*, {x € X : x < s} is a cut in X; every cut in X has this form.
(4) If s,t € X*, s < t then there exist x,y € X suchthat s < x<t, s <y <L
(5) Foreach s € X", s =supys {x € X : x < s} = infys {x € X : x > s}.
(6) Let A C X. If s = supy A then s = supy+ A. If t = infx A then t = infx+ A.
(7) For each s € X, so = max{x € X : x < s} exists if and only if s; = max{x € X* :
x < s} exists. In this case so = 5.
(8) For each s € X, s = supys{x € X : x < s} exists if and only if s = supy{x € X* :
x < s}
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(9) For each s € X, supys{x € X : x < s} = supys{x € X* : x < s}.
(10) The last three statements, are also true if one replace sup by inf.

Proor. The statements (1) to (6) are proved in [10] and (7) to (10) in [4]]. O

In the Section 1.3.2 of [10], the completion for G = @;cnG;, the direct sum of the
groups G; =< g; >, i € N, was determined. Indeed, for this group with the componentwise
multiplication and antilexicographic order, each x € G* can be written as gs, where s =
supg+(H), with H some convex subgroup of G.

1.2.1. Multiplications on G*. For a totally ordered group G, the extension of the mul-
tiplication from G to G* is, in general, not unique. There are two canonical multiplication
on G* which extend the multiplication on G.

Definition 1.2.3. For x,y € G* set

xey:=sup{gig2€G:g <xAg <y}
G#

x*y::igf{glgzeG:glZx/\gzzy}

They are called the dot multiplication and the star multiplication, respectively.
Some properties of the dot and star multiplications are:

Proposition 1.2.3. ([11]; 1.4.6, [13] ; 3.1)
Let x,v,z € G* withy < z, and let g € G. We have that
(i) goex=gx*x
(ii) xoy < X % y.
(iii) xey<xezand x x y < x % Z.
(iv) yxx<zex.
(v) (G*, ®) and (G*, x) are commutative semigroups with identity element.

In view of (i) in the Proposition above, for all g € G and x € X we denote gx :=
g ® x = g % x. Also, from (ii) the dot and star multiplication, are called the small and large
multiplication.

Proposition 1.2.4. ([14];4.9)
The dot multiplication is left continuous i.e. it is continuous as a map

L (G#a TIG#) X (G#’ Ti‘;#) - (G#a TIG#)

where TIG# is the left order topology. In the same way, the star multiplication is right con-
tinuous.
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In [13] it was proved that if G has infinite rank, there are uncountably many proper
extensions of the multiplication of G to its completion G*. The authors determine new
proper multiplications, that is, multiplications ¢ : G* x G* — G* that are associative,
conmutative, increasing in both variables and extending the multiplication of G. The dot
and star multiplications are proper multiplications. The proper multiplications constructed
in [13] depend on some convex subgroup of G and the authors prove that if [';, the set of
all convex subgroups of G, has cardinality «, then the set of all proper multiplications has
cardinality > 2*.

Definition 1.2.4. For x € G*, Stab(x) :={g€ G : gx = x}

Note that, for all x € G*

e 1 € Stab(x). Moreover if ¢ € Stab(x) then cx = x and hence x = ¢ 'x; so

¢! e Stab(x),

e If ¢, ¢, € Stab(x) then c;cox = ¢1(c2x) = c1x = x. Thus ¢jc, € Stab(x),

o If ¢ € Stab(x), we can suppose that c > 1, and let g € G such that 1 < g < c. We
have that x < gx < cx = x, thus g € Stab(x) and Stab(x) is a convex subgroup of
G.

e Let g € G, then ¢ € Stab(gx) © c(gx) = gx © cx = x & ¢ € Stab(x). Therefore
Stab(Gx) = Stab(x).

Lemma 1.2.1. ([11];7.4.11, 1.4.13, [13]]; 3.4, 3.5)
Let H C G be a proper convex subgroup of G, let s := supg+ H,t := infg+ H. Then

(1) Stab(s) = Stab(t) = H

(il) ses=5,s50t=ttkt=t Skt=3S§
(iii) If x € G* is such thatt < x < s and H C Stab(x) then x =t or x = s.
(iv) For all x,y € G*, Stab(x * y) = Stab(x e y) = Stab(x) N Stab(y) .

If G is not isomorphic to a subgroup of R* then (G¥, %) and (G*, e) are not groups, be-
cause the elements s and ¢ in the previous Lemma are idempotents. However, they contain
at least one non-trivial group, namely G. We wonder if G is the largest possible.

Definition 1.2.5. Let (G*), := {x e G* : Stab(x) = {1}}

In general, for a totally ordered abelian group G, we have the inclusion G € (G*), € G*.
(G")o can contain G strictly; for example, if (G, -) is any dense proper subgroup of (R, )
then G ¢ (G*)y = R*. On the other hand, if G = (g) is a cyclic subgroup of (R*,-) then
G = (G*)y = G*. We can find many groups G such that G ¢ (G*), ¢ G*, for example, if we
consider the group G = Q* x Q* with the multiplication by component and lexicographic
order, then G ¢ (G*), = Q* x R* ¢ G*.
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The next Theorem shows that (G¥), is the largest group contained in G*.

Theorem 1.2.1. [11]]; 1.4.18
For each x € (G*) the map
Gt - G*
Y P yex=yxx

is a bijection which maps (G") onto (G*)y and therefore induces a group structure on
(G")o, with x™' = supsr{g€ G: gx < 1} =infgs {ge G : gx > 1}.

Definition 1.2.6. Given a totally ordered group G, we say that it is quasidiscrete if the set
{g € G:g> 1} =1 has a smallest element; otherwise G is quasidense.

In a quasidiscrete group G with gy = min{g € G : g > 1}, for all g € G its sucessor
element is ggo.

Example 5.
(1) Any cyclic subgroup of R* is quasidiscrete.
(2) We consider the direct sum in the Example [4]

6=PG=6e60Ge..
ieN
where for each i € N, G; is an infinite cyclic group generated by g; > 1 and com-
ponentwise multiplication. With antilexicographical order, G is quasidiscrete and
go=min{g e G: g > 1} = (g1, 1,...). On other hand, if we consider lexicograph-
ical order, then G is quasidense (this group will be studied in Chapter 2).

The prefix quasi in the previous definition is due to the fact that there are totally ordered
groups where min{g € G : g > 1} exists yet they contain a subgroup for which this is not
true. For example, let G be the totally ordered group R* x(2) with componentwise multipli-
cation and lexicographic order. G is quasidiscrete because min{g € G : g > 1} = (1,2) and
it contains the proper subgroup H = R*x{1} which is quasidense sice min{g € H : g > 1} =

(1,1).

. . I i
(LD (1,2 rh (2

G

Ficure 1.3. The quasidiscrete group G = R* x (2) with componentwise
multiplication and lexicographical order. The sucessor of (1, 1) is (1, 2). For
all » € R* with r > 1, we have that (1,2) < (r, 1) and the sucessor of (r, 1) is
(r,2).
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Proposition L.2.5. ( [11]; 1.4.11)
Let H C G be a proper convex subgroup, H # {1}, put t := infg+ H and s := supg+ H . Then
we have

(1) If G/H is quasidense then s x s = sandtet =1
(ii) If G/H is quasidiscrete then s % s = ggs > s, t et = gi't <t where gy € G, gy > s
and where, with w : G — G/H the canonical map, n(gy) = min{u € G/H : u > 1}

1.3. Hahn’s Theorem

Definition 1.3.1. Let I be a totally ordered set and, for each i € I, let G; be a totally ordered
group written multiplicatively. For all g = (g))ic; € [1,e; Gi where g; € Gy, for all i € I, the
support of g is defined by supp(g) :={iel: g # 1}

Definition 1.3.2. Let I be a totally ordered set and {G;},c; be a family of totally ordered
groups written multiplicatively, the Hahn product of the family {G;},.; is defined by

7'{,~€1G,- = {g € l_l G; : supp(g) is well—ordered}

i€l

WielGi is a subgroup of [],;; G; and, endowed with the lexicographical ordering, it is
a totally ordered group (for details see [S,15]).

Theorem 1.3.1. (H. Hahn [15]) Every totally ordered group is isomorphic to a subgroup
of a Hahn product of copies of R.

Proposition 1.3.1. ([15] p.14)

Let H # {1} be a convex subgroup of a totally ordered group G. There is a largest
convex subgroup H* such that H* C H and the quotient group H/H" is a totally ordered
group with rank 1.

Let J be a set of indices in one-to-one correspondence with the set of principal convex
subgroups of G. We denote by H; the principal convex subgroup associated to j € J. The
index set J is totally ordered with the following rule: forall jj, j, € J, j1 < j» & H;, C Hj,.

Foreach j € J1etR; := H;/H; since, by Proposition[L.3.1] R; has rank 1 it is isomorphic
to a subgroup of R.

Definition 1.3.3. For a totally ordered group G the family (R;)c; is called the skeleton of
G.
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1.4. G-modules

The structure of G-modules was introduced specifically to serve as a natural range set
X for norms defined on a vector space E over a Krull valued field K with value group G.
A generalized norm on E is then defined as amap || - || : E — X U {0}, where O is a
minimal element adjoined to X, satisfying the following axiom:s.
@ [x|=0ex=0
A [lAxll = |Allxl
(iii) [Jx + yll < max{||x]|, [[yll}
forall x,y € Eand 1 € K.
For instance, the space

Co = {(xn),,eN € ]—[ K :limx, = o}

neN

is a X-normed space with ||(x,),|| := max{|x,| : n € N}. Notice that, || - || : ¢¢ = G U {0}
where G is the same totally ordered group such that |-| : K — G U {0}. So, the range set of
I-lis G.

Throughout this chapter G = (G, <, -) is a totally ordered group with unit element 1.

Definition 1.4.1.
Let (X, <) be a totally ordered set containing at least two elements. It is called a G-module
if there exists a map,
GxX—X
(8, X) > gx
such that for all g, g1, g> € G, x, x1, x, € X we have
@) g1(82%) = (8182)x
) Ix=x
(iii) g1 > g2 = 81X = &oX
Av) x1 = X = gx1 > gx
(v) Gxis coinitial in X.

From the conditions (i)-(v), we can deduce some properties of a G-module X (proofs in
[10] 1.5.1).

(1) G acts on X and this action preserves the ordering in G and X.
(2) If x; < x, then gx; < gx,, forall g € G and xy, x; € X.

(3) For all x € X, the orbit Gx is cofinal in X.

(4) X has no largest and no smallest elements.

Example 6. ([10], 1.5; [4])

(a) G is trivially a G-module where the action is simply the multiplication on G.
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(b) G*, the completion by cuts of G, is a G-module. with the action ga := gea = g*a.
(c) Let D be the divisible closure of G. Let G° := {d € D : d* € G} and consider the

map
0: G°—G
dvr+— d?
The totally ordered set VG = G"/Ker(0) is a G-module with the action g - Vk =
g’k

(d) If (G, -, <) has a non-trivial convex subgroup H, then G/H is a G-module with
g(sH) = (gs)H.
(e) Let 8 an ordinal. We consider

X = {x = (Xa)a<p € 1_[ G, : supp(x) has an upper bound}

a<f

and the antilexicographic order on X. X is a G-module with the action given by
g x:=(gXy)a<p forall g € Gand x € X.

(f) Let (G, -, <) be a totally ordered group and G~ := {g~ : g € G} a copy of G. We
consider X, := G U G~ and the following rule of order for all s,7 € G such that
t <s,t<s < s Wedefine the action as follows g - s~ := (gs)~. With these
definitions, X; is a G-module (see Figure [L4).

Ficure 1.4. For all s € G, s~ is the predecessor of 5. For all t € G witht < s
we have that r < s~ < s.

(g) The above example can be generalized as follows. Let 8 an ordinal and for each
ordinal & < S let G := G x {} be a copy of G. Notice that G’ N G'® = () for
a # a,. Now consider the disjoint union

Xﬂ = U G(a)
a<f
with the order defined by

(g,a1) < (hyap) ©@ g<horg=hand o < ;.

The action of G on Xj is given by g - (x, @) := (gx, @) forall g € G and x € X;
(see Figure [L.3).
(h) A G-module X is called cyclic, if X =< s >= Gs for some element s € X. An
arbitrary G-modulo X is the disjoint union of its cyclic submodules
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t S

—e o X5

s

s”“.

Figure 1.5. Forall t, s € G witht < s and a; < @, < 8, where s := (s,a))
and 5% := (s, a7)

[e]

X = U Gs;

si€qG, iel

Conversely, if we have a collection {Gs;, i € I} of cyclic G-modules, we can
extend the ordering on the subsets Gs; to the union

X := UGsi

such that X becomes a G-module. For example, we can set a total ordering on
I and by declaring that gs; > g’s; if either g > g’ or g = g’ and i > j.

In the previous chapter (see Definition [[.2.4) we introduced the stabilizer of an element
x in the G-module G*. The definition easily carries over to arbitrary G-modules.

Definition 1.4.2.
Let x be any element in the G-module X. Then we define Stab(x) = {g € G : gx = x}.

Note that Stab(x) is a proper convex subgroup of G. Indeed, 1 € Stab(x), and if g €
Stab(x) then gx = x; thus, x = g 'x and g' € Stab(x). Besides, let # € G such that
g1 < u < g, with g, g, € Stab(x). Because of the requirement (iv) in the definition of a
G-module, we have that x = g;x < ux < g,x = x, and hence u € Stab(x).

On the other hand, if xq, x; € X and x; € Gx, then Stab(xg) = Stab(x;).

Example 7.

Let xy € X and consider the canonical homomorphism 7 : G — G/Stab(xj). The orbit Gx,
is a G/Stab(xp)-module with the action m(g)xy := gxo. Gxo has only elements with trivial
stabilizer.

Proposition 1.4.1. ([10], /.5.3)
Let X be a G-module.
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(1) Let V C X, g € G. If sup(V) exists then g sup(V) = sup(gV). If inf(V) exists then
ginf(V) = inf(gV). If V is not bounded above (below) neither is gV

(i) Let W C G, xop € X. If supg(W) and supy(Wxy) exist then supg(Wxp) <
xo supg(W). If infg(W) and infx(Wxy) exist then infe(Wxy) > xoinfg(W). If
W is not bounded above (below) neither is xoW, and conversely.

L.5. G-module maps

Definition L.5.1.
Let X, Y be G-modules. A map ¢ : X — Y is called a G-module map if ¢ is increasing and
Vg e G, x € X, ¢(gx) = gp(x)

M(X,Y) is the set of all G-module maps from X to Y, and we put M(X) := M(X, X).
The set M(X, Y) can be empty, for example, if X has an element x, such that Stab(x,) # {1}
then M(X, G) = 0. Indeed, we have that for any G-module map ¢, Stab(xy) C Stab(¢(xy))
and hence if 1 # g € Stab(x) then g € Stab(¢(xp)), but ¢(xy) € G, a contradiction.

When we consider ¥ = G* we can always determine a G-module map ¢ : X — G*,
where X is any G-module. The following theorem shows this facts, the set M(X, G¥) is
always non empty. We include the demonstration because it is fundamental for the theory
of G-module maps.

Theorem L.5.1. ([10]; /.5.6 )
Let X be a G-module. Then there exists a G-module map ¢ : X — G*.

Proor.
Let xy be any element in the G-module X. We know that Gx is coinitial in X and G* is
complete, therefore we can set
¢p: X — G*
X +— supgg € G : gxo < x}

Obviously, if x; < x, then ¢(x1) < ¢(x,), for all x1, x, € X. Also, we have that for all
heaq,

¢(hx)

sup{g € G : gxog < hx}

= sup{hu€ G :uxy<x} withu=nhn'g
G*
= hsup{u € G : uxy < x}
G*

= he(x)

As Guxy is cofinal in X, we can also define ¢(x) = infs+{g € G : gxo > x}. O
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In the study of X-normed Banach space (E, || ||), in [12] the authors use this theorem
and extend a G-module map ¢ : X — G* to amap ¢ : X U {0} —» G* U {0} to define a norm
|, on G*. With this new norm, (E, || lls) is a Banach space. They use these two norms for
comparing two Norm Hilbert Spaces and their operators.

In [14], all G-module maps in M(G*) were determined. For this, in G* they consider
two topologies stronger than the order topology: the left order topology, 7/, generated by

the intervals (x,y] := {z €eG": x<z< y} where x,y € G* and x < y and the right order

topology, 7", generated by the intervals [x,y) := {z eG":x<z< y} where x,y € G* and
x<y.

Definition L.5.2.
Let f : A — B a map with A, B totally ordered sets. We say that f is left continuous, if
f (A, ) — (B, 7)) is continuous. In the same way, we define right continuity.

In [14] we find a description of the following sets of G-module maps:

o M(G") ={¢p:G" - G" : pis a G-module map}
o M'(G*) = {¢ € M(G") : ¢ is left continuous}
o M"(G*) = {¢ € M(G") : ¢ is right continuous)

The next Theorem uses the fact that the dot multiplication e and the star multiplication
* are left and right continuous respectively (see Chapter [ Definition Proposition
(14] and [13]).

Theorem 1.5.2. ([14]; 5.1,5.2)
Let ¢ € M(G"). Then

(i) ¢ € M'(G*) if and only if it has the form x — x e a for some « € G*.
(ii) ¢ € M"(G*) if and only if it has the form x — x * « for some a € G*.
(iii) M(G*) = M'(G*) | M"(G?).

The previous theorem shows that each G-module map in M(G*) is left continuous or
right continuous.

Definition L1.5.3.
We define an order relation < on M(X,Y) by @1 < ¢, if only if ¢1(x) < ¢,(x) for all x € X.

The next theorem shows that this order is total on M(G*).

Theorem 1.5.3. ([14]; 5.3)
M(G*) is a totally ordered set.
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So, for all ¢, ¢, € M(G*) we have that ¢, < ¢, or ¢, < ¢;. We show the different
possible cases in the next Corollary.

Corollary L.5.1.
Let 1,0, € M(G*) and a, B € G* with a < B. We have the following cases:

@) If p1(x) = x 0 @, o(x) = x @ B; then ¢; < ¢;.
1) If o1(x) = x * @, @2(x) = x *x B; then ¢; < ¢,.
(ii1) If g1(x) = x x @, 2(x) = x ® B then ¢ < s.
(iv) If p1(x) = x @ @, p2(x) = x * B; then | < .

ProOF.

(i) By the result of Proposition[[2.3]in Chapter [, we have that for all x € G* x e @ <

x o 3 and therefore ¢;(x) < ¢,(x), s0 ¢ < 5.

(i) Similarly, we have that x x @ < x % S for all x € X, then ¢; < ;.

(iii) By Proposition (iv) in Chapter [, we have that if « < Sthen x x @ < x o f3
for all x € G*. Thus, ¢;(x) = x x @ < x ® B = ¢,(x) for all x € G*, that is to say
1 < ¢

(iv) We have that ¢(x) = x e @ < x e 8 and hence by 23] (ii), x @ 8 < x % 3 for all
x € X,s0xea< x*f. Therefore ¢, < ¢;.

O

Theorem 1.5.4. ([14]; 5.4)
M(G") is a G-module with the action g - ¢ = (gp) where for all x € X, (g0)(x) := ¢(gx).

PRrROOF.
The first two requirements in the definition of a G-module are clear from the definition of
the action of G on M(G*). We will show (iii), (iv) and (v) (see Definition[[.4.1lin the section
[4). Let g1, 2> € G and ¢, ¢y, o, € M(G*). Then

(iii) If g, < g» then g;x < g,x for all x € G*, because G* is a G-module. Also, since
¢ is a G-module map, we have that ¢(g1x) < ¢(g2x), thus g1p(x) < go¢(x) for all
x € G*, and hence g9 < g-¢.

(iv) @1(x), p2(x) € G* for all x € G*. If ;(x) < ¢»(x), then since G* is a G-module, for
all x € G* we have that gg;(x) < gg,(x) and therefore gy, < ggs.

(v) Let ¢; be a G-module map with ¢;(x) = x @ S and 8 € G*. We will prove that the
orbit Gy, is cofinal in M(G"), that is, for all p(x) = x @ @ with @ € G* we can find
g € G such that ¢ < go;. Indeed, GB is cofinal in G*, because G* is a G-module,
then we can always find a g, € G such that @ < g,8 and by Theorem and
Corollary we have that for all x € G*,

P(x) = xoa < x(gf) = galX ® ) = gatp1(X).
Therefore ¢ < g,¢;.
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Similarly, if ¢(x) = x % @ then we can find g, € G such that < g,8 and by
Corollary 311, x € G*,

P(x) = x *x @ < x @ (8of) = ga(x @ B) = gatp1(X).
The same argument applies if ¢(x) = x * S.






CHAPTER 1I

The Largest Group Contained in G*

Let G be a totally ordered group written multiplicatively and G* be its Dedekind com-
pletion, that is, the completion by cuts. In the Preliminaries we saw that it is posible to
extend the multiplication on G to a multiplication for elements in G* in many ways [13].
Two canonical extensions were presented: the dot e and star x multiplications. In addition,
if G is not isomorphic to a subgroup of R* then (G*, #) and (G*, %) are not groups, but they
contain at least one non-trivial subgroup, G.

In Proposition 1.4.18 in [11], the authors show that

(G*) = {x e G* : Stab(x) = {1}}

is the largest group contained in G¥, in which for all x € (G*)pand y € G*, x e y = x % y.

Basic examples show that G and (G*), may coincide or differ. For instance, if G is any
cyclic subgroup of (R*,-) then G = (G¥)y = G*, yet if G = Q* then G ¢ (G*)y = G* = R*.
In this case, both groups are of rank 1. An example of a totally ordered group with rank
greater than 1 is the group in Example 2.2 of [13], the direct sum G = @ieN G;, where each
G; is a multiplicative copy of Z with componentwise multiplication and antilexicographical
ordering. In this example (G*)y = G, because each x € G* can be written as gs , where
g € G, and s is the supremum of some convex subgroup (see [10] Example 1.3.2.). Thus,
whether or not G = (G"), does not depend on the rank. Our aim in this chapter is to
determine the conditions for G € (G%),.

In the Section we give a necessary condition for the strict inclusion G € (G¥),.
Following this we shall study two non-trivial examples of totally ordered groups with a
decreasing sequence of convex subgroups. We determine its convex subgroups and some
useful properties of them. In the last section we establish a sufficient condition on G that
ensures that G ¢ (G%),.

IL.1. A necessary condition for G ¢ (G%),

The following definition gives us a classification of totally ordered groups and allows
us to determine a sufficient condition for G = (G%),.

Definition II.1.1.
Given a totally ordered group G, we say that it is quasidiscrete if the set {g € G : g > 1}
has a minimal element; otherwise G is quasidense.

23
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The prefix quasi in the previous definition is due to the fact that there are totally ordered
groups where min{g € G : g > 1} exists yet they contain a subgroup for which this is not
true. Note that, if G is a cyclic subgroup of R*, then G is quasidiscrete and G = (G*)y. The
same happens with the direct sum G = EB,- « Gi» where each G; is a multiplicative copy
of Z with componentwise multiplication and antilexicographical ordering (Example 2.2 in
[13]]), where the successor of 1 is the element (g, 1, .. .), G is quasidiscrete and G = (G*),.
This behavior of (G*), was reported in [9]], but the proof was not included. We present one
in the following Lemma.

Lemma I1.1.1. If G is quasidiscrete then (G*), = G.

Proor. It is enough to prove that (G*), C G. Suppose that there is s € (G*), with 1 < s
and s ¢ G. Thus, by definition, S tab(s) = {1}.

Now, let go = min{g € G : g > 1}. We have that 1 < gy < s, since if s < g then,
by Proposition [.2.2] (iv), there would exist g € G such that 1 < g < s < go, which would
contradict our choice of g .

Now, for all g € G with g > 1 we have that 1 < gy, < g; then, multiplying by s, we
obtain that

1 <go<s<gos<sg.

But s # gos since Stab(s) = {1}; it follows that 1 < gg < s < gos < sg.

Now, let u € G with u < 5. Then 1 < u”'s and, by the definition of g;, we have that
1 <go<u's,sou<gy'sforall u < s. Therefore, as s = sup,.; {u < s} then s < g;'s or
gos < s, which contradicts the fact that s < gys shown above. m|

Lemma [[[.1.1] gives a necessary condition for G ¢ (G#)o’ that is, G must be quasidense.
However this condition is not sufficient. We will show this in the next example.

Example 8.

We consider G = (2) X R* with the lexicographical order and componentwise multiplica-

tion. Firstly, note that the sequence of elements of G, (1, %)%N is decreasing and con-

verges to 15 and therefore min{g € G : g > 1} = 14, 1. e. G is a quasidense group.
Secondly, we know that H = {1} X R* is a convex subgroup of G and s = sup{H} or

t = inf{H} are not in (G*), because Stab(s) = Stab(t) = H (see Preliminaries Lemma

Next, if @ € G* \ G then @ = sup(A), with A some bounded above subset of G.

a sup{g € G: g < a}

G#

sup{(2",r)eA:neZreR*", (2" r)<al.
G#
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Because A is bounded , there exists m € Z such that (2”,r) € A and 2™*!,r) > a. Note
that, (2",r) € A for all r € R. Indeed, if we suppose that there exists g € R* such that
a < (2™, q) then for 2™, r) € A,

2", r<a< (2" 9q),
multiplying this inequality by (27, 1) € G,

(I,n<a<(,q).

This implies that @ € H, the convex subgroup of G, a contradiction.
Finally,

a = supigeG:g<al
G#

= sup{(2",r): r e R"}
G#

= sup{(2",1)-(1,r): r e R"}
G#

= (2", 1)-sup{(1,r): r e R"}
G#
= 2"1)-s.

Therefore, (G*)) = G = (2) x R* and G is a quasidense group.

In short, for a totally ordered group G written multiplicatively, we have the inclusion
G C (G*)y € G*. The strict inclusion G ¢ (G*), does not depend neither on rank(G) nor on
G being quasidense.

Corollary I1.1.1. If G contains a first non trivial cyclic convex subgroup , then G = (G%),.

Proor. Let H; = (h), generated by & > 1, be the first convex subgroup of G. This
implies that & = inf {g € G : g > 1}, so G is quasidiscrete and therefore G = (G*),. O

For the aforementioned reason, we are interested in groups with a decreasing sequence
of convex subgroups. We shall study in detail two ordered groups with these characteristics
in the following two examples.

I1.2. Example: Lexicographic Direct Sum

Let (G;);a be a family of infinite cyclic groups, where G; = ({g;),-) and g; > 1. Each
group G; = {g? ta € Z} becomes a totally ordered group by the order relation g < glﬁ =
a < B.

Now, let G be the direct sum of the groups G;
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6=G=6e60Ge -
ieN
An element g € G will be written as g = (gf."' )EN = (g‘f‘, 85,85 - ) where «a; € Z for
all i € N and |supp(g)| = [{i € N : @; # 0}| < co. With the componentwise multiplication
and the lexicographic order, G becomes a totally ordered group. Hence, if f = (g")iay,
h=(g")icy withh # fand r = min{i e N : a; # B;} then f < h & a, < 3.
If we denote by ¢; the element (gl.y" )ien € G such that y; = O foralli # kand y; = 1,

then
er =g, LL-) e=(0,g,1-) e=(1,1g.1-)
and each element g € G can be written as the product
g=eperey = |
ieN
where the set {i : a; # 0} is bounded.
Using this notation, we will make a tree diagram of G, as shown in Figure

(3]
€

€, €, e

......

64 :

Ficure II.1. Tree representation for the totally ordered group G
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The levels in the tree diagram, from top to bottom are numbered from one downwards
and represent the different options for the components ef" of an element g = (ef")ieN eg.
Each possible path represents one element in G and its location in the tree indicates its
position in G.

This scheme allows us to visualize some notable subsets and properties of G. For
example, given two paths in the tree, the element in G represented by the path located in a
branch further to the right is larger than the element represented by the path located on the
left.

I1.2.1. Two outstanding subsets of G. Consider the following subsets of G. Fori € N
and g € G, we define ’
A, = {ge] 1 veZ}.
as well as .
C, = {h:gel.v"e;’j:f---eﬁ’: reN,i<r v;eZ, iSer}

We can make a tree diagram of A}, and C}, as shown by the Figures [L.2] and [L3]

Ficure 11.2. The branch in the figure represents the set Ai,

Example 9. As an example to describe the tree diagram and subsets Ai, and C;, we consider
the totally ordered group G = (2) X (3) X (5) X (7) with componentwise multiplication and
lexicographic order.

Leti=3andletg = (2,3,1, 7%) € G. Then, we have that
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i
€

Ficure I1.3. The branch in the figure represents the set C é,

61 :(2,1,1,1)3 62:(1,3,1,1), 63 :(1, 1,5, 1), 64:(1’ 1’ 1’7),
sog=(2,3,1,7=2,1,1,1)-(1,3,1,1)-(1,1,5,1)°- (1,1, 1,7)* and
A = {gef: velZ)
= {23.5.7): vez
and
C, = {ge;‘*ef(‘ (v, €Z, i< j}
{(2,3,57, 7)1 v3,v4 € Z}.

The following figures show the element g = (2,3, 1, 7%) and the subsets Ai, and C; in
the tree diagram for the group G.
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€
G
2,1,1,1)
(1,3,1,1)
(1,1,57,1)
(1.1,1,7%)

FiGure I1.4. The subset Ag where g = (2,3,1,7?)

2,1,1,1
G
(1,3,1,1)
(1,1,5%,1)
(11,17 R (1,1,1,7%)

Ficure IL5. The subset C; where g = (2,3, 1,7°)

The next Proposition describes important properties of the subsets A; and Ci,.

Proposition I1.2.1.
Letg,heGand 1 <ieN.
(i) The group G is quasidense.
(ii) The sets A}, and C;, are bounded.
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(iii) sup C} and inf C}, do not belong to G.
(iv) sup C; = sup A, |
(V) Given k > 1 with k # i, we have sup A}, # sup A%,

ProoF.
(i) If we suppose that the set {g € G : g > 1} has a first element,

8o = (g;li)ieN =min{geG:g>1}

then there exists an element u = goe,;il € G where k = min {i € N : ; # 0} which
satisfies 1 < u < gy, a contradiction (see Figure [L6).

7
7
7
Vi
Vi
Vi
7

Qk—1

S €
(€93
€
ap—1
ek+]
I I
[ |
I I
[ [
I I
| I I
80€; .1 ! ' 8o

Ficure 11.6. The blue path represents g, and the red path the element u.

(i1) Basically, it can be seen in the diagrams the procedure that gives bounds for any
of these sets. We locate the set in the diagram and we move to the right for upper
bounds and to the left for lower bounds. As an example, the element ge;_; is an
upper bound and gel.‘_llis a lower bound of A;, and C é, (see Figure [1.7).

(i1i1) The supC é, must satisfy that foralln; € Z, j > i

(g1, 85% g 8 giils ) < sup Gy < geiy.
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(Z,;]—l
i-1

|
|
|
|

ger Aé 8ei-1
Ficure 11.7. Representation in the tree of the upper and lower bound of A;
The assumption that sup C; = (g?’ )jen € G leads to a contradiction, because from

the above inequality we deduce that

,Bj:aj VJ<1—1

and
Bii=aiy or Big=1+ai.
Therefore,
a) If Bi-y = a;_; then the element e’ ---elf’_"‘l'ef’“ is in C(i, and is larger than
sup C.

b) If 8,1 = 1 + @;_; then the element e{" - - - e}ff"'"ef i~!is an upper bound of Cé
and is less than sup Cy,.
For the case of inf C fg, the proof has the same structure.

(iv) By definition, A, c C, and it is clear that supA, < supC,. In order to show
that sup A, > sup C, we note that for h € C, \ A, we can always determine an
element f € A} such that & < f. Indeed, let g = ()i, If h = (gf’ )jenr € Ci, then
f= gef"_afrl is an element A}, larger than A. Thus sup C;, = sup A}.

(v) We suppose that i < k, in this case, the elements 7, = ge; and h, = ge? belong to
Al and they satisfy f < hy < h, for all f € A§. Therefore, sup A5 < sup Aj.
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O

I1.2.2. The convex subgroups of G. The following proposition gives us a description
of the proper convex subgroups of G.

Proposition 11.2.2.
Foreachi e Nwithi > 1, let

Ci:{g:(gj’)jeN:ajGZ/\Vj<i,0zj:0}.

Then every set C; is a proper convex subgroup of G and there are no others; thus G has
infinite rank.

Proor.

In fact, the first i — 1 components of the elements in C;, are equal to 1. Let f,h € C; with
f <handletg = (gj’)jeN € G such that f < g < h. If there exists a; # 0 with j < i then
g < forh < g, which would contradict the definition of g. Then, necessarily, a; = 0 for
all j < i. Therefore g € C;.

On the other hand, the collection of convex subgroups of G is a totally ordered set.
Clearly we have that C; 2 C; when i < j. Suppose that H is a proper convex subgroup of
G. H # C; for all i > 1, then there exists 1 < j € N such that C;,; & H € C;. The strict
inclusion above implies the existence of an element 7 = (gf."' )ien € H such that a; = 0 for
alli < jand a; > 0. In addition H is convex, thus every element f = (gl.y" )ien € G such that
vi =0foralli < jand —na; < y; < na; for some n € N also belongs to H. Then H = C},
and we obtain a contradiction to the strict inclusion above. O

Proposition 11.2.3.

Consider the set O; = {e;’ ‘ne Z}. Forany g,h € Gand 1 <i € N we have that
(1) supAj, = g-supO; and infA}, = g-inf O;.
(2) sup O; = inf (- 0;) and inf O; = sup (e, 0;).
(3) If j < k then
(1) supOr esupO; =supO; and inf O x inf O; = inf O},
(ii) supO; e inf O; = inf O; and sup O; * inf O; = sup O,
(iii) sup A§ @ supAj = sup A/,
J

(iv) sup A% * sup A} = sup A,

(4) Stab(supA;) = Cig

PRrOOF.
(1) supA; = sup {ge? ‘ne Z} = g-sup {e? ‘ne Z} = g - sup O;. In the same way we
prove inf A, = g - inf O;.
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Ficure I1.8. Representation of the proper convex subgroup C;

(2) If sup O; < inf (e;_10;) then there exists h = (g;y.j )jen € G such that supO; < h <
inf (e;-1 0;). This last condition implies that y; = O forall j <i—1. Ash > sup O,
necessarily y;_; = 1 but this is impossible, because & < inf (e;_; O;).

(3) We know that the dot and star multiplications are associative and if g € G, x € G

then g e x = g % x.

. . . -1 +1
(i) First, note that for i < k, ejl. <ey ejl. < ejl. . Now,

supOyesupO; =

inf Oy xinf O; =

(ii)

sup{uv ‘u,v € G,u <sup Oy, v < supOj}

g#
s;?{eﬁef. :p.q € N} = S;l#p {e? g€ N} = sup O;.

inf {uv : u,v € G,u > inf Oy, v > inf O,
g#

ig#f{e e?:p,qu}:igf{e?:qu}:inf0j.

supO;einfO; = supOjosup(Oje;_ll)

= ej_-_l1 sup O; e sup(0))
= ej_-_l1 sup O;
= inf Oj.
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(iii)

(iv)
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|
sup O; = inf (e;-; 0;)

supOj * 1nf0] = inf(Ojej_l) *mej

sup Aiﬁ e sup A{;

supA(’é * supA,{ =

= ej—l inf Oj * lnf(Oj)
= € 1nf0]

= supO,.

= (g-supO;) e (h-supOy)
= gh (sup Oy  sup Oj)
= gh-supO;

= supAéh.

(g-supOy) % (h - sup Oj)

gh-- [inf (e4-104) * inf (¢,.10))]
ghei_ie;-1 - |inf (0)) x inf (0]
ghey_ie; inf (0)

ghej_y sup (0 j)



1I.2. EXAMPLE: LEXICOGRAPHIC DIRECT SUM 35

gh sup (0 j)

= supAéh.

(4) Stab (supAL) = Stab (g - sup 0;) = Stab (sup O;) = Stab (sup cig) =Ci.
O

The rank of the totally ordered group G is w. Thus G is not complete. In the next
theorem we will characterize its completion G*.

Theorem I1.2.1.

¢*=gu | ] gswo.

1<ieN

Proor.
The existence of u € G* \ G that does not belong to any orbit G sup O; with i > 1 will lead
to a contradiction. Indeed, we know that

= spi= (7)., <6<

We denote by B! = {h = (g;”'(h))ieN eG:h< u} Necessarily there is an m; € N such
that
m; = max {a/l(h) the B,ll}

since, otherwise, B,i is not a bounded set. Now, denote by
B:={heB,:aih)=m]

We have that m, = max {afz(h) the Bﬁ} must exist. If not, u = sup(e'l'l1 0,) which is
impossible by the definition of . Denote now, for each k € N,

Bﬁ = {h S Bﬁ_l . Clk_l(h) = mk_l}

and we will prove by induction that m;, = max {a/k(h) che Bﬁ} does exist for all k € N.
We have already proved the existence of m; and m,. Now, suppose that m; =
max {ak(h) che B’,j} exists and so

B = {he B au(h) = my).

If we suppose that m;,; = max {ak+1(h) the Bﬁ“} does not exist we are led to

_my _my my
u=e e --¢€ Sup(0k+1),

which contradicts the definition of u. We conclude that there is m;, as defined above, for
all k e N.
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Thus,
u = sup {h = (g?"(h))ieN €eG:h< u} = (&/ien
G
and this contradicts the definition of u. ]

Proposition IL.2.4. If1 <i € N then G/ Cig is quasidiscrete.
Proor. Note that,
sup(C},) * sup(C},)

sup(0;) * sup(0;)

= inf(O;e;_1) * inf(O;e;_1)
= e’ ,inf(0;)

= e;1sup(0;)

= € SUP(CiQ)-

inf(cjg) . inf(cgg) = = inf(0O;) e inf(0,)
= sup(Oie;)) e sup(Oie; )
= ¢ sup(0;)
= ¢!, inf(0;)
= ¢, inf(C})).
By Proposition it is known that G/ Cig is quasidiscrete with m(e;_1) = min{h €

Q/C’ig :h> 1), wheren: G — Q/C’ig is the canonical map.
o

I1.3. Example: Levi-Civita Field

We start by stating the main definitions and properties of Levi-Civita field.

A subset M of the rational numbers Q is called left-finite if for every r € Q there are
only finitely many elements of M that are smaller than r. The set of all left-finite subsets
of Q will be denoted by F.

Let M € . If M # 0, the elements of M can be arranged in ascending order; and there
exists a minimum of M. If M is infinite, its elements form a strictly monotonic sequence
that is divergent.

Also, we have for M,N € ¥

(1) MUNeF,MNNeF andif X Cc Mthen X € F,
2y M+N={a+b:ae MbeN}e7F,and for every c € M + N, there are only
finitely many pairs (a,b) € M X N such that ¢ = a + b.

Definition II.3.1.
Consider the set R of all real-valued functions on Q that are nonzero only on a left-finite
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set, that is, they have left-finite support

R:={f: Q- R:supp(f)eF}
We define two operations for the elements in R. Let f,g € Rand q € Q:

(i) the addition on R is componentwise

(f + 9lql = flq] + glq]

(i1) and multiplication is defined as follows

(f - &lgl = Z fla1] - glqa]

q1+q2=q

We have that R can be embedded into R via the map I1. Let x e R, the mapI1: R —» R
is defined by

| x ,ifg=0
Hlql = { 0 ,else
IT is injective, I1(x + y) = II(x) + I1(x) and I1(x - y) = II(x) - [1(x). This embedding is
not surjective, note that if x € R \ {0}, supp(I1(x)) = {0}.

Theorem I1.3.1. ([2]], Theorem 2.3)
(R, +,-) is a field.

The field (R, +, -) is called the Levi-Civita field ([2] and [17]] contain interesting results
with respect to this field). From now on, its elements will be denoted by the letters x, y, z, ...
(instead of f, g, h...). Also we denote the identity element in R by 1, so

(1 Lifg=0
l[q]_{O ,else

For x € R with x # 0, we denote by A(x) = min(supp(x)) which exists because of
left-finiteness of supp(x) and we define A(0) = +oo.

To introduce an order structure to R, we consider the set R* of all nonvanishing el-
ements x € R that satisfy x[A(x)] > 0. This is the cone of positivity in the Levi-Civita
Field.

R = {x e R\ {0} : x[A(x)] > 0}.
The basic properties of R* are:
Lemma I1.3.1. ([2l], Lemma 3.1)
O R NEERH=0,R"N{0} =0 and R* U{0} U (—R*) =R
(1) If x,y € R*, then x + y € R* and xy € R*.

Now, we define an order in R.
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Definition I1.3.2.
Let x,y € R be given. We say thaty > xif x # yand (y—x) € R*; and we sayy > x if y = x
ory> x. Also, wesayy < xif x>yandy < xif x > y.

Notice that with this definition we have, for x # y,

y>xe (y-xAy-x]>0

Theorem I11.3.2. ([2]], Theorem 3.1)
With the relation >, (R, +, -) becomes a totally ordered field.

The order is compatible with the algebraic structure of R, that is, for any x,y,z, we
have: x >y=x+z>y+z andifz>0,wehavex>y=>x-2>y-z

I1.3.1. Levi-Civita Multiplicative Group (R*,-). Later on, we will see that the mul-
tiplicative group (R",-) has infinite rank. Our aim here is the description of its convex
subgroups. In fact, if we consider the order given by the inclusion, we will show that

(1) the set
L={xeR" :Ax) =0}
is the largest convex subgroup of (R, -)
(ii) the largest proper convex subgroup contained in £ is

LO={xeR : Ax)=0,x[0] =1}
(i) for each r € QY, the sets L0 = {x € R : A(x) = 0, x[0] = 1, 2;(x) > r} are convex
subgroups of (R*, -) where

min (supp(x) \ {A(x)}) if supp(x) # {A(x)}
+00 else

/11(.X) = {

Before we characterize the positive cone P = {x € R" : x > 1} we will show by an
example different types of elements of P.

Example 10.
We consider the following numbers:

1 ,q=-2 2 ,9=0 1 ,q=0

-1 ,9g=-1 -1 ,g=1 3 ,9=2
xlgl=4 5 Z=1 ylgl =14 5 322 dgl =4 4 Z=5

0 ,otherwise 0 ,otherwise 0 ,otherwise

See Figure for a graphic representation of these elements. They are in the positive
cone P of (R*,-). Indeed,
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—
—

< > Q

\

FiGure I1.9. The numbers x,y,z € P

Ax-1)=-2 and x-D[-2]=1>0
Ay-1)=0 and y-D[0]=1>0
Az—=1)=2 and z-D[2]=3>0

These three numbers allow us to visualize three subsets of the positive cone P.

(i) The subset P, of elements such that the minimum of the support is negative (x €
Py).
(i1) The subset P, of elements such that the minimum of the support is 0 and whose
value at 0 is greater than 1 (y € P,).
(iii) The subset P; of elements such that the minimum of the support is 0, whose value
at 0 is 1 and whose value at the next support point is greater than 0 (z € P3).
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Lemma I1.3.2.
Let
._ J min(supp(x)) if x#0
A = { +00 else
) min(supp(x) \ {A(x)}) if supp(x) # {A(x)}
A1) = +0o0 else

and Py, P, and P; the following subsets of P
Py = {xeR":Ax) <0}
P, [xeR" : Ax) =0 A x[0] > 1}
P [xe R : Ax) =0 A x[0] = 1A x[2;(x)] > 0)}.

ThenP:P1UP2UP3.

Proor.

If x € (P; U P, U P3) then (x — D[(A(x — 1)] > 0 because 1[q] = { 1 ifg=0

0 else
e if xe Pi,thenA(x — 1) <0 and (x — )[A(x—1)] = x[A(x)] > 0
o if xe P),thenA(x—1)=0but(x —1)[0] =x[0]-1>0
e if x € P3,then A(x— 1) > 0 and (x — 1)[A(x — 1)] = x[4;(x)] > O.
Therefore, Py U P, U P; C P. So, we only need to prove that P C P; U P, U P3.
If x € P then x[A(x)] > 0 and A(x) < 0, since if we suppose A(x) > 0 then (1 — x)[A(1 —
x)] = (1 — x)[0] = 1, therefore 1 > x and x ¢ P, a contradiction. If x € P and x ¢ (P, U P3)
then
(1) If A(x) = 0 A x[0] < 1 then x < 1 and hence x ¢ P, a contradiction.
@11) If A(x) = 0 A x[0] = 1 A x[4;(x)] < O then (x — D[A(x — 1)] = (x)[41(x)] < 0; it
follows that x < 1 and hence x ¢ P, a contradiction.
(ii1) If A(x) < 0, the only option is x[A(x)] > O and therefore x € P;.

and

O
Notice that PN P! =0, PNn{l} =0, PU{l}UP!' =R andx,y€e P = x-y € P.
Also, the order defined on R induces an order in (R*, -). Thus
y>x(:>y)c_1 €P<:)yx_1 € (PLUP,UP3)
I1.3.2. The convex subgroups of (R*,-). In order to determine the rank of (R*,-) we
will study the following subsets of R*
L = xeR :Ax)=0)
L0 = (xeR :Ax)=0,x[0] =1}
L2 = {(xeR :Ax)=0,x0] = 1, 2;(x) > r}



I1.3. EXAMPLE: LEVI-CIVITA FIELD 41

where r € Q" and for all x € R* A(x) and A;(x) are defined as in Lema[[[.3.2] We have for
all r € QF, £ ¢ £° ¢ £. We will prove that these sets belong to a decreasing chain of
convex subgroups of R*.

Lemma II1.3.3.
With the order given by inclusion, the set

L:={xeR" :Ax) =0}
is the largest convex subgroup of (R*, ).

ProoF.
Note that 1 € L. Firstly, we must prove that £ is closed under multiplication. Suppose
x,y € L;then A(x) = A(y) = 0 and A(x - y) = 0, because 0 < g; + g, with ¢, € supp(x),
¢> € supp(y) and (xy)[0] = x[0] - y[0] > 0. Now, let x € £, we prove that x~! € L. Indeed,
we know that 0 = A(1) = A(xx™") = A(x) + A(x7") = A(x™Y), x[0] > 0and 1 = (xx"H[0] =

x[0] - x'[0] therefore x"![0] = —— > 0 and so x™' € £. The other group axioms are

x[0]
inherited from (R*, -).
Next, let x,y € L and u € R* such that x < u < y. This implies that A(«) = 0 because if
A(u) > 0 then u < x, and if A(u) < O then u > y. This shows that L is a convex subgroup.
Finally, let M be a proper convex subgroup of (R*,-). If x € M\ L then, without loss
of generality, we may assume that A(x) < 0. Thus, we can always find n € N such that
Alx) < —% and so the element d 7, given by

_1 1 =-1

.. 1
isinR and 1 <d™» < x.

| | | | | | |
! I I I I I I I I I I

]
I
m d" dn dr a b d  dw a™ d”

\

R-%—

Ficure I1.10. a,b e Rwitha <1 < b;n,me Nwithm <n

Then, by the convexity of the subgroup M we have that d~' € M. Moreover, for any

y € R we can always find a m € N such that d" < y < d7 and hence y € M, which
contradicts that M is a proper subgroup of R*.

O

Lemma I1.3.4.
The set
LP={xeR :Ax) =0,x[0] = 1}

is a convex subgroup of (R*,-).
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Proor.
Notice that if x € £ then A(x™!") = 0 and x'[0] = x[0]x"'[0] = 1[0] = 1 and therefore
x'e L0 Letx,ye £'and u € R such that x < u < y. Then

(1) A(u) =0: If A(u) > O then u < x, and if A(u) < O then u > y.
(i1) u[0] = 1: If u[0] > 1 then u > y, and if u[0] < 1 then u < x.

Thus u € £°. O

Lemma I1.3.5.
The set

LO={xeR" : Ax) =0,x[0] = 1,;(x) > r}

is a convex subgroup of (R*,-) for each r € Q*.

ProoF.

Just as before, we can prove that if x € £° then A(x™!) = 0 and x™'[0] = 1.

Additionally, A;(x™") > r, since if 4;(x"!) < r then (x - x DA, (x"H] = x[0] -
A (7D = x A, (x"H] # 0 but on the other hand (x - x D[4, (x )] = 1[4, (x )] =0, a
contradiction. We conclude that x™' € L0,

Finally, we show that £ is a convex subgroup. Let x,y € £ and u € R" such that
Xx < u < y. As in the proof of the previous Lemma, we have that A(u#) = 0 and u[0] = 1.
Also A;(u) > r, because assuming that A,(u#) < r leads to a contradiction: If u[4;(u)] < O
then u < x and if u[4;(u)] > O thenu > y.

Thus u € £° and therefore £ is a convex group for all r € Q*. m]

Corollary IL.3.1. (R",-) has infinite rank.

Lemma I1.3.6.
There is a jump in (R*,"), i.e. R* does not contain any convex subgroup between L° and

L

PROOF.
If £ were a convex subgroup of (R*,-) such that £° ¢ L c L, then there would be an
element x € £ such that A(x) = 0, x[0] = a # 1 (if for all x € £, x[0] = 1, then £ = L0).
But we know that £ is a convex subgroup and in this case x™'[0] = a~'. Without loss of
generality, we may assume that @ > 1. Thus, for any element y € L such that y[0] = b
we can find an n € N such that a™ < b < d". Note that x*[0] = &" and x™"[0] = a™"
and therefore x™ < y < x", so by convexity of £ we have that y € £. We conclude that
L=L i

Lemma I1.3.7.
For all r € Q7, the largest proper convex subgroup in L0 is (L2)* = U LY

i>r
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_Proor.
If £ were a convex subgroup of (R, -) such that
Jczcr
then we can find an element x € £ such that x ¢ LY for all i > r. This condition implies

that A;(x) = r otherwise A,(x) > rand x € Lgl(x) C Upr L.

Now, we prove the inclusion L(,’ C L. Indeed, let x € L(,) and put a := x[r] € R; then
for all y € £° with y[r] = b we could find n € N such that —n|a| < b < nlal. Also we know
that

XY =A4(&")=r, X'rl=na and x"[r]= —na.
Note that if > 0 then x™” < y < ¥, and if ¢ < 0 then x* < y < x™". Therefore y € £,
because x" and x" are elements of the convex subgroup £. Thus £ = L2 and hence (LO)*
is the greatest convex subgroup contained in £°. O

These two examples above show the behavior of some totally ordered groups with a
decreasing sequence of convex subgroups.
The results in the next section will complete the characterization of (G*),.

I1.4. Sufficient conditions for G ¢ (G%),

Theorem I11.4.1.

Let (G, -, <) be a totally ordered multiplicative group with rank(G) > 1. Let G* be the
Dedekind completion of G, and let « € G* \ G and C, := {g € G : g < a). If there exists a
convex subgroup H of G such that H C C, then H C S tab(a).

ProoF.
Without loss of generality, we may assume that @ > 1. Since G is cofinal (and coinitial) in
G*, we can always find f € G such that @ < f. Thus C, is a bounded above subset of G
(see Figure [L.I1T)).

-
-t - fl\ » G

1 a f

Ficure II.11. Representation of C,,

Consider now the canonical morphism
n: G—->G/H
g— 8 =gH.
We know that 7 is increasing. We will prove that 7(C,) is a cut in G/H.

(i) C, # 0, since G is coinitial in G* we can find u € G such that u < @ and therefore
n(C,) # 0.
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(i1) On the other hand, if n(u) < n(g) for any g € C, then u < g (because 7 is
increasing), and since C, is a cut in G then u € C,, therefore n(u) € n(C,).

Let s = supg gy 1(Cy), where (G/ H)* is the Dedekind completion of the group G/H,
and let h € H with h > 1 . Then
h-a=h-sup{geG:g<a}l=suplth-geG:geC,}
G* G*
and since 7 > 1 then @ < h - @. Note that, for all g € C,, n(h - g) = n(h) - n(g) = n(g) and
therefore
sup n(h-C,) = sup n(C,) = s.

(G/H)* (G/H)*
This implies that for all g € C, there is u € C, such that hg < u; thus, hg € C, and
hence ha < a@. We conclude that 4 - @ = @ and therefore & € S tab(a). O

Corollary 11.4.1.
If G contains a chain C of non trivial convex subgroups such that

ﬂr = {1} then G = (G%),
I'eC

PrOOE.
Under the same assumptions as in the previous theorem, let & € (G*) \ G. If G contains a
decreasing chain of convex subgroups that converges to the trivial subgroup {1}, then there
exists a convex subgroup H € C such that H ¢ C, and therefore H C S tab(a). For instance,

we can consider in the previous theorem H = U I. m|
rec
aé¢ll

Lemma I1.4.1.

leta € G*\ Gand C, := {g € G : g < a). Under the same assumptions as in the Theorem
if C, contains no convex subgroup except the trivial one then G < (G*)o.

Proor.

Let
H= ﬂ H,
I.cG

where for all 7, I'; is a non trivial convex subgroup of G. Then @ < sup(H), because
otherwise H C C,, which contradicts our hypothesis. Therefore @ € H* and there are
hl,hz € H such that hl <a< hz.

Since rank(H) = 1, there exists an isomorphism from H to a multiplicative subgroup
S of R*. S cannot be a discrete subgroup, i. e. S # (g) for all g € R, because in this case
H* = Hand « ¢ H. It follows that S is a dense subgroup of R*, i. e. H* = R* and therefore
there exists @' € R* such that @ - ™' = 1 and @ € (G*),. o



I1.4. SUFFICIENT CONDITIONS FOR G ¢ (G*), 45

Corollary 11.4.2.
(RYy =R and (G*) = G.
ProoF.

Both of these totally ordered groups contain an infinite decreasing chain of convex sub-
groups. Indeed, in (R, ), for all p,q € Q" with p < g we have that

R2L2LI2(L) 2 2L2(L) 2 2L2(L) 2211}
On the other hand, for the direct sum (G, -), for all i, j € N with i < j we have that
C; 2 Cj; therefore the group G contains a decreasing sequence of convex subgroups such
that
G2C12C,2---2C2C12--2C;2---2{1}.
From Corollary [L4.1] we deduce that (R*)} = R* and (G*), = G- m|

Corollary 11.4.3.
Let H and I be totally ordered groups, with rank(I') = 1. Let G = H X I be the direct sum
of H and T, with componentwise multiplication and lexicographic ordering. We have two
cases for (G*):

e IfT is a cyclic subgroup of (R*,-) then (G*)y = G.

o IfT is a dense subgroup of (R*,-) then (G*)y = H x R™.

PRrOOF.

G = H x T is a totally ordered group with a first convex subgroup {1} X I'. If I is a cyclic

subgroup of (R*, -) then, by Corollary we have that (G*), = G. On the other hand, if
I is a dense subgroup of (R*, -) then, by Theorem [[.4.1] we have that (G*), = H xR*. O

We can summarize the description of (G*), as follows. Let G be a totally ordered group.
(i) If G contains a chain C of non trivial convex subgroups such that
()T =11} then G = (G*),
I'eC
(i1) If the first non trivial convex subgroup of G is isomorphic to a proper dense sub-

group of R* then G* contains a group larger than G; otherwise G is the largest
group contained in G*.






CHAPTER III
Order in M(X, G*)

Let G a totally ordered group and G* its Dedekind completion. Let X be a G-module
and M(X, G*) be the set of all the G-module maps from X to G* such that

MX,G" = {90 : X - G" : pisincreasing and Vg € G, ¢(gx) = ggo(x)}
We consider the natural ordering on M(X, G¥) given by
©1 <2 © 91(x) < po(x), forall x e X

In this chapter our aim is to extend the results in [14], where the authors determined all
G-module maps G* — G*. We will study the set M(X, G*), where X can be any G-module
and prove that M(X, G"isa totally ordered set; even more, it is a G-module. For this end,
we start in Section [IL.I] by studying the order of two families of morphisms contained in
M(X, G*).

M(X, G#)sup = {fxo € M(Xa G#) . fxo(x) = Sup{g €G: 8gxp < x}a Xo € X}
G#

MX, Gy = {hxo € M(X,G") : h,(x) = inflg € G : gxo > 2}, x¢ € X}
G

Firstly we prove that the set M(X, G*)qp U M(X, G*);y is a totally ordered set. For this,
it was crucial to analyze the different cases depending on whether G is a quasidiscrete or
quasidense group and to considerate the orbits of the G-module X.

Later on, in Section we describe all G-module maps X — G* when X is the G-
module X, with two orbits ( see item (f) in Example [6]). This description allows to show
that M(X,, G") is a totally ordered set.

Finally, using G-module maps in M(G*,G*), M(X, G*),,, and M(X, G*),s, we prove
that M(X, G*)is a totally ordered set and a G-module, for any G-module X.

IIL1. The sets M(X, G*)y,p and M(X, G*)iy

Lemma III.1.1.
M(X, G#)mp and M(X, G#)mf are totally ordered sets.

47
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ProOF.
If xp, x; € X with x¢ < x; and
Jx(x) = sup{g € G : gxp < x}
G#*
Ju(x) =sup{g € G:gx; < x}
G#*
then f, < fy,. Indeed, we consider the subsets of G

Ap(x) ={g € G : gxo < x}
A,(x)={geG:gx; <x}
If g € A, (x) then gx; < x. Now, since xp < x;, and X is a G-module we have that

gxo < gx;. Thus gxo < gx; < x, g € A,, and therefore A,, C A,,. With this inclusion, is
easy to see that for all x € X, we have that

fu(x) = sup Ay, (x) < sup Ay, (x) = fi (%)
G* G*

< I | > M (X G#)
fa fro

Ficure III.1.  For xo, x; € X with xy < x, then f;, < f3,

In the same way, we will prove that &, < h,, if xo, x; € X with xy < x; and
hy,(x) = i(r;f{g e G:gxy > x}
hy, (x) = igf{g €eG:gx > x}
In this case, we consider the subsets of G
B, (x)={g€G:gxp=x}

B, (x)={geG:gx > x}
Note that if g € B, (x) then gxy > x. Since xp < x; and X is a G-module then gxy < gx;.
Thus, gx; > gxy > x, g € B,, and therefore B,, C B,,. Consequently, for all x € X,

hx1 (x) = lél#f Bx1 (x) < l(I;l#f on(x) = hxo(x)

< I | > M (X G#)
hx

0

Figure II1.2.  For xp, x; € X with xo < x;, then h,, < h,,

We conclude that if xy < xi, then f;,(x) < f,(x) and h,, (x) < h,(x), forallx e X. O
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Now, our aim is to know if the union M(X, G*)s,, U M(X, G*)yy¢ is a totally ordered set.
First for xy € X, we compare two G-module maps f,, € M(X, G*)q,p and hy, € M(X, G*)ins.
Note that both maps are generated with the same point x, € X,

fol) =suplg € G gxy<x) Iy () = inflg € G gxo 2 )
G*

First, we calculate f,(xo) and h,,(x).

S (X0) = sup{g € G : gxp < xo} = sup Stab(xy)
G* G*

hy,(x0) = inf{g € G : gxo > xo} = inf Stab(xy)
G* G*

Now, for any x € X, we have the following two cases:
(1) If x € Gxp (x is in the orbit of xy), then there is g € G such that x = gx; and as a
result

Fro () = fx(8X0) = 8 (x0) = g supStab(xy) = g sup S tab(x)
Gt Gt

hyo(x) = hy(gx0) = ghy,(x0) = gin#f S tab(xy) = gin#f S tab(x)
G G

Since infg# Stab(x) < supg: Stab(x), we have that ginfg+ Stab(x) <

g supg+ S tab(x) and
hy(x) < fr () Vx € Gxy
(i1) if x ¢ Gxo, then for all g € G we have that g € A, (x) = {g€ G : gxp < x} or
g€ B, (x)={ge€G:gxy>x},and
Ay, (x) N By, (x) = 0.

Now, if g € A, (x) and w € G withw < g then wxy < gxy < x and consequently
w € A, (x). In the same way, if g € B, (x), and u € G with g < u then x < gxp <
uxo and therefore u € B, (x).

This fact implies that @ = supg+ A, (x) < infg By (x) = 6.

If we suppose that @ < 3, then there exists u € G such that

asu<pf ora<u<lp

(i) In the first case, uxy < x because u < 8, then @ = u € G. Also 8 € G, if we
suppose that 8 ¢ G then for each g € G such that g < 8 we have that gx, < x
and therefore g < @ = u. Thus,

B = infigeG:g2p)
= @ﬁgeG:g>m

= sup{ge G:g<p]
G#
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= sup{geG:g<u}
G#
= ueG

(i1) Similarly, in the second case, we have that o, 8 € G.

Thus, if @ < B, then @, € G and we conclude that G must be quasidiscrete
with 8 = goa where go = min{g € G : g > 1}. This implies that, if G is quasidense
then a = 3.

< > G
Ay @) By ()

FiGure II1.3. In the case x ¢ Gxy, the subsets A, (x), By,(x) C G

Remark 1. Note that, when G is quasidiscrete, if x ¢ Gxy, and @ < S then
necessarily Stab(xy) = {1}. Indeed, if we suppose that Stab(xy) # {1} then
go=min{g € G : g > 1} € Stab(xy), therefore

X < Bxg = (@go)xo = a(goxo) = axp < X,

a contradiction.

When we analyze M(X, G‘E")Sup U M(X, G*)iy, it is crucial for the ordering, to know
whether G is quasidiscrete or quasidense. The following lemma summarizes this analysis.

Lemma II1.1.2.
Let xo € X, f,, € M(X, G#)mp and h,, € M(X, G#),-,,f G-module maps. In the case G is
quasidense, for all x € X we have that
(1) If x € Gxp and Stab(xy) = {1} then h,,(x) = f,(x).
(1) If x € Gxg and Stab(xy) # {1} then h,,(x) < fy,(x).
(1i1) If x &€ Gxg then hy,(x) = f5,(%).
Therefore hy, < f,.

Remark 2. Note that, If G is quasidense and S tab(x,) = {1} then we do not need to know
whether g is in the orbit of x, or not, because in both cases f,, = h,,.

Lemma II1.1.3.
Let xy € X, f,, € M(X, G#)SW, and hy, € M(X, G#)mf G-module maps. In the case G is
quasidiscrete, for all x € X we have that
(1) If Stab(xo) = {1},
(i) If x € Gxg then foy(x) = Iy (x).
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(1) If x € Gxo then f,,(x) < hy(x).
Therefore fy, < hy,.
(2) If Stab(xo) # {1},
(i1) If x € Gxp then hy,(x) < fi,(x).
(iv) If x & Gxg then hy,(x) = f,(x).
Therefore hy, < f,.

Up to now, we have that if G is quasidense and xy, x; € X with xy < x; then

o = S
hy < hy
hy < Sy
hy < fy
hy < fa

By the last inequalities, we must compare A,, and f,, for xo < x;. The next Lemma is true
for both cases, quasidense and quasidiscrete.

Lemma II1.1.4.
Let G be a totally ordered group and X a G-module. Let xy,x; € X, with xo < x1, fy, €
M(X, G#)Sup and h,, € M(X, G#),-,,f. Then for all x € X we have that f,(x) < hy,(x).

Proor.
In this case we have A, (x) N B,,(x) = 0. Indeed,

8E€EB,(x) = x<gxo<gx;=>g¢A,(x)
g€EA(x) = gxo<gxi<x=g¢B,(x
Also, if
gEB (x),g<ueG = uxy>gxo>x=uc B, (x)
g€EA, (X u<geG = uxi<gxi<x=>ucA,x

and it 1s true that
S (x) =supA,, (x) < inf B, (x) = hy (x)
G# G*

We summarize the results for the quasidense case.

Theorem II1.1.1.
Let G be a quasidense totally ordered group. Then M(X, G#)Sup U M(X, G#),-,,f is a totally
ordered set.
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Proor.
By Lemmal[IL Tl we know that M(X, G*),,, and M(X, G*),, are totally ordered sets. We
just need to show that if f, € M(X, G*),, and h, € M(X, G*);,; with y,z € X, then f, < h,
or fy, > h;. In fact, if

(i) y = z then, by Lemma[[IL.1.2] we have that 1, < f,
(ii) y > z then, by Lemma[IL.1.4] we have that f, < h,
(iii) y < z then, by Lemma [ILT.1l we have that f. < f; and, by Lemma [IL.1.2] we
know that i, < f;. Therefore h, < f,.

-< | | | ——> M(X.G¥)
h f hf

Ficure II1.4. Quasidense case, with y < z.

Now, let us analyze the quasidiscrete case.

Lemma III.1.5.

Let G be a quasidiscrete totally ordered group with gy :== min{g € G : g > 1}. Let xy, x| €
X, with xo < x; and f,, € M(X, G#)Sup and h,, € M(X, G#),-,,f G-module maps. Then for all
x € X we have:

(i) If Stab(xy) = {1} and S tab(x,)
(i1) If Stab(xy) # {1} and S tab(x,)
(iii) If Stab(xy) # {1} and S tab(x,) then hy, < fy, < hy, < fy-
@iv) If Stab(xo) = {1} and S tab(x,) = {1} then

(a) Ifxo < X1 < &oXo then fx1 =< fxo < hx1 < hxo-

(b) Otherwise, f,, < hy, < fy, < hy,.

then h, < f, < fi < hy,.
then f, < hy, < hy, < fy-

{1
{1
{1
1

—— —— —— ——

+
+

Proor.
By Lemma we have that f, (x) < f;,(x) and A, (x) < h,,(x) for all x € X.

(i) If Stab(xy) = {1} and Stab(x,) # {1} then, by Lemma [[IL.1.3] we have that f,, <

hy, and hy, < f,. Thus hy, < £, < foy < hy,-

(ii) If Stab(xo) # {1} and Stab(x;) = {1} then, by Lemma [IL.1.3] we have that f,, <
hy, and hy, < f,,. Thus f,, < h, < h, < fy.

(iii) If Stab(xo) # {1} and Stab(x;) # {1} then, by Lemma[IL.T.3]we have that i,, < f;,
and h,, < f,,- Now, we need to compare f,, with . Lemma[IL.T.4] we have that
S < hy,. Therefore, hy, < fy, < hy, < fo-

(iv) If Stab(xo) = {1} and Stab(x,) = {1} then, by Lemma [[IL1.3] we have that f,, <
hy, and fy, < h,,. Now, we need to compare h,, with f,,.
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(a) If xo < x1 < goxo, then x; and x; are not in the same orbit (x; ¢ Gx).
Let x € X such that x € Gx, that is, x = uxy, with u € G. Then f, (x) =
S (uxo) = u, because S tab(xp) = {1}. Also, x = uxp < ux,, and thus h,, (x) <
u = fy,(x). Furthermore A, (x) = f,,(x), because if we suppose h,, (x) < f5,(x)
then h,, (x) < g;'u, this implies that x = uxy < g;'ux; (equality is excluded,
because x; ¢ Gxp), and so goxo < X1, a contradiction.
Now, if x € Gx; then x = vx; with v € G. Since Stab(x;) = {1} and vx, <
vx; = u, we have that /1, (x) = v < f, (x). As in the previous case, we have
that 4, (x) = f;,(x), because h,, (x) < f,,(x) then we deduce that goxo < x;, a
contradiction.
Therefore, if x € Gxp U Gx; then h,, (x) = f,,(x).
Now, in the case x ¢ (Gxy U Gx;), there are two possibilities. Firstly, if
A, (x) N By, (x) # 0 then there exists u € G such that

uxg < x < ux; < ugoxo and

galuxo < g(_)luxl <uxy < x<uxi.

We have that uxy < x and for gou, the successor of u in G, ugopxy > x, so
S (x) = u. In the same way ux; > x and for g 'u, the predecessor of u in G,
ugy'xi < x, 80 hy(x) = u. Therefore f, (x) = hy, (x).
Secondly, if A, (x) N B, (x) = 0, then for all u € A, (x) and v € B, (x), we
have that

uxp < uxg < x <vxy < vxi.

Consequently, u < v, and thus f,, < h,,.
We have proved the statement (a).

(b) Now, we will analyze the case xy < goxo < x;. We suppose that there exists
x € X such that f, (x) < h, (x). First, we have that A, (x) N By, (x) = 0,
otherwise, there exists w € G such that wxy < x < wx; and this implies
hy, (x) < fy,(x), a contradiction to our assumptions. Second, we know that
there exists u € G such that

fro() Su<hy(x) or fi,(x) <u<hy(x).
1. fy(x) < u < hy(x) implies uxy < ux; < x, thus f,(x) = u € G and
hy,(x) = gou € G. Thus,
uxo < x < gouxop , ux; <x=<ugox
and
uxp < uxy < x < gouxp < goux.

This leads to xo < x; < goXo, a contradiction.
2. the same happens when f, (x) < u < hy(x), hy,(x) = u € G and
Jro(X) = ug, '€ G. Also, this leads to x; < x; < goXo, a contradiction.
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Therefore, for all x € X, h, (x) < f,,(x) when xy < goxo < x; and we have
prove the statement (b).

O

We summarize the results for the quasidiscrete case.

Theorem I11.1.2.
Let G be a quasidiscrete totally ordered group. Then M(X, G*),, U M(X, G*);,s is a totally
ordered set.

Proor.
By Lemmal[IL Tl we know that M(X, G*),,, and M(X, G*),, are totally ordered sets. We
just need to show that if f, € M(X, G*),, and h, € M(X, G*);,; with y,z € X, then f, < h,
or fy > h;. In fact,

(i) If y = z then, by Lemma [[I.T.2Z) we have that
a) If Stab(y) = Stab(z) = {1} then f, < h.
b) If Stab(y) = Stab(z) # {1} then h, < f..
(ii) If y < z then, by Lemma[[IL.1.5] we have that
a) If Stab(y) = Stab(z) = {1} and y < z < goy, then f; < h,.
b) Otherwise, h, < f,.
(iil) Finally, If y > z then, by Lemma[[IL.1.4] we have that f, < h..

IIL.2. A totally ordered set of G-module maps

In this section we will show an example of a set G-module maps and we study the
ordering on this set for the quasidiscrete as well as the quasidense case. Firstly, let us
mention a general fact, which we will use later, about the behavior of any pair of G-module
maps.

Remark 3.
Let x( be an element of the G-module X. Let r, f be G-module maps in M(X, G"). Note that,
if r(xp) = t(xp) then r(x) = t(x) for all x in the orbit of xj. In the same way, if r(xy) < #(xp)
then r(x) < t(x) for all x € Gxy.

Indeed, forall g € G

r(xo) = t(xo) = g - r(xo) = & - t(x0) = r(gxo) = 1(gxo)
r(xo) < t(xo) = g - r(xp) < g - t(xo) = r(gxo) < 1(gxo)
II1.2.1. The G-module X,. For this example, we consider a totally ordered group

(G,,<)and G~ := {g~ : g € G} be a copy of G disjoint from G. We set X, := G U G~
and consider the following definitions:
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(i) For all 5,7 € G with t < s, the element s~ € G~ is such that 7 < s~ < s.
(i1)) We extending the multiplication of G to X, as follows g - s~ := (gs)” forall g € G

and s~ € G~

With these definitions, (X3, -, <) is a G-module with two orbits, namely G and G™.

Notice, for all w € X;, we can always writew = g,,-1 €e Gorw = g, - 17 € G7, with
gw € G. Obviously, if w € G thenw = g,,.

Now, let i, € M(Xs, G*)inr and f,, € M(X5, G*)gyp. For all x € X, we have that

o Ifw=g, 1¢€G then

Ji(x)

hy,(x)

sup{g € G : gw < x}
G*

sup{g € G : ggw < x}
G#

sup{(gw)_lz €G:z<x} wherez=gg,€G
G#

(gw)_1 sup{z€ G : 7z < x}
G#

(g filx)

(&) i ()

e In the same way, if w = g, - 1= € G~ then f,(x) = (g,)"'fi-(x) and h,(x) =

(gw)~ - ().

Moreover, in this example, if x € X, then x = g € Gor x = g- 1~ € G~ and therefore for
any G-module map t € M(X,, G*) we have that t(g) = gt(1) or t(g”) = gt(17). Thus, by the
previous equalities, we just need to determine the values of f,,(1), f,,(17) and A,,(1), A,,(17),

withw =1,1".

II1.2.2. Case I: G quasidense. We will start determining the G-module maps in
M(X,, G‘E")Sup U M(X>, G*)inr when the totally ordered group G is quasidense.

A =
Si(17)
hi(1)

hy(17)

fi-(D)
fi-(17)

supijge G:g-1<1}=1

G#*
supijgeG:g-1<1}=supfgeG:g<1}=1
Gt Gt
inflgeG:g-1>1}=1

Gt

inflgeG:g 1217} =inflgeG:g217}=1
G

supijge G:g-1" <1}=sup{geG:g <1}=1

G* G*

supjgeG:g-1" <17}=supfgeG:g <17}=1

G* G*
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hi-(1) = in#f{g €eG:g-1">21}=1
G

h-(1") = inflgeG:g-1">1}=inflgeG:g >17}=1
G* G*

< | ' > Xo

< >» Gt

Ficure III.5. When G is quasidense, fi- = f; = h;- = hy
Note that, for all w, x € X5, h,,(x) = f,(x) = (8w) 7' g, thus M(X>, G*)gyp = M(Xo, G*)iny

Now, let t € M(X,, G*) and we suppose that there exists x € X, such that #(x) = g € G.
(i) if x = g, € G then t(g,) = g, t(1) = (g,)"'g and hence
1(1) = hg-1(1) = fo-1(1)
Therefore #(u) = hy o1 (1) = f, .1 (1) for all u € G (see Remark [3)).
Now, we show that #(17) = (g,)"'g. Indeed, if we suppose #(17) = a <
(gx)"'g with @ € G* then there is u € G such that @ < u < (g,)"'g (because G is

quasidense) and since 7 is increasing 1~ < ug~'g, < 1, which is impossible (note
that t(ug™'g,) = u).

8.8 'u 1- 1
< | ‘ ' > X,

~
~

< .' > G
(g)7'g

(i) In the same way, if x = g, - 1~ € G~ then #(g}) = g, t(17) = (g,)"'g which implies
1(17) = hg o 1(17) = fo o1 (17).
Therefore t(u™) = hy 1(u™) = f, 1(u”) for all u= € G~ (see Remark [3). Also,
(1) = (g,)"'g. Indeed, if we suppose #(1) = a > (g,)~'g with @ € G* then there is
u € G such that (g,)"'g < u < a (because G is quasidense) and since ¢ is increasing
1~ < ug~'g, < 1, which is impossible (note that t(ug~'g,) = u).
In short, if there exists x € X, such that #(x) = g € G thent = h,, = f,, withw = (g,)g"".
Otherwise, #(x) € G* \ G for all x € X,.
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1 1 g8 u
( | | | ) X2

|
(807 'g u @

II1.2.3. CaseIl: G quasidiscrete. We determine the G-module maps in M(X,, G*)g,pU
M(X,, G")ins when G is a quasidiscrete group. Let gy := min{g € G : g > 1}.

fil) = sup{geG:g-1<1}=1

G#
fil?) = suplgeG:g-1<1"}=suplgeG:g<17}=g'
G* G*

hi(l) = in#f{geG:g-lzl}:l
G

h(1™) = infljgeG:g-1>1}=inflgeG:g>1"}=1
G* Gt

< ' ' >» X3
i hy

< [ > G*
g 1

Ficure 1I1.6. When G is quasidense, f; < h;

fi-(1) = supfgeG:g-1" <1}=suplgeG:g <1}=1
Gt G*
fi-(17) = suplgeG:g-1" <1 }=suplgeG:g <1}=1
Gt Gt
hi-(1) = in#f{g €eG:g-1">21}=g
G
h-(1") = infljgeG:g-1">1"}=inflgeG:g =217} =1
G* G*
Note that, fi- = hy and h;- = gof1 = f:gal. Hence, in our analysis we just consider f,,

and h,,, withw € X,. Let x € X,

e If x € Gw then h,,(x) = f,,(x)
o If x ¢ Gw then f,,(x) < h,,(x)
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< ] ! > X3

< ! > G
1 80

Ficure III.7. When G is quasidiscrete, h;- < fi-

Now, let t € M(X,, G*) and suppose that there exists x € X, such that #(x) = g € G.
(i) if x = g, € G then 1(g,) = g, #(1) = (g,)"'g and hence
t(l) = hgxg‘l(l) = fgxg‘l(l)

Therefore (1) = hy 1 (1) = f, ,1(u) for all u € G (see Observation[3)).
Now, since ¢ is increasing, we have two possibilities for #(17),

(1) #(17) = (g.)"'g and therefore ¢ = h, ;-1 € M(Xp, G*),, OF

(2) 1(17) = g;'(g.)'g and therefore 1 = f, .1 € M(X2, G*)yp

-1 —

8 1 1
< 4+ ! > X;
/
t ‘ Iy 7\\\ s ! t
1 J 8x8 N\
\\
< — : > G*
g, (g)7'g (g07'g

Ficure II1.8. We have two possibilities for #(1). In both cases ¢t €
M(XZ, G#)xup U M(XZ, G#)inf

(i) if x = g.-17 € G then (g, - 17) = g, t(17) = (g,)"'g which implies that
t(17) = hg g1 (17).
Therefore #(u™) = hy o1(u”) for all u € G (see Remark [3). As in the previous
analysis, we have two possibilities for #(1):
(1) #(1) = (g»)"'g and therefore 1 = hy 1 € M(Xp, G*);5 OF
(2) t(17) = go(g,)~'g and therefore ¢ = fog1gt € M(Xo, G up-

Thus, if there exists x € X, such that #(x) = g € G thent € M(X,, G*);,r U M(X5, G-
Otherwise, #(x) € G* \ G for all x € X,.

IIL.2.4. M(X,,G"): Quasidense and quasidiscrete cases. Finally, for a quasidense or
qusidiscrete totally ordered group G, we analyze the G-module maps ¢ € M(X,, G*) such
that #(x) = @ € G* \ G for all x € X,.
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< | —=k ' >» X5

< f T >» G*
(g)7'g go(g0)'g

Ficure III.9. We have two possibilities for #(17). In both cases, t €
M(XZ’ G#)sup U M(XZ’ G#)inf

Suppose that ¢ is a G-module map such that ¢ ¢ (M(Xz, G*)up U M(X2, G*);, f), with
(1) =a € G*\ G.
(1) if @ > 1then 1 = h(1) < #(1) = a. Also, t is a G-module map, and hence for
any g € G, t(g) = ga; moreover, #(g) < « for all g < 1. If we suppose that
t(17) = B < a with B € G* \ G, then there is u € G such that 8 < u < «. In this
case, u < 17, t(u) < 8, but this is a contradiction because /,(g) < #(g) forall g € G
(see Remark [3)) and therefore

u=h@)<tu)<p
Therefore #(17) = @ and so #(g”) = ga for all g € G.

< u 1 1 > X,

—> (G)*

We conclude that #(x) = g« for all x € X;.

(i1) For the case @ < 1, we have that #(g) = ga for all g € G. If we suppose that
t(17) = B < a with B € G* \ G, then there is u € G such that 8 < u < @ < 1. Note
that, u < 1~ and hence #(u#) < 8, which is a contradiction because u = h,-1(1) <
t(1) =abutt(17) = B < h,-1(1-) = u (see Remark [3). Therefore #(17) = @ and so
t(g”) = ga for all g € G. We conclude that #(x) = g« for all x € X;.

Lemma IIL.2.1.
M(X,,G%) is a totally ordered set.

ProoF.
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First, if G is complete, then G = G*, and
(1) when G is quasidense, M(X,, G) = M(X,, G)gp = M(X2, G)iny,
(i1) when G is quasidiscrete, M(X,, G) = M(X3, G)sp U M(X2, G)ing,
and by Theorems MLI.2lwe conclude that M((X,, G) is a totally ordered
set.

Now, suppose that G is not complete, so G € G*. Lett, r € M(X,, G*) be two G-module
maps such that
t(H=t(1")=a and r(1)=r(17)=p
with @, 8 € G* \ G. Then for all x € X,, t(x) = g, and r(x) = g,5. Note that if @ < 3 then
g < g,Bforall g, € G and therefore # < r.
Now, we want to compare the G-module map ¢ with #(x) = g.«@ and @ € G* \ G with
any G-module map k € (M (X2, G gup U M(X2, GM)iy f) )

(i) When G is quasidense, there exists w € X, such that k(x) = h,,(x) = (g,,)"'g, for
all x € X,. If k(1) = (g,,)"' < a then k(x) = g,'g, < g.a = t(x) for all x € X,, and
sok <t If k(1) = (g,)"' > a then t(x) = g.a < g,'g, = k(x) and therefore < k.

(i1)) When G is quasidiscrete, k = h,, or k = f,, for some w € X,.

(1) In the case k = h,,, we have that k(x) < #(x) or #(x) < k(x) (the proof is the
same as in the quasidense case).

(2) When k = f,,, we have that k(1) = f,(1) = (g,)”" and if (g,)”' < « then
k(x) < (gw)'ge < g = t(x) for all x € X,, and so k < t (remember
that £,(17) = (g0)"'fu(1) < fi(1) with go = min{g € G : g > 1}). In
the other case, f,(1) = (g,)"' > a, we have that the predecessor element
(g0) '(gw)™" > @ and so f,,(17) = (g0)"'(g,)"' > @. Consequently, we have
that #(x) = ag, < f,,(x) = k(x) for all x € X, (see Figure [IL.10).

<

] ' ' > G*
,' (g g8 (8w '8
|
|

8x

Figure II1.10. f, for allw € X,
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O

Knowing the ordering of M (X5, G#)mf U M((X,, G#)mp was one of the key facts in deter-
mining that M(X,, G*) is a totally ordered set.

In the following section, it is proved that M(X, G*) is a totally ordered set for any G-
module X.

II1.3. Order in M(X, G*)

In [14] the set M(G*) of all G-module maps ¢ : G* — G* was described. In the
following Lemma, we use the characterization of the G-module maps in the subsets M'(G*)
and M'(G") (see definitions and preliminaries in Chapter 1, Section [[3).

Lemma IIL.3.1.
Let G be a totally ordered group and let X be G-module. For all ¢ € M(X,G*) and w € X,
there are dy,) € M'(G*) and 1.,y € M"(G*) such that for all x € X,
Boiw) (f(X)) < @(X) < Ny (M (X))
where f,, € M(X, G#)sup and h,, € M(X, G#)mf.
ProoF.
Let w be an element in the G-module X. Let x € X. Then for all g € G such that g < f,,(x)
we have g - w < x, hence gp(w) < ¢(x). Therefore ¢(x) is an upper bound of the set
{gpw): g€ G, g < fu(0)}.

Just as before, for g € G such that g > h,,(x) we have that go(w) > ¢(x) and therefore ¢(x)
is a lower bound of the set

{gp(w) : g €G, g = h,(0)}.

Thus,
sup {gp(w) : g € G.g < fu(0} < ¢(x) <infigp(w): g€ G, g2 ()}
Gt

We have that,

sup {ge(w) : g € G, g < fi,(0)} = fu(x) @ p(w)
G#

lgf {gp(w) : g € G, 8 = hy(X)} = hy(x) * p(w)
and so, for all x € X,
Jw(x) @ p(w) < @(x) < hy(x) * @(w).
Now, we consider two G module maps in M(G*).

n¢(w): G# - G#
X P x*xepw)
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boony 1 G — G
x P xepw)

Notice that, ¢ (fw(x) = fi.(x) ® (W) and 1,4, (h, (X)) = h,(x) * @(w). We conclude
that, for all x € X,

o) (fw(X)) < ©(X) < Mgy (M (X))

Theorem II1.3.1.
M(X, G*) is a totally ordered set.

PROOF.
We will prove that if ¢;, ¢, are G-module maps in M(X, G*) then ¢; < ¢, or ¢, < ¢;. Let
w € X. Then, without loss of generality, we can assume that ¢;(w) < ¢@(w),

By Lemma[IL.3.1] for all x € X,

¢<,01(w)(fw(x)) < ‘Pl(x) < ntpl(w)(hw(x))
Prow) (fio (X)) < @2(X) < Ny (P (X))

We will prove that 7, ) (1,,(X)) < @y, (fin(x)). Indeed,
(i) when h,,(x) < f,,(x), since 1, ¢ are G-module maps in M(G*), we have that

©1(X) < Ny (X)),
< Teom(fw(X)), 1 is increasing
< Ny (fiw(X)), ¢©1(w) < ¢»(w) and Proposition [.2.3] (iii)
< Goyom (fu(X)), and Proposition (iv)
< ¢a(x)
(i1) when f,(x) < h,(x), by Lemmas and we have three necessary con-
ditions:

(1.) G must be quasidiscrete,
(2.) Stab(w) = {1} and
(3.) x¢ Gw.

In this case, f,,(x), h,(x) € G and h,,(x) = gof,,(x) with gg = min{g € G : g >
1} (h,,(x) is the successor of f,,(x) in G).

Using the previous conditions and the definition of f, € M(X, G#)su,,, it we
deduce that

f(X) - w < x < gofi(x)-w, forallx e X
Moreover ¢, ¢, are G-module maps, so for all x € X
Jw(X) - o1(w) < @1(x) < gofuw(x) - p1(w),
Jw(X) - p2(w) < a(x) < gofu(X) - 2 ().



I11.3. ORDER IN M(X,G") 63

If we suppose that f,(x) - @2(w) < gofiu(x) - @1(w) then g2(w) < go - p1(W)
because f,,(x) € G, and o1 (W) < (W) < go - ¢1(w). Similarly, because g, € G, we
have that g¢ - ¢1(Ww) < go - ¢2(w) and therefore

e1(w) < @a(w) < go - p1(W) < go - P2(w).

The previous inequality implies that ¢, (w), p,(w) € G* \ G, because if ¢;(w) €
G then its successor is gg-¢1(w) > ¢,(x), a contradiction. With the same argument
we prove that ¢,(x) ¢ G. Thus, there exists u € G such that ¢;(w) < u < @2(w)
and go - (W) < go-u < @(w), but (W) < go - ¢;(w) and this implies that
u < @,(w) < go - u, where g - u is the successor of u € G, a contradiction. We
conclude that f,,(x) - ¢2(w) > gof,w(X) - 1 (W) and therefore for all x € X

01(x) < gofw(x) - @1(w) < fi(x) - p2(w) < a(x)

Theorem I11.3.2.
Let G be a totally ordered group and X a G-module. M(X,G") is a G-module with the
action
GxMX G — MX,G"
(8. ¢) = (89)

where (gp)(x) = go(x) for all x € X and ¢ € M(X, G*).

ProOF.
We know that M(X,G") is a totally ordered set and M(X,G*) # 0 for any G-module
X (remember that for any xo € X, the map f,, : X — G" defined by f,(x) :=
supgilg € G 1 gxp < x}is in M(X, G*)).

Now, by the definition of the action, it is clear that g;(g>¢) = (g182)¢ and (1¢) = ¢ for
all g1, g, € G and ¢ € M(X,G"). We prove that M(X, G*) satisfies (iii), (iv), (v) Definition

Let g, g1,8 € G, x € X and ¢, 0, € M(X, G").

(ii1) If g; < g, then g;x < gyx because X is a G-module. For any G-module map
¢ € M(X, G"), we have that ¢(g,x) < ¢(g,x) because ¢ is an increasing map, thus
g19(x) < grp(x) for all x € X and therefore g1¢ < g>¢.

(iv) Suppose that ¢; < ¢, (this is possible because M(X, G¥) is a totally ordered set),
then g (x) < gey(x) for all x € X, because ¢(x) and ¢,(x) belong to the G-
module G*. Thus gy, < gg, for all g € G and ¢ € M(X, G*).

(v) Finally, we will prove that for all ¢ € M(X, G*), the orbit Gy is cofinal in M(X, G*),
that is to say, for any ¢, € M(X, G*) we can find g € G such that ¢, < go.

If o < pthen g = 1 € G satisfies the statement. Now, we supppose that

there exists w € X such that ¢(w) < ¢(w) and we consider two G-module maps
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in M (G#)

G#

X * @1(w)

Moon © G* =
X (g
b1 G > G
x> xepw)
and the G-module maps h,, and f,, in M(X, G*);,r and M(X, G*),,, respectively.
M(G*) is a G-module (see Theorem [[3.4) and therefore there exists g € G
such that 1,y < g@uw)- In particular, for ,(x) € G* we have

ngol(w)(hw(x)) < g¢¢(w)(hw(x))
for all x € X. First, If &, < f,, then

ngol(w)(hw(x)) < g‘pw(w)(hw(x)) < g¢<p(w)(fw(x))'
By Lemmal[[IL.3.1l we have that for all x € X

@1(%) < Ny o) (M10(X)) < 8Py (fi(X)) < gp(x)
and so ¢; < go.

Now, if f,, < h,,, then G is quasidiscrete and g, f,, = h,, (see Lemma [IL.T.3)).
Also, since 1y, ) < 8Puw)

le(w)(fw(x)) = n¢1(w)(galhw(x)) < g¢<p(w)(fw(x))

80 Moy (10 (%)) < 8oy (fro())

©1(X) < Mgy o) (M10(x)) < (880Piow) (fin(X)) < (880)p().
Hence, for all x € X, ¢;(x) < (gg0)¢(x) and we conclude ¢; < (g80)¢-

II1.4. Future work: G-module maps in M (X, Y)

We have shown that for all G-module X the set M(X,G") is a totally ordered group
with the order relation ¢; < ¢, if and only if for all x € X, ¢;(x) < p2(x). Now, let Y
be another G-module, if we consider the same order relation, is M(X, Y) a totally ordered
set? Is M(X,Y) a G-module with the action G X M(X,Y) — M(X,Y) given by (g¢)(x) :=
gp(x) = p(gx) forall x e X and ¢ € M(X, Y)?

In the study of G- module maps, the orbit of an element x, € X played an important
role in comparing r,t € M(X,G") (see Remark 3 in Chapter 3). In order to answer these

questions, I am thinking to work with the following two concepts and the results obtained
from them.

(i) In [8] the concept of Tight G-module to describe a G-module X that has a convex
base was introduced. B is a convex base of X, when X is generated by a convex
subset B C X and for all b;,b, € B the orbits Gb; and Gb, are disjoint. For
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example, the G-module X, in the Section is a tight with convex base {g~, g}
forany g € G.
(i) The topological type of an element in the G-module X was defined in [10] as
follows. Let sy be an element of X and for each s € X, we consider
7i(s) :=sup{x e Gs: x < 5o}
X#
7,(s) :==sup{x € Gs: x > s}
X#
Note that these elements of X show to what extent we can approach s, with ele-
ments of the orbit of s.
The topological type of an element s € X was defined as the subset of G given
by
7(s):={he G : 1i(s) < hsg < 1,(5)}.
As a first step, we could study M(X, Y) in the particular case where X or Y are tight
G-modules. Let G be a totally ordered group and let X be a tight G-module with a convex
base B. Note the followings facts:

e The base B contains one and only one element of each of the orbits Gb with b € B.
e Letz,w,v € X with z < w < v. Note that if gw < v for some g € G then, because
B is a convex subset of X, we have that gw < z.
e Choose v in the convex base B. For each w € B, we have
T(w) =sup{x e Gw : x <V}
X#

T,(w) = in#f{x e Gw: x> v}
X

If w = v, then 7/(w) = 7,(w) = w and the topological type of w is 7(w) = stab(v).
If w < v, then 7(w) = wand for all b € B, 7,(w) > b.
If h € stab(v), thenw < v = hy < t,(w). If h ¢ stab(v), then 1 < h leads to

7,(w) < hw < hv and h < 1 implies that hw < hv < b for all b € B. These facts
imply that
Tw)={theG: w<hv <1,w)} = Stab(v)
In the same way, we show that 7(w) = stab(v) when v < w.
e Also, in [8] the authors proved that if X is a tight G-module, then the stabilizer of

an element x € X is constant convex subgroup H C G. Therefore, the topological
type does not depend on the choice of v € B, is constant on X.

We can to sort the elements of a tight G-module X with base B by considering the sets
gB for all b € B. Because for all g € G, gB is also a convex base of X, we have that

gglb,' < g;lbj < g;lbi < g;lbj < b,‘ < bj < glbi < glbj < gai < gzbj

for all b;,b; € B with b; < b; and g1,8, € G two elements that do not belong to
Stab(b;) = H with 1 < g < g».
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Thus, we can analyze the orbits of the elements of the base B of X to compare two
G-module maps r,7: X — Y.
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