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.0. INTRODUCTION 1

Introduction

The concept of G-module was developed by H. Ochsenius and W.H. Schikhof in the

late 1990’s. It arose as a consequence of the study of Banach spaces over fields with a

Krull valuation when the value group has infinite rank. The aim was to give conditions that

enabled to generalize in this context the theory of Hilbert spaces.

Previous work had been done in the theory of quadratic forms. Here the emphasis was

placed on the Projection Theorem: Every orthogonally closed subspace X is an orthogonal

summand of the space E. That is,

(.1) X = X⊥⊥ → E = X ⊕ X⊥

Such a space, over a field different from R or C was described by H. Keller its numer-

ably orthogonal base could not be normalized ([6]).

M. P. Soler proved that this was a central requirement. Her theorem [18] state that if a

space E has an orthonomal base and satisfies (.1) then the base field must be R or C and E

is a classical Hilbert space.

In [10] the problem was studied in the context of a field K with a Krull valuation in

which the value group G has infinite rank. The norms of a K-vector space E would be

elements of a G-module X. This structure is a linearly ordered set, different from G, and

where an action G × X → X is defined. Adequate selection of X ensures that E can never

have an orthonomal base. These spaces were termed Norm-Hilbert spaces.

New concepts included G-cyclic modules, morphisms between G-modules, topological

types (see [11], [12], [13] and [14]). And it is in this context that the questions that are

studied in this thesis appear.

The first one refers to the totally ordered group G. Denote by G# its completion. In

[11] the authors introduced a set (G#)0 which was proved to be the largest group contained

in G#, in [13] they gave examples in which (G#)0 was properly contained in G#, and others

in which they were equal. The interest lies in the characterization of these cases.

The second one asked for an extension of the results of E. Olivos and W. H. Schikhof

in [14] where the set of all G-module maps from G# to G# were described. Now if X is any

G-module, what can be said of the set of all G-module maps ϕ : X → G# ?

In order to attain these goals, Chapter 1 summarizes the main definitions, properties

and theorems about totally ordered groups, convex subgroups, G-modules and G-module

maps. This chapter with preliminaries contains the necessary concepts for the development

of the work and results in chapters 2 and 3.

Chapter 2 deals with (G#)0. We will present two interesting examples in order to guide

the analysis and conclusions. We will determine the necessary and sufficient conditions

that G must satisfy in order to have G ( (G#)0. The convex subgroups of G played a crucial

role in this study.

Further, in Chapter 3, we are interested in extending the results in [14]. We show

that if X is any G-module M(X,G#), the set of all G-module maps X → G#, is a totally

ordered group. The results in this chapter are a consequence of the ordering of the two
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subsets of M(X,G#); M(X,G#)sup and M(X,G#)inf . In addition, it will be essential to know

if min{g ∈ G : g > 1} = 1 and to analyze the orbits of X. Finally, we present the next steps

for the results of this thesis that could be addressed in future research.



CHAPTER I

Preliminaries

This chapter contains definitions, notations and main properties of a totally ordered

group G, G-modules and G-module maps. These concepts are the basis for the study of

this thesis: the group (G#)0 and G-module maps over any G-module X. Most of the proofs

of the results in this chapter will be referenced to books and classic articles.

We start in the first sections with the theory about totally ordered groups. We are

specially interested in convex subgroups, Dedekind completions and the extension of the

multiplication of the group G to its completion G#. Later, it is introduced G-module with

some examples in order to present, in the last section, the main results about G-module

maps.

I.1. Totally ordered groups and convex subgroups

Definition I.1.1.

Let A be a subset of a totally ordered set X. A is called cofinal in X if for all x ∈ X there is

an element a ∈ A such that x ≤ a.

Definition I.1.2.

Let (G, ·,≤) be an abelian multiplicatively written group equipped with a total order ≤. We

will call G a totally ordered group, if x, y, z ∈ G, x ≤ y implies xz ≤ yz.

In a totally ordered group G we say that the order ≤ is compatible with the multiplica-

tion defined in G. Also,

(1) G is a torsion free group. Indeed, every element of G has infinite order because if

there is g ∈ G with g > 1 and m ∈ Z+ such that gm
= 1 then 1 < g < g2 < · · · <

gm
= 1, a contradiction.

(2) If G , {1} then G has no smallest or largest element. In fact, suppose that g < 1 is

the smallest element of G then g2 ≤ g and necessarily g2
= g, it is to say g = 1, a

contradiction.

Example 1. Some typical examples of totally ordered groups are:

(1) (R,+,≤), (R+, ·,≤), any multiplicative subgroup of R+ where ≤ is the natural or-

dering on R.

3
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(2) (R+)2 with componentwise multiplication and lexicographical ordering, where for

(a, b), (c, d) ∈ (R+)2 we have that (a, b) ≤ (c, d) if and only if either a < b or a = b

and c ≤ d.

(3) The direct sum G = ⊕i∈NGi, where for every i ∈ N, Gi is a totally ordered group

and G is equipped with the lexicographical ordering and componentwise multipli-

cation.

(4) Let (R,+, ·) be the Levi-Civita field (see [17] for background). For f ∈ R with

f , 0, we put λ( f ) = min(supp( f )) and we define λ(0) = +∞. Let R+ be the set

of all non-zero elements x ∈ R that satisfy x[λ(x)] > 0.

R+ = {x ∈ R : x[λ(x)] > 0} .
Let x, y ∈ R be given. We say that y > x if x , y and (y − x) ∈ R+; and we say

y ≥ x if y = x or y > x. Also, we say y < x if x > y and y ≤ x if x ≥ y. With

the relation ≥, (R,+, ·) becomes a totally ordered field. Furthermore, the order

is compatible with the algebraic structure of R, that is, for any x, y, z, we have:

x > y⇒ x + z > y + z; and if z > 0, then x > y⇒ x · z > y · z.

Definition I.1.3.

Let C be a subgroup of G. Let x, y ∈ C and z ∈ G, if x ≤ z ≤ y implies z ∈ C, we will call C

a convex subgroup of G. We denote by ΓG the set of all convex subgroups of G.

In addition, we have that

(1) Each proper convex subgroup C of G is bounded from below and from above (if

we assume otherwise, it leads us to C = G).

(2) ΓG is totally ordered by inclusion. Indeed, let C1,C2 ∈ ΓG such that C1 * C2.

Then there is an element x ∈ C1 with 1 < x and x < C2. Pick y ∈ C2, with y > 1.

Then x � y, otherwise x belongs to the convex subgroup C2. Thus 1 < y < x and

therefore y ∈ C1 because C1 is convex. We conclude that C2 ⊂ C1.

G

1

C

Figure I.1. A convex subgroup C of a totally ordered group G can be rep-

resented as an open interval of elements in G.

Example 2.

(1) Every totally ordered group G , {1} contains two trivial convex subgroups,

namely {1} and G.
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(2) C = {1} × 〈3〉 is the unique proper convex subgroup of the totally ordered group

G = 〈2〉 × 〈3〉 with the lexicographical order and componentwise multiplication

(see Figure I.2).

G
(1, 1) (1, 3n)

(

1, 32
)

(1, 3) (2, 1)

Figure I.2. for all n ∈ Z, (1, 3n) < (2, 1)

(3) Let G ⊂ Q × Q be the additive group generated by the vectors
(

p−1
n , np−1

n

)

, n =

1, 2, 3, ..., where pn is the nth prime number, i. e., p1 = 2, p2 = 3, p3 = 5, . . ., and

let G be lexicographically ordered and with componentwise addition.

The set C = {0} × Z is a convex subgroup of G. Indeed, for all b ∈ Z, the

element (0, b) ∈ C can always be written as

(0, b) = 3b

(

1

3
,

2

3

)

− 2b

(

1

2
,

1

2

)

∈ G

Now, let n ∈ N and (a, b) ∈ G such that (0, 0) ≤ (a, b) ≤ (0, n). This implies

that a = 0, because the order of the elements in G is lexicographic. On the other

hand, by the definition of C there are integers n1, n2, ..., nk such that

(0, b) = n1

(

1

pi1

,
i1

pi1

)

+ n2

(

1

pi2

,
i2

pi2

)

+ · · · + nk

(

1

pik

,
ik

pik

)

,

hence 0 =
n1

pi1

+
n2

pi2

+ · · · + nk

pik

.

For j = 1, . . . , k let

P j = pi1 · pi2 · · · pi j−1
· pi j+1

· · · pik ,

and thus 0 = n1P1 + n2P2 + · · · + nkPk or

n jP j = −
(

n1P1 + · · · n j−1P j−1 + n j+1P j+1 + · · · nkPk

)

.

As for all j = 1, . . . , k, pi j
divides Pr if and only if j , r, we deduce that n j = λ j pi j

,

with λ j ∈ Z for all j. So, b = i1λ1 + · · · + i jλ j + · · · ikλk ∈ Z, i. e., (0, b) ∈ C. For

details see ([3, 19]).

Definition I.1.4.

A convex subgroup C is called principal if there is a g ∈ G such that C is the smallest

convex subgroup of G containing g. The order type of the set of all principal nontrivial

subgroup is called the rank of G and denoted by rank(G).
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Definition I.1.5.

Let K be a field and let G be an ordered group. A Krull valuation on K is a surjective map

| · | : K → G ∪ {0} satisfying:

(i) |0| = 0 iff x = 0,

(ii) |x + y| ≤ max{|x|, |y|},
(iii) |xy| = |x||y|,

where 0 is a symbol such that 0 < g and 0g = g0 = 0 for all g ∈ G. The rank of | · | is the

rank of G, and G is called the value group of (K, | · |).

Example 3.

(i) Let p be a prime number. The p-adic valuation | |p on Q is defined by

|0|p = 0 and |pn r

q
| = 1

pn
,

where n, r, q ∈ Z, and r, q are not divisible by p. This valuation has rank 1.

(ii) Let us consider F0 = R with its usual ordering, and the set of variables

{X1, X2, X3, . . .}. For n ∈ N define Fn := F0(X1, . . . , Xn) and

F∞ :=

∞
⋃

n=0

Fn

Fn is ordered by powers of Xn. A polynomial p(Xn) = arX
r
n + . . .+ a1X1 + a0 ∈

Fn−1[Xn] is positive in Fn if and only if ar > 0 ∈ Fn−1. For β =
p(Xn)

q(Xn)
with p(Xn)

and q(Xn) in Fn−1(Xn) and q(Xn) , 0, we say that β is a positive element in Fn if

and only if p(Xn)q(Xn) > 0. Notice that the ordering of Fn extends the ordering of

Fn−1. F∞ is an ordered field (see [7] for background).

Now, we will define a valuation v on F∞. First, we describe the value group of

v: for every i ∈ N, let us consider the multiplicative cyclic group Gi generated by

gi > 1 and ordered by

gr
i < gt

i iff r < t

Let G be the direct sum

G :=















γ = (gα1

1
, g
α2

2
, g
α3

3
, . . .) ∈

∞
∏

i=1

Gi : αi ∈ Z, such that supp(γ) is finite















where supp(γ) := {i ∈ N : αi , 0}. G is a totally ordered group with the com-

ponentwise multiplication and antilexicographical ordering.

After that, we define v : F∞ → Γ ∪ {0} such that v|R is the trivial valuation,

v(Xn) := (1, . . . , 1, gn, 1 . . .) and 0 is a minimal element such that 0 · g = g · 0 = 0.

The valuation v is a Krull valuation on F∞ with rankω, the first infinite ordinal.
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Definition I.1.6. An ordered group G is called archimedian if for every a, b ∈ G with b > 1,

there exists an integer n such that a < bn.

Proposition I.1.1. ([1], Chapter III, 3.2 )

A totally ordered group (G, ·) has rank(G) = 1 if and only if G is archimedian.

Proof.

(⇐) Let C , {1} be a convex subgroup of G, and c ∈ C with c > 1. For every g ∈ G

there exists a n ∈ Z+ such that 1 ≤ |g| ≤ cn, with |g| = max{g, g−1}, hence g ∈ C.

Therefore C = G.

(⇒) Let g, h ∈ G \ {1} with g > 1. There exists n ∈ Z+ such that 1 ≤ |h| ≤ gn.

If we assume otherwise, C = 〈g〉 would be a proper convex subgroup of G, a

contradiction.

�

Definition I.1.7. Two ordered groups G and G′ are called order-isomorphic if there exists

an isomorphism f : G → G′ such that a < b⇒ f (a) < f (b) for all a, b ∈ G.

Theorem I.1.1. ([15], 1.1 ; [1], Chapter III, 3.4)

A totally ordered group (G, ·) has rank(G) = 1 if and only if it is isomorphic to a subgroup

of (R+, ·).

Thus, for valuations of rank 1 we can always assume that the ordered group G is a

subgroup of (R+, ·) with the natural ordering.

Example 4.

(1) Any subgroup of R+ has rank 1.

(2) The group C in Example 2 has rank 2.

(3) Let G be the direct sum

G =
⊕

i∈N
Gi = G1 ⊕G2 ⊕G3 ⊕ . . .

where for each i ∈ N, Gi is an infinite cyclic group generated by gi > 1. Each

element in G has the form

(gα1

1
, g
α2

2
, g
α3

3
, . . .)

where αi ∈ Z and {i ∈ N : αi , 0} is finite. With componentwise multiplication

and lexicographical order, G has infinite rank. The subgroup

C1 = {1} ⊕G2 ⊕G3 ⊕ · · ·
is the largest non trivial convex subgroup of G. Also,

C2 = {1} ⊕ {1} ⊕G3 ⊕G4 ⊕ · · ·
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C3 = {1} ⊕ {1} ⊕ {1} ⊕G4 ⊕G5 ⊕ · · ·
...

Cn = {1} ⊕ · · · ⊕ {1} ⊕Gn+1 ⊕Gn+2 ⊕ · · ·
...

are convex subgroups of G for all n ∈ N. They are ordered by inclusion

· · ·Cn+1 ⊂ Cn ⊂ · · · ⊂ C1 ⊂ C0 ⊂ G
and G has a decreasing sequence of convex subgroups.

Note that, if we consider the same groupGwith componentwise multiplication

and antilexicographical order, then G also has rank ω. In this case, the subgroup

D1 = G1 ⊕ {1} ⊕ {1} ⊕ · · ·
is the smallest non trivial convex subgroup of G,

D2 = G1 ⊕G2 ⊕ {1} ⊕ {1} ⊕ {1} ⊕ · · ·
D3 = G1 ⊕G2 ⊕G3 ⊕ {1} ⊕ {1} ⊕ · · ·

...

Dn = G1 ⊕G2 ⊕ · · · ⊕Gn ⊕ {1} ⊕ · · ·
...

are convex subgroups of G for all n ∈ N and we have that

{1} ⊂ D1 ⊂ D2 ⊂ · · · ⊂ Dn ⊂ Dn+1 ⊂ · · · ⊂ G.
Thus, with the antilexicographical order, G has an increasing sequence of con-

vex subgroups.

(4) Let (R,+, ·) be the Levi-Civita field (see Example 1.4 ). The multiplicative group

(R+, ·) has infinite rank. In fact, the set

L = {x ∈ R+ : λ(x) = 0}
is the largest convex subgroup of (R+, ·). The largest proper convex subgroup

contained in L is

L0
= {x ∈ R+ : λ(x) = 0, x[0] = 1}.

Let λ1(x) := min (supp(x) \ {λ(x)}). For each r ∈ Q+, the sets

L0
r = {x ∈ R+ : λ(x) = 0, x[0] = 1, λ1(x) ≥ r}

is a convex subgroup of (R+, ·).

Proposition I.1.2. ([15], 1. 2)

If C is a subgroup of G then G = G/C is in a natural way a totally ordered group. C is
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a convex subgroup of G if and only if the canonical quotient map π : G → G/C is an

increasing homomorphism.

Proof.

The quotient map is given by

π : G → G/C

g 7→ g = gC

C is a subgroup of the abelian group G and therefore G/C is a group with the multipli-

cation g1 · g2 = g1 · g2.

Let P be the positive cone of G, that is , P = {g ∈ G : g ≥ 1}, we will show that

P = π(P) satisfies that P ∩ P
−1
= {1} and for all p1, p2 ∈ P then p1 p2 ∈ P and therefore P

defines an order on G/C.

• since 1 ∈ P we have π(1) = 1 ∈ P.

• If p1, p2 ∈ P then p1, p2 ∈ P and p1 · p2 = p1 p2 ∈ P, because p1 p2 ∈ P.

• If p ∈ (P ∩ (P)−1) then there are p1, p2 ∈ P such that π(p1) = π(p2)−1
= p.

Thus π(p1 p2) = 1 and therefore p1 p2 ∈ C. Since C is a convex subgroup and

1 ≤ p1 ≤ p1 p2 we have that p1 ∈ C and therefore p = π(p1) = 1.

Then P defines an order in G with positive cone π(P) = P, therefore π is an order

homomorphism.

Reciprocally, if P is a set of positive elements by an order in G, then for every c ∈ C

and g ∈ G such that 1 ≤ g ≤ c we have that 1 ≤ π(g) ≤ π(c) = 1, π(g) = 1 and so g ∈ C.

Therefore C is a convex subgroup of G.

The order relation defined on G is: g1 ≤ g2 in G⇔ there is c ∈ C such that g1 ≤ g2c. �

I.2. Dedekind completion of a Totally Ordered Set

Let A, B be totally ordered sets with A ⊂ B. We say that s ∈ B is the supremum of A in

B and denote s by supB A, if s is the smallest upper bound of A in B. Similarly we define

t := infB A.

Definition I.2.1.

A totally ordered set S is called Dedekind complete if each non-empty and bounded above

subset of S has a supremum.

Likewise, we can say that a totally ordered set S is Dedekind complete when every

non-empty and bounded below subset of S has an infimum.

In the next proposition, it will be useful to remember the following property about

supremum: Let G , ∅ be a totally ordered group and A, B , ∅ two subsets of G such that

sup A, sup B ∈ G. Then sup A · sup B = sup(AB) where AB = {ab : a ∈ A, b ∈ B}.
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Proposition I.2.1.

Let G be a totally ordered group. If rank(G) > 1 then G is not Dedekind complete.

Proof.

If rank(G) > 1 then G has a proper non trivial convex subgroup C. By the convexity of

G, we know that C is bounded (above and below). If we suppose that G is complete, then

there exists s = sup C ∈ G. It follows that

s · s = (sup C)(sup C) = sup(C · C) = sup C = s ∈ G

and so, s , 1 is an idempotent element of G, a contradiction since G is a group. �

Definition I.2.2.

Let X , ∅ be a totally ordered set. A non empty subset S of C is called a cut if

1. S is bounded above

2. If x ∈ S , y < x then y ∈ S .

3. If supX S exists then supX S ∈ S .

Now, the cuts in X are used for the construction of the completion of X (for details see

[10] pp. 5). Let X# the collection of all cuts of X, and we consider the order by inclusion

in X#. With this order X# is a totally ordered set. Let A ⊂ X# be non-empty and bounded

above. There is a cut T such that S ⊂ T , for all S ∈ A. Then V := ∪S ∈AS is non-empty

and bounded above by T , and by adding supX(V) (if it exists) to V we obtain a cut equal to

supX# A. We have the natural embedding ϕ : X → X# given by ϕ(x) = {s ∈ X : x ≤ s}. ϕ is

strictly increasing and therefore an order-preserving embedding. X# is called the Dedekind

completion of X. X# is the smallest totally ordered set, Dedekind complete, containing X.

The previous construction is a generalization of the classic construction by cuts of the

real numbers (for details see [16], appendix of chapter 1).

Some basic properties about X# are listed in the next Proposition.

Proposition I.2.2. ([10], [4])

Let X be a totally ordered set and X# its completion by cuts. We have the following state-

ments:

(1) X is complete if and only if X = X#.

(2) X is cofinal and coinitial in X#.

(3) For every s ∈ X#, {x ∈ X : x ≤ s} is a cut in X; every cut in X has this form.

(4) If s, t ∈ X#, s < t then there exist x, y ∈ X such that s ≤ x < t, s < y ≤ t.

(5) For each s ∈ X#, s = supX# {x ∈ X : x ≤ s} = infX# {x ∈ X : x ≥ s}.
(6) Let A ⊂ X. If s = supX A then s = supX# A. If t = infX A then t = infX# A.

(7) For each s ∈ X, s0 = max{x ∈ X : x < s} exists if and only if s1 = max{x ∈ X# :

x < s} exists. In this case s0 = s1.

(8) For each s ∈ X, s = supX#{x ∈ X : x < s} exists if and only if s = supX#{x ∈ X# :

x < s}.
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(9) For each s ∈ X, supX#{x ∈ X : x < s} = supX#{x ∈ X# : x < s}.
(10) The last three statements, are also true if one replace sup by inf.

Proof. The statements (1) to (6) are proved in [10] and (7) to (10) in [4]. �

In the Section 1.3.2 of [10], the completion for G = ⊕i∈NGi, the direct sum of the

groups Gi =< gi >, i ∈ N, was determined. Indeed, for this group with the componentwise

multiplication and antilexicographic order, each x ∈ G# can be written as gs, where s =

supG#(H), with H some convex subgroup of G.

I.2.1. Multiplications on G#. For a totally ordered group G, the extension of the mul-

tiplication from G to G# is, in general, not unique. There are two canonical multiplication

on G# which extend the multiplication on G.

Definition I.2.3. For x, y ∈ G# set

x • y := sup
G#

{g1g2 ∈ G : g1 ≤ x ∧ g2 ≤ y}

x ⋆ y := inf
G#
{g1g2 ∈ G : g1 ≥ x ∧ g2 ≥ y}

They are called the dot multiplication and the star multiplication, respectively.

Some properties of the dot and star multiplications are:

Proposition I.2.3. ([11]; 1.4.6, [13] ; 3.1)

Let x, y, z ∈ G# with y < z, and let g ∈ G. We have that

(i) g • x = g ⋆ x.

(ii) x • y ≤ x ⋆ y.

(iii) x • y ≤ x • z and x ⋆ y ≤ x ⋆ z.

(iv) y ⋆ x ≤ z • x.

(v) (G#, •) and (G#, ⋆) are commutative semigroups with identity element.

In view of (i) in the Proposition above, for all g ∈ G and x ∈ X we denote gx :=

g • x = g ⋆ x. Also, from (ii) the dot and star multiplication, are called the small and large

multiplication.

Proposition I.2.4. ([14];4.9)

The dot multiplication is left continuous i.e. it is continuous as a map

• : (G#, τl

G#) × (G#, τl

G#)→ (G#, τl

G#)

where τl

G# is the left order topology. In the same way, the star multiplication is right con-

tinuous.
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In [13] it was proved that if G has infinite rank, there are uncountably many proper

extensions of the multiplication of G to its completion G#. The authors determine new

proper multiplications, that is, multiplications ♦ : G# × G# → G# that are associative,

conmutative, increasing in both variables and extending the multiplication of G. The dot

and star multiplications are proper multiplications. The proper multiplications constructed

in [13] depend on some convex subgroup of G and the authors prove that if ΓG, the set of

all convex subgroups of G, has cardinality κ, then the set of all proper multiplications has

cardinality ≥ 2κ.

Definition I.2.4. For x ∈ G#, Stab(x) := {g ∈ G : gx = x}

Note that, for all x ∈ G#

• 1 ∈ Stab(x). Moreover if c ∈ Stab(x) then cx = x and hence x = c−1x; so

c−1 ∈ Stab(x),

• If c1, c2 ∈ Stab(x) then c1c2x = c1(c2x) = c1x = x. Thus c1c2 ∈ Stab(x),

• If c ∈ Stab(x), we can suppose that c > 1, and let g ∈ G such that 1 < g < c. We

have that x ≤ gx ≤ cx = x, thus g ∈ Stab(x) and Stab(x) is a convex subgroup of

G.

• Let g ∈ G, then c ∈ Stab(gx) ⇔ c(gx) = gx ⇔ cx = x ⇔ c ∈ Stab(x). Therefore

Stab(Gx) = Stab(x).

Lemma I.2.1. ([11];1.4.11, 1.4.13, [13]; 3.4 , 3.5)

Let H ⊂ G be a proper convex subgroup of G, let s := supG# H, t := infG# H. Then

(i) Stab(s) = Stab(t) = H

(ii) s • s = s, s • t = t, t ⋆ t = t, s ⋆ t = s

(iii) If x ∈ G# is such that t ≤ x ≤ s and H ⊂ Stab(x) then x = t or x = s.

(iv) For all x, y ∈ G#, Stab(x ⋆ y) = Stab(x • y) = Stab(x) ∩ Stab(y) .

If G is not isomorphic to a subgroup of R+ then (G#, ⋆) and (G#, •) are not groups, be-

cause the elements s and t in the previous Lemma are idempotents. However, they contain

at least one non-trivial group, namely G. We wonder if G is the largest possible.

Definition I.2.5. Let (G#)0 :=
{

x ∈ G# : Stab(x) = {1}
}

In general, for a totally ordered abelian group G, we have the inclusion G ⊆ (G#)0 ⊆ G#.

(G#)0 can contain G strictly; for example, if (G, ·) is any dense proper subgroup of (R+, ·)
then G ( (G#)0 = R

+. On the other hand, if G = 〈g〉 is a cyclic subgroup of (R+, ·) then

G = (G#)0 = G#. We can find many groups G such that G ( (G#)0 ( G#, for example, if we

consider the group G = Q+ × Q+ with the multiplication by component and lexicographic

order, then G ( (G#)0 = Q
+ × R+ ( G#.
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The next Theorem shows that (G#)0 is the largest group contained in G#.

Theorem I.2.1. [11]; 1.4.18

For each x ∈ (G#)0 the map

G# → G#

y 7→ y • x = y ⋆ x

is a bijection which maps (G#)0 onto (G#)0 and therefore induces a group structure on

(G#)0, with x−1
= supG# {g ∈ G : gx ≤ 1} = infG# {g ∈ G : gx ≥ 1} .

Definition I.2.6. Given a totally ordered group G, we say that it is quasidiscrete if the set

{g ∈ G : g > 1} = 1 has a smallest element; otherwise G is quasidense.

In a quasidiscrete group G with g0 = min {g ∈ G : g > 1}, for all g ∈ G its sucessor

element is gg0.

Example 5.

(1) Any cyclic subgroup of R+ is quasidiscrete.

(2) We consider the direct sum in the Example 4

G =
⊕

i∈N
Gi = G1 ⊕G2 ⊕G3 ⊕ . . .

where for each i ∈ N, Gi is an infinite cyclic group generated by gi > 1 and com-

ponentwise multiplication. With antilexicographical order, G is quasidiscrete and

g0 = min {g ∈ G : g > 1} = (g1, 1, . . .). On other hand, if we consider lexicograph-

ical order, then G is quasidense (this group will be studied in Chapter 2).

The prefix quasi in the previous definition is due to the fact that there are totally ordered

groups where min {g ∈ G : g > 1} exists yet they contain a subgroup for which this is not

true. For example, let G be the totally ordered group R+×〈2〉with componentwise multipli-

cation and lexicographic order. G is quasidiscrete because min {g ∈ G : g > 1} = (1, 2) and

it contains the proper subgroup H = R+×{1}which is quasidense sice min {g ∈ H : g > 1} =
(1, 1).

G
(1, 1) (r, 1)(1, 2) (r, 2)

Figure I.3. The quasidiscrete group G = R+ × 〈2〉 with componentwise

multiplication and lexicographical order. The sucessor of (1, 1) is (1, 2). For

all r ∈ R+ with r > 1, we have that (1, 2) < (r, 1) and the sucessor of (r, 1) is

(r, 2).
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Proposition I.2.5. ( [11]; 1.4.11)

Let H ⊂ G be a proper convex subgroup, H , {1}, put t := infG# H and s := supG# H . Then

we have

(i) If G/H is quasidense then s ⋆ s = s and t • t = t

(ii) If G/H is quasidiscrete then s ⋆ s = g0s > s, t • t = g−1
0 t < t where g0 ∈ G, g0 > s

and where, with π : G → G/H the canonical map, π(g0) = min {u ∈ G/H : u > 1}

I.3. Hahn’s Theorem

Definition I.3.1. Let I be a totally ordered set and, for each i ∈ I, let Gi be a totally ordered

group written multiplicatively. For all g = (gi)i∈I ∈
∏

i∈I Gi where gi ∈ Gi, for all i ∈ I, the

support of g is defined by supp(g) := {i ∈ I : gi , 1}.

Definition I.3.2. Let I be a totally ordered set and {Gi}i∈I be a family of totally ordered

groups written multiplicatively, the Hahn product of the family {Gi}i∈I is defined by

H i∈IGi :=















g ∈
∏

i∈I

Gi : supp(g) is well-ordered















H i∈IGi is a subgroup of
∏

i∈I Gi and, endowed with the lexicographical ordering, it is

a totally ordered group (for details see [5, 15]).

Theorem I.3.1. (H. Hahn [15]) Every totally ordered group is isomorphic to a subgroup

of a Hahn product of copies of R.

Proposition I.3.1. ([15] p.14)

Let H , {1} be a convex subgroup of a totally ordered group G. There is a largest

convex subgroup H∗ such that H∗ ( H and the quotient group H/H∗ is a totally ordered

group with rank 1.

Let J be a set of indices in one-to-one correspondence with the set of principal convex

subgroups of G. We denote by H j the principal convex subgroup associated to j ∈ J. The

index set J is totally ordered with the following rule: for all j1, j2 ∈ J, j1 ≤ j2 ⇔ H j2 ⊂ H j1 .

For each j ∈ J let R j := H j/H
∗
j since, by Proposition I.3.1, R j has rank 1 it is isomorphic

to a subgroup of R.

Definition I.3.3. For a totally ordered group G the family (R j) j∈J is called the skeleton of

G.
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I.4. G-modules

The structure of G-modules was introduced specifically to serve as a natural range set

X for norms defined on a vector space E over a Krull valued field K with value group G.

A generalized norm on E is then defined as a map ‖ · ‖ : E → X ∪ {0}, where 0 is a

minimal element adjoined to X, satisfying the following axioms.

(i) ‖x‖ = 0⇔ x = 0

(iI) ‖λx‖ = |λ‖x‖
(iii) ‖x + y‖ ≤ max{‖x‖, ‖y‖}
for all x, y ∈ E and λ ∈ K.

For instance, the space

c0 :=















(xn)n∈N ∈
∏

n∈N

K : lim xn = 0















is a X-normed space with ‖(xn)n‖ := max{|xn| : n ∈ N}. Notice that, ‖ · ‖ : c0 → G ∪ {0}
where G is the same totally ordered group such that | · | : K → G ∪ {0}. So, the range set of

‖ · ‖ is G.

Throughout this chapter G = (G,≤, ·) is a totally ordered group with unit element 1.

Definition I.4.1.

Let (X,≤) be a totally ordered set containing at least two elements. It is called a G-module

if there exists a map,

G × X −→ X

(g, x) 7−→ gx

such that for all g, g1, g2 ∈ G, x, x1, x2 ∈ X we have

(i) g1(g2x) = (g1g2)x

(ii) 1x = x

(iii) g1 ≥ g2 ⇒ g1x ≥ g2x

(iv) x1 ≥ x2 ⇒ gx1 ≥ gx2

(v) Gx is coinitial in X.

From the conditions (i)-(v), we can deduce some properties of a G-module X (proofs in

[10] 1.5.1).

(1) G acts on X and this action preserves the ordering in G and X.

(2) If x1 < x2 then gx1 < gx2, for all g ∈ G and x1, x2 ∈ X.

(3) For all x ∈ X, the orbit Gx is cofinal in X.

(4) X has no largest and no smallest elements.

Example 6. ([10], 1.5; [4])

(a) G is trivially a G-module where the action is simply the multiplication on G.
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(b) G#, the completion by cuts of G, is a G-module. with the action gα := g•α = g⋆α.

(c) Let D be the divisible closure of G. Let G0 := {d ∈ D : d2 ∈ G} and consider the

map

θ : G0 −→ G

d 7−→ d2

The totally ordered set
√

G := G0/Ker(θ) is a G-module with the action g ·
√

k :=
√

g2k.

(d) If (G, ·,≤) has a non-trivial convex subgroup H, then G/H is a G-module with

g(sH) = (gs)H.

(e) Let β an ordinal. We consider

X :=















x = (xα)α<β ∈
∏

α<β

Gα : supp(x) has an upper bound















and the antilexicographic order on X. X is a G-module with the action given by

g · x := (gxα)α<β for all g ∈ G and x ∈ X.

(f) Let (G, ·,≤) be a totally ordered group and G− := {g− : g ∈ G} a copy of G. We

consider X2 := G ∪ G− and the following rule of order for all s, t ∈ G such that

t < s, t < s− < s. We define the action as follows g · s− := (gs)−. With these

definitions, X2 is a G-module (see Figure I.4).

X2

s

s−

t

Figure I.4. For all s ∈ G, s− is the predecessor of s. For all t ∈ G with t < s

we have that t < s− < s.

(g) The above example can be generalized as follows. Let β an ordinal and for each

ordinal α < β let G(α) := G × {α} be a copy of G. Notice that G(α1) ∩G(α2)
= ∅ for

α1 , α2. Now consider the disjoint union

Xβ :=
⋃

α<β

G(α)

with the order defined by

(g, α1) ≤ (h, α2)⇔ g < h or g = h and α1 ≤ α2.

The action of G on Xβ is given by g · (x, α) := (gx, α) for all g ∈ G and x ∈ Xβ
(see Figure I.5).

(h) A G-module X is called cyclic, if X =< s >= Gs for some element s ∈ X. An

arbitrary G-modulo X is the disjoint union of its cyclic submodules
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Xβ

s

sα2

t

sα1

Figure I.5. For all t, s ∈ G with t < s and α1 < α2 ≤ β, where sα1 := (s, α1)

and sα2 := (s, α2)

X =

◦
⋃

si∈G, i∈I

Gsi

Conversely, if we have a collection {Gsi, i ∈ I} of cyclic G-modules, we can

extend the ordering on the subsets Gsi to the union

X :=
⋃

i∈I

Gsi

such that X becomes a G-module. For example, we can set a total ordering on

I and by declaring that gsi > g′s j if either g > g′ or g = g′ and i > j.

In the previous chapter (see Definition I.2.4) we introduced the stabilizer of an element

x in the G-module G#. The definition easily carries over to arbitrary G-modules.

Definition I.4.2.

Let x be any element in the G-module X. Then we define Stab(x) = {g ∈ G : gx = x}.

Note that Stab(x) is a proper convex subgroup of G. Indeed, 1 ∈ Stab(x), and if g ∈
Stab(x) then gx = x; thus, x = g−1x and g−1 ∈ Stab(x). Besides, let u ∈ G such that

g1 < u < g2, with g1, g2 ∈ Stab(x). Because of the requirement (iv) in the definition of a

G-module, we have that x = g1x ≤ ux ≤ g2x = x, and hence u ∈ Stab(x).

On the other hand, if x0, x1 ∈ X and x1 ∈ Gx0 then Stab(x0) = Stab(x1).

Example 7.

Let x0 ∈ X and consider the canonical homomorphism π : G → G/Stab(x0). The orbit Gx0

is a G/Stab(x0)-module with the action π(g)x0 := gx0. Gx0 has only elements with trivial

stabilizer.

Proposition I.4.1. ([10], 1.5.3)

Let X be a G-module.
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(i) Let V ⊂ X, g ∈ G. If sup(V) exists then g sup(V) = sup(gV). If inf(V) exists then

g inf(V) = inf(gV). If V is not bounded above (below) neither is gV.

(ii) Let W ⊂ G, x0 ∈ X. If supG(W) and supX(Wx0) exist then supG(Wx0) ≤
x0 supG(W). If infG(W) and infX(Wx0) exist then in fG(Wx0) ≥ x0 infG(W). If

W is not bounded above (below) neither is x0W, and conversely.

I.5. G-module maps

Definition I.5.1.

Let X, Y be G-modules. A map ϕ : X → Y is called a G-module map if ϕ is increasing and

∀g ∈ G, x ∈ X, ϕ(gx) = gϕ(x)

M(X, Y) is the set of all G-module maps from X to Y , and we put M(X) := M(X, X).

The set M(X, Y) can be empty, for example, if X has an element x0 such that Stab(x0) , {1}
then M(X,G) = ∅. Indeed, we have that for any G-module map ϕ, Stab(x0) ⊂ Stab(ϕ(x0))

and hence if 1 , g ∈ Stab(x0) then g ∈ Stab(ϕ(x0)), but ϕ(x0) ∈ G, a contradiction.

When we consider Y = G# we can always determine a G-module map φ : X → G#,

where X is any G-module. The following theorem shows this facts, the set M(X,G#) is

always non empty. We include the demonstration because it is fundamental for the theory

of G-module maps.

Theorem I.5.1. ([10]; 1.5.6 )

Let X be a G-module. Then there exists a G-module map φ : X → G#.

Proof.

Let x0 be any element in the G-module X. We know that Gx0 is coinitial in X and G# is

complete, therefore we can set

φ : X −→ G#

x 7−→ supG#{g ∈ G : gx0 ≤ x}
Obviously, if x1 ≤ x2 then φ(x1) ≤ φ(x2), for all x1, x2 ∈ X. Also, we have that for all

h ∈ G,

φ(hx) = sup
G#

{g ∈ G : gx0 ≤ hx}

= sup
G#

{g ∈ G : h−1gx0 ≤ x}

= sup
G#

{hu ∈ G : ux0 ≤ x} with u = h−1g

= h sup
G#

{u ∈ G : ux0 ≤ x}

= hφ(x)

As Gx0 is cofinal in X, we can also define φ(x) = infG#{g ∈ G : gx0 ≥ x}. �
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In the study of X-normed Banach space (E, ‖ ‖), in [12] the authors use this theorem

and extend a G-module map φ : X → G# to a map φ : X ∪ {0} → G# ∪ {0} to define a norm

‖ ‖φ on G#. With this new norm, (E, ‖ ‖φ) is a Banach space. They use these two norms for

comparing two Norm Hilbert Spaces and their operators.

In [14], all G-module maps in M(G#) were determined. For this, in G# they consider

two topologies stronger than the order topology: the left order topology, τl, generated by

the intervals (x, y] :=
{

z ∈ G# : x < z ≤ y
}

where x, y ∈ G# and x < y and the right order

topology, τr, generated by the intervals [x, y) :=
{

z ∈ G# : x ≤ z < y
}

where x, y ∈ G# and

x < y.

Definition I.5.2.

Let f : A → B a map with A, B totally ordered sets. We say that f is left continuous, if

f : (A, τl)→ (B, τl) is continuous. In the same way, we define right continuity.

In [14] we find a description of the following sets of G-module maps:

• M(G#) = {ϕ : G# → G# : ϕ is a G-module map}
• Ml(G#) = {ϕ ∈ M(G#) : ϕ is left continuous}
• Mr(G#) = {ϕ ∈ M(G#) : ϕ is right continuous}

The next Theorem uses the fact that the dot multiplication • and the star multiplication

⋆ are left and right continuous respectively (see Chapter I Definition I.2.3, Proposition

I.2.4, [14] and [13]).

Theorem I.5.2. ([14]; 5.1,5.2)

Let ϕ ∈ M(G#). Then

(i) ϕ ∈ Ml(G#) if and only if it has the form x 7→ x • α for some α ∈ G#.

(ii) ϕ ∈ Mr(G#) if and only if it has the form x 7→ x ∗ α for some α ∈ G#.

(iii) M(G#) = Ml(G#)
⋃

Mr(G#).

The previous theorem shows that each G-module map in M(G#) is left continuous or

right continuous.

Definition I.5.3.

We define an order relation ≤ on M(X, Y) by ϕ1 ≤ ϕ2 if only if ϕ1(x) ≤ ϕ2(x) for all x ∈ X.

The next theorem shows that this order is total on M(G#).

Theorem I.5.3. ([14]; 5.3)

M(G#) is a totally ordered set.
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So, for all ϕ1, ϕ2 ∈ M(G#) we have that ϕ1 ≤ ϕ2 or ϕ2 ≤ ϕ1. We show the different

possible cases in the next Corollary.

Corollary I.5.1.

Let ϕ1, ϕ2 ∈ M(G#) and α, β ∈ G# with α < β. We have the following cases:

(i) If ϕ1(x) = x • α, ϕ2(x) = x • β; then ϕ1 ≤ ϕ2.

(ii) If ϕ1(x) = x ⋆ α, ϕ2(x) = x ⋆ β; then ϕ1 ≤ ϕ2.

(iii) If ϕ1(x) = x ⋆ α, ϕ2(x) = x • β; then ϕ1 ≤ ϕ2.

(iv) If ϕ1(x) = x • α, ϕ2(x) = x ⋆ β; then ϕ1 ≤ ϕ2.

Proof.

(i) By the result of Proposition I.2.3 in Chapter I, we have that for all x ∈ G# x • α ≤
x • β and therefore ϕ1(x) ≤ ϕ2(x), so ϕ1 ≤ ϕ2.

(ii) Similarly, we have that x ⋆ α ≤ x ⋆ β for all x ∈ X, then ϕ1 ≤ ϕ2.

(iii) By Proposition I.2.3 (iv) in Chapter I, we have that if α ≤ β then x ⋆ α ≤ x • β
for all x ∈ G#. Thus, ϕ1(x) = x ⋆ α ≤ x • β = ϕ2(x) for all x ∈ G#, that is to say

ϕ1 ≤ ϕ2.

(iv) We have that ϕ1(x) = x • α ≤ x • β and hence by I.2.3 (ii), x • β ≤ x ⋆ β for all

x ∈ X, so x • α ≤ x ⋆ β. Therefore ϕ1 ≤ ϕ2.

�

Theorem I.5.4. ([14]; 5.4)

M(G#) is a G-module with the action g · ϕ := (gϕ) where for all x ∈ X, (gϕ)(x) := ϕ(gx).

Proof.

The first two requirements in the definition of a G-module are clear from the definition of

the action of G on M(G#). We will show (iii), (iv) and (v) (see Definition I.4.1 in the section

I.4). Let g1, g2 ∈ G and ϕ, ϕ1, ϕ2 ∈ M(G#). Then

(iii) If g1 < g2 then g1x ≤ g2x for all x ∈ G#, because G# is a G-module. Also, since

ϕ is a G-module map, we have that ϕ(g1x) ≤ ϕ(g2x), thus g1ϕ(x) ≤ g2ϕ(x) for all

x ∈ G#, and hence g1ϕ ≤ g2ϕ.

(iv) ϕ1(x), ϕ2(x) ∈ G# for all x ∈ G#. If ϕ1(x) < ϕ2(x), then since G# is a G-module, for

all x ∈ G# we have that gϕ1(x) ≤ gϕ2(x) and therefore gϕ1 ≤ gϕ2.

(v) Let ϕ1 be a G-module map with ϕ1(x) = x • β and β ∈ G#. We will prove that the

orbit Gϕ1 is cofinal in M(G#), that is, for all ϕ(x) = x • α with α ∈ G# we can find

g ∈ G such that ϕ ≤ gϕ1. Indeed, Gβ is cofinal in G#, because G# is a G-module,

then we can always find a gα ∈ G such that α ≤ gαβ and by Theorem I.5.3 and

Corollary I.5.1 we have that for all x ∈ G#,

ϕ(x) = x • α ≤ x • (gαβ) = gα(x • β) = gαϕ1(x).

Therefore ϕ ≤ gαϕ1.
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Similarly, if ϕ(x) = x ⋆ α then we can find gα ∈ G such that α ≤ gαβ and by

Corollary I.5.1 , x ∈ G#,

ϕ(x) = x ⋆ α ≤ x • (gαβ) = gα(x • β) = gαϕ1(x).

The same argument applies if ϕ1(x) = x ⋆ β.

�





CHAPTER II

The Largest Group Contained in G#

Let G be a totally ordered group written multiplicatively and G# be its Dedekind com-

pletion, that is, the completion by cuts. In the Preliminaries we saw that it is posible to

extend the multiplication on G to a multiplication for elements in G# in many ways [13].

Two canonical extensions were presented: the dot • and star ⋆ multiplications. In addition,

if G is not isomorphic to a subgroup of R+ then (G#, •) and (G#, ⋆) are not groups, but they

contain at least one non-trivial subgroup, G.

In Proposition 1.4.18 in [11], the authors show that

(G#)0 =

{

x ∈ G# : S tab(x) = {1}
}

is the largest group contained in G#, in which for all x ∈ (G#)0 and y ∈ G#, x • y = x ⋆ y.

Basic examples show that G and (G#)0 may coincide or differ. For instance, if G is any

cyclic subgroup of (R+, ·) then G = (G#)0 = G#, yet if G = Q+ then G ( (G#)0 = G#
= R+.

In this case, both groups are of rank 1. An example of a totally ordered group with rank

greater than 1 is the group in Example 2.2 of [13], the direct sum G =
⊕

i∈NGi, where each

Gi is a multiplicative copy of Z with componentwise multiplication and antilexicographical

ordering. In this example (G#)0 = G, because each x ∈ G# can be written as gs , where

g ∈ G, and s is the supremum of some convex subgroup (see [10] Example 1.3.2.). Thus,

whether or not G = (G#)0 does not depend on the rank. Our aim in this chapter is to

determine the conditions for G ( (G#)0.

In the Section II.1 we give a necessary condition for the strict inclusion G ( (G#)0.

Following this we shall study two non-trivial examples of totally ordered groups with a

decreasing sequence of convex subgroups. We determine its convex subgroups and some

useful properties of them. In the last section we establish a sufficient condition on G that

ensures that G ( (G#)0.

II.1. A necessary condition for G ( (G#)0

The following definition gives us a classification of totally ordered groups and allows

us to determine a sufficient condition for G = (G#)0.

Definition II.1.1.

Given a totally ordered group G, we say that it is quasidiscrete if the set {g ∈ G : g > 1}
has a minimal element; otherwise G is quasidense.

23
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The prefix quasi in the previous definition is due to the fact that there are totally ordered

groups where min {g ∈ G : g > 1} exists yet they contain a subgroup for which this is not

true. Note that, if G is a cyclic subgroup of R+, then G is quasidiscrete and G = (G#)0. The

same happens with the direct sum G =
⊕

i∈NGi, where each Gi is a multiplicative copy

of Z with componentwise multiplication and antilexicographical ordering (Example 2.2 in

[13]), where the successor of 1G is the element (g1, 1, . . .), G is quasidiscrete and G = (G#)0.

This behavior of (G#)0 was reported in [9], but the proof was not included. We present one

in the following Lemma.

Lemma II.1.1. If G is quasidiscrete then (G#)0 = G.

Proof. It is enough to prove that (G#)0 ⊂ G. Suppose that there is s ∈ (G#)0 with 1 < s

and s < G. Thus, by definition, S tab(s) = {1}.
Now, let g0 = min{g ∈ G : g > 1}. We have that 1 < g0 < s, since if s < g0 then,

by Proposition I.2.2 (iv), there would exist g ∈ G such that 1 < g < s < g0, which would

contradict our choice of g0 .

Now, for all g ∈ G with g > 1 we have that 1 < g0 ≤ g; then, multiplying by s, we

obtain that

1 < g0 < s ≤ g0s ≤ sg.

But s , g0s since S tab(s) = {1}; it follows that 1 < g0 < s < g0s ≤ sg.

Now, let u ∈ G with u < s. Then 1 < u−1s and, by the definition of g0, we have that

1 < g0 < u−1s, so u < g−1
0 s for all u < s. Therefore, as s = supu∈G {u < s} then s ≤ g−1

0 s or

g0s ≤ s, which contradicts the fact that s < g0s shown above. �

Lemma II.1.1 gives a necessary condition for G (
(

G#
)

0
, that is, G must be quasidense.

However this condition is not sufficient. We will show this in the next example.

Example 8.

We consider G = 〈2〉 × R+ with the lexicographical order and componentwise multiplica-

tion. Firstly, note that the sequence of elements of G,
(

1, n+1
n

)

n∈N
is decreasing and con-

verges to 1G and therefore min {g ∈ G : g > 1} = 1G, i. e. G is a quasidense group.

Secondly, we know that H = {1} × R+ is a convex subgroup of G and s = sup{H} or

t = inf{H} are not in (G#)0 because S tab(s) = S tab(t) = H (see Preliminaries Lemma

I.2.1).

Next, if α ∈ G# \G then α = sup(A), with A some bounded above subset of G.

α = sup
G#

{g ∈ G : g < α}

= sup
G#

{

(2n, r) ∈ A : n ∈ Z, r ∈ R+, (2n, r) < α
}

.
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Because A is bounded , there exists m ∈ Z such that (2m, r) ∈ A and (2m+1, r) > α. Note

that, (2m, r) ∈ A for all r ∈ R. Indeed, if we suppose that there exists q ∈ R+ such that

α < (2m, q) then for (2m, r) ∈ A,

(2m, r) < α < (2m, q),

multiplying this inequality by (2−m, 1) ∈ G,

(1, r) < α < (1, q).

This implies that α ∈ H, the convex subgroup of G, a contradiction.

Finally,

α = sup
G#

{g ∈ G : g < α}

= sup
G#

{

(2m, r) : r ∈ R+}

= sup
G#

{

(2m, 1) · (1, r) : r ∈ R+}

= (2m, 1) · sup
G#

{

(1, r) : r ∈ R+}

= (2m, 1) · s.

Therefore, (G#)0 = G = 〈2〉 × R+ and G is a quasidense group.

In short, for a totally ordered group G written multiplicatively, we have the inclusion

G ⊆ (G#)0 ⊆ G#. The strict inclusion G ( (G#)0 does not depend neither on rank(G) nor on

G being quasidense.

Corollary II.1.1. If G contains a first non trivial cyclic convex subgroup , then G = (G#)0.

Proof. Let H1 = 〈h〉, generated by h > 1, be the first convex subgroup of G. This

implies that h = inf {g ∈ G : g > 1}, so G is quasidiscrete and therefore G = (G#)0. �

For the aforementioned reason, we are interested in groups with a decreasing sequence

of convex subgroups. We shall study in detail two ordered groups with these characteristics

in the following two examples.

II.2. Example: Lexicographic Direct Sum

Let (Gi)i∈N be a family of infinite cyclic groups, where Gi = (〈gi〉, ·) and gi > 1. Each

group Gi =

{

gα
i

: α ∈ Z
}

becomes a totally ordered group by the order relation gα
i
< g

β

i
⇔

α < β.

Now, let G be the direct sum of the groups Gi
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G =
⊕

i∈N
Gi = G1 ⊕G2 ⊕G3 ⊕ · · ·

An element g ∈ G will be written as g =
(

g
αi

i

)

i∈N
=

(

g
α1

1
, g
α2

2
, g
α3

3
, . . .

)

where αi ∈ Z for

all i ∈ N and |supp(g)| = | {i ∈ N : αi , 0} | < ∞. With the componentwise multiplication

and the lexicographic order, G becomes a totally ordered group. Hence, if f = (gαi

i
)i∈N,

h = (g
βi

i
)i∈N with h , f and r = min {i ∈ N : αi , βi} then f < h⇔ αr < βr.

If we denote by ek the element (g
γi

i
)i∈N ∈ G such that γi = 0 for all i , k and γk = 1,

then

e1 = (g1, 1, 1, · · · ) e2 = (1, g2, 1, · · · ) e3 = (1, 1, g3, 1, · · · ) · · ·
and each element g ∈ G can be written as the product

g = e
α1

1
e
α2

2
e
α3

3
· · · =

∏

i∈N
e
αi

i
,

where the set {i : αi , 0} is bounded.

Using this notation, we will make a tree diagram of G, as shown in Figure II.1.

b b b b b b b bbbbbbbb

b bbb b bbb b bbbb bb b bbbb b

b b b

bbb bbb b b bb bbb

bbb b b b b b b bbb b b b

bbb b b b b b bbb b b b

b bbbb b b b b b bb b bbbbbbbbbb b b bbbbb b bbbb

b b bbbb bbb b b b b b b b b

b

bbb bb b bbb bb b bbbb b b b b b b

bb bb bbb b b bb b b bb b bbb b

e
α1

1
e
α1+1

1

e0
2 e2e−1

2
ek

2
e−k

2

e3

e4

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

e5

e6

Figure II.1. Tree representation for the totally ordered group G
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The levels in the tree diagram, from top to bottom are numbered from one downwards

and represent the different options for the components e
αi

i
of an element g = (e

αi

i
)i∈N ∈ G.

Each possible path represents one element in G and its location in the tree indicates its

position in G.

This scheme allows us to visualize some notable subsets and properties of G. For

example, given two paths in the tree, the element in G represented by the path located in a

branch further to the right is larger than the element represented by the path located on the

left.

II.2.1. Two outstanding subsets of G. Consider the following subsets of G. For i ∈ N
and g ∈ G, we define

Ai
g :=

{

geνi : ν ∈ Z} .
as well as

Ci
g :=

{

h = ge
νi
i

e
νi+1

i+1
· · · eνrr : r ∈ N, i ≤ r, ν j ∈ Z, i ≤ j ≤ r

}

We can make a tree diagram of Ai
g and Ci

g as shown by the Figures II.2 and II.3.

e
α1

1

e
α2

2

e
α3

3

e
αi−2

i−2

e
αi−1

i−1

e0
i ei

e2
i

e−1
i

e−2
i

e−3
i

ek
i

e−k
i

e
αi+1

i+1
e
αi+1

i+1

e
αl

l

e
αi+1

i+1

e3
i

e
αl

l

e
αl+1

l+1
e
αl+1

l+1
e
αl+1

l+1

e
αl

l

Figure II.2. The branch in the figure represents the set Ai
g

Example 9. As an example to describe the tree diagram and subsets Ai
g and Ci

g, we consider

the totally ordered group G = 〈2〉 × 〈3〉 × 〈5〉 × 〈7〉 with componentwise multiplication and

lexicographic order.

Let i = 3 and let g = (2, 3, 1, 72) ∈ G. Then, we have that
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e
α1

1

e
α2

2

e
α3

3

e
αi−2

i−2

e
αi−1

i−1

e0
i ei

ek
i

e−k
i

e
αi+1

i+1

e
αl

l

e−1
i

Figure II.3. The branch in the figure represents the set Ci
g

e1 = (2, 1, 1, 1), e2 = (1, 3, 1, 1), e3 = (1, 1, 5, 1), e4 = (1, 1, 1, 7),

so g = (2, 3, 1, 7) = (2, 1, 1, 1) · (1, 3, 1, 1) · (1, 1, 5, 1)0 · (1, 1, 1, 7)2 and

A3
g =

{

geν3 : ν ∈ Z}

=

{

(2, 3, 5ν, 72) : ν ∈ Z
}

and

C3
g =

{

ge
ν3
3

e
ν4
4

: ν j ∈ Z, i ≤ j
}

= {(2, 3, 5ν3, 7ν4) : ν3, ν4 ∈ Z} .
The following figures show the element g = (2, 3, 1, 72) and the subsets A3

g and C3
g in

the tree diagram for the group G.
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e1

(2, 1, 1, 1)

(1, 3, 1, 1)

(

1, 1, 1, 72
)

G

(1, 1, 5ν, 1)

Figure II.4. The subset A3
g where g = (2, 3, 1, 72)

(2, 1, 1, 1)

(1, 3, 1, 1)

G

(1, 1, 5ν3 , 1)

(1, 1, 1, 7ν4 )(1, 1, 1, 7ν4 ) (1, 1, 1, 7ν4 )

Figure II.5. The subset C3
g where g = (2, 3, 1, 72)

The next Proposition describes important properties of the subsets Ai
g and Ci

g.

Proposition II.2.1.

Let g, h ∈ G and 1 < i ∈ N.

(i) The group G is quasidense.

(ii) The sets Ai
g and Ci

g are bounded.
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(iii) sup Ci
g and inf Ci

g do not belong to G.

(iv) sup Ci
g = sup Ai

g.

(v) Given k > 1 with k , i, we have sup Ai
g , sup Ak

g.

Proof.

(i) If we suppose that the set {g ∈ G : g > 1} has a first element,

g0 = (gαi

i
)i∈N = min {g ∈ G : g > 1}

then there exists an element u = g0e−1
k+1
∈ G where k = min {i ∈ N : αi , 0} which

satisfies 1 < u < g0, a contradiction (see Figure II.6).

e
αk

k

g0

e
αk−1

k+1

g0e−1
k+1

e
αk−1

k−1

Figure II.6. The blue path represents g0 and the red path the element u.

(ii) Basically, it can be seen in the diagrams the procedure that gives bounds for any

of these sets. We locate the set in the diagram and we move to the right for upper

bounds and to the left for lower bounds. As an example, the element gei−1 is an

upper bound and ge−1
i−1

is a lower bound of Ai
g and Ci

g (see Figure II.7).

(iii) The sup Ci
g must satisfy that for all n j ∈ Z, j ≥ i

(g
α1

1
, g
α2

2
, · · · gαi−1

i−1
, g
νi
i
, g
νi+1

i+1
, . . .) ≤ sup Ci

g ≤ gei−1.
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ge−1
i−1

e
αi−1−1

i−1

gei−1

e
1+αi−1

i−1
e
αi−1

i−1

Ai
g

Figure II.7. Representation in the tree of the upper and lower bound of Ai
g

The assumption that sup Ci
g = (g

β j

j
) j∈N ∈ G leads to a contradiction, because from

the above inequality we deduce that

β j = α j ∀ j < i − 1

and

βi−1 = αi−1 or βi−1 = 1 + αi−1.

Therefore,

a) If βi−1 = αi−1 then the element e
α1

1
· · · eαi−1

i−1
e
βi+1

i
is in Ci

g and is larger than

sup Ci
g.

b) If βi−1 = 1 + αi−1 then the element e
α1

1
· · · e1+αi−1

i−1
e
βi−1

i
is an upper bound of Ci

g

and is less than sup Ci
g.

For the case of inf Ci
g, the proof has the same structure.

(iv) By definition, Ai
g ⊂ Ci

g and it is clear that sup Ai
g ≤ sup Ci

g. In order to show

that sup Ai
g ≥ sup Ci

g we note that for h ∈ Ci
g \ Ai

g we can always determine an

element f ∈ Ai
g such that h < f . Indeed, let g = (gi)

αi

i∈N. If h = (g
β j

j
) j∈N ∈ Ci

g, then

f = ge
β j−α j+1

i
is an element Ai

g larger than h. Thus sup Ci
g = sup Ai

g.

(v) We suppose that i < k, in this case, the elements h1 = gei and h2 = ge2
i

belong to

Ai
g and they satisfy f < h1 < h2 for all f ∈ Ak

g. Therefore, sup Ak
g < sup Ai

g.
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�

II.2.2. The convex subgroups of G. The following proposition gives us a description

of the proper convex subgroups of G.

Proposition II.2.2.

For each i ∈ N with i > 1, let

Ci =

{

g =
(

g
α j

j

)

j∈N
: α j ∈ Z ∧ ∀ j < i, α j = 0

}

.

Then every set Ci is a proper convex subgroup of G and there are no others; thus G has

infinite rank.

Proof.

In fact, the first i − 1 components of the elements in Ci, are equal to 1. Let f , h ∈ Ci with

f < h and let g = (g
α j

j
) j∈N ∈ G such that f < g < h. If there exists α j , 0 with j < i then

g < f or h < g, which would contradict the definition of g. Then, necessarily, α j = 0 for

all j < i. Therefore g ∈ Ci.

On the other hand, the collection of convex subgroups of G is a totally ordered set.

Clearly we have that Ci ) C j when i < j. Suppose that H is a proper convex subgroup of

G, H , Ci for all i > 1, then there exists 1 < j ∈ N such that C j+1 ( H ( C j. The strict

inclusion above implies the existence of an element h = (gαi

i
)i∈N ∈ H such that αi = 0 for

all i < j and α j > 0. In addition H is convex, thus every element f = (g
γi

i
)i∈N ∈ G such that

γi = 0 for all i < j and −nα j < γ j < nα j for some n ∈ N also belongs to H. Then H = C j,

and we obtain a contradiction to the strict inclusion above. �

Proposition II.2.3.

Consider the set Oi =

{

en
i

: n ∈ Z
}

. For any g, h ∈ G and 1 < i ∈ N we have that

(1) sup Ai
g = g · sup Oi and inf Ai

g = g · inf Oi.

(2) sup Oi = inf (ei−1Oi) and inf Oi = sup
(

e−1
i−1Oi

)

.

(3) If j < k then

(i) sup Ok • sup O j = sup O j and inf Ok ⋆ inf O j = inf O j,

(ii) sup O j • inf O j = inf O j and sup O j ⋆ inf O j = sup O j

(iii) sup Ak
g • sup A

j

h
= sup A

j

gh

(iv) sup Ak
g ⋆ sup A

j

h
= sup A

j

gh

(4) S tab(sup Ai
g) = Ci

1G

Proof.

(1) sup Ai
g = sup

{

gen
i

: n ∈ Z
}

= g · sup
{

en
i

: n ∈ Z
}

= g · sup Oi. In the same way we

prove inf Ai
g = g · inf Oi.
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e0
1

e0
2

e0
3

Figure II.8. Representation of the proper convex subgroup C3

(2) If sup Oi < inf (ei−1Oi) then there exists h = (g
γ j

j
) j∈N ∈ G such that sup Oi < h <

inf (ei−1Oi). This last condition implies that γ j = 0 for all j < i − 1. As h > sup Oi

necessarily γi−1 = 1 but this is impossible, because h < inf (ei−1Oi).

(3) We know that the dot and star multiplications are associative and if g ∈ G, x ∈ G#

then g • x = g ⋆ x.

(i) First, note that for i < k, e
q−1

j
< e

p

k
e

q

j
< e

q+1

j
. Now,

sup Ok • sup O j = sup
G#

{

uv : u, v ∈ G, u < sup Ok, v < sup O j

}

= sup
G#

{

e
p

k
e

q

j
: p, q ∈ N

}

= sup
G#

{

e
q

j
: q ∈ N

}

= sup O j.

inf Ok ⋆ inf O j = inf
G#

{

uv : u, v ∈ G, u > inf Ok, v > inf O j

}

= inf
G#

{

e
p

k
e

q

j
: p, q ∈ N

}

= inf
G#

{

e
q

j
: q ∈ N

}

= inf O j.

(ii)

sup O j • inf O j = sup O j • sup(O je
−1
j−1)

= e−1
j−1 sup O j • sup(O j)

= e−1
j−1 sup O j

= inf O j.
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b b b b bb bbb

bb b bbb b bbbb bb

b b b

b b bbbbb b bbbb

b b bbbb bbb b b b

bb bbb b bbb b

bb

b

b

b

b

b

b

b

e0
i−2

ei−1
e0

i−1

sup Oi = inf (ei−1Oi)

sup O j ⋆ inf O j = inf(O je j−1) ⋆ inf O j

= e j−1 inf O j ⋆ inf(O j)

= e j−1 inf O j

= sup O j.

(iii)

sup Ak
g • sup A

j

h
=

(

g · sup Oi

) • (h · sup Ok

)

= gh
(

sup Ok • sup O j

)

= gh · sup O j

= sup A
j

gh
.

(iv)

sup Ak
g ⋆ sup A

j

h
=

(

g · sup Ok

)

⋆
(

h · sup O j

)

= gh ·
[

inf (ek−1Ok) ⋆ inf
(

e j−1O j

)]

= ghek−1e j−1 ·
[

inf (Ok) ⋆ inf
(

O j

)]

= ghek−1e j−1 inf
(

O j

)

= ghek−1 sup
(

O j

)
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= gh sup
(

O j

)

= sup A
j

gh
.

(4) S tab
(

sup Ai
g

)

= S tab
(

g · sup Oi

)

= S tab
(

sup Oi

)

= S tab
(

sup Ci
1G

)

= Ci
1G

�

The rank of the totally ordered group G is ω. Thus G is not complete. In the next

theorem we will characterize its completion G#.

Theorem II.2.1.

G#
= G ∪

⋃

1<i∈N
G sup Oi.

Proof.

The existence of u ∈ G# \ G that does not belong to any orbit G sup Oi with i > 1 will lead

to a contradiction. Indeed, we know that

u = sup
G#

{

h =
(

g
αi(h)

i

)

i∈N
∈ G : h < u

}

We denote by B1
u =

{

h =
(

g
αi(h)

i

)

i∈N
∈ G : h < u

}

. Necessarily there is an m1 ∈ N such

that

m1 = max
{

α1(h) : h ∈ B1
u

}

since, otherwise, B1
u is not a bounded set. Now, denote by

B2
u =

{

h ∈ B1
u : α1(h) = m1

}

We have that m2 = max
{

α2(h) : h ∈ B2
u

}

must exist. If not, u = sup(em1

1
O2) which is

impossible by the definition of u. Denote now, for each k ∈ N,

Bk
u =

{

h ∈ Bk−1
u : αk−1(h) = mk−1

}

and we will prove by induction that mk = max
{

αk(h) : h ∈ Bk
u

}

does exist for all k ∈ N.

We have already proved the existence of m1 and m2. Now, suppose that mk =

max
{

αk(h) : h ∈ Bk
u

}

exists and so

Bk+1
u =

{

h ∈ Bk
u : αk(h) = mk

}

.

If we suppose that mk+1 = max
{

αk+1(h) : h ∈ Bk+1
u

}

does not exist we are led to

u = e
m1

1
e

m2

2
· · · emk

k
sup(Ok+1),

which contradicts the definition of u. We conclude that there is mk, as defined above, for

all k ∈ N.
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Thus,

u = sup
G#

{

h =
(

g
αi(h)

i

)

i∈N
∈ G : h < u

}

= (gmi

i
)i∈N

and this contradicts the definition of u. �

Proposition II.2.4. If 1 < i ∈ N then G/Ci
1G

is quasidiscrete.

Proof. Note that,

sup(Ci
1G

) ⋆ sup(Ci
1G

) = sup(Oi) ⋆ sup(Oi)

= inf(Oiei−1) ⋆ inf(Oiei−1)

= e2
i−1 inf(Oi)

= ei−1 sup(Oi)

= ei−1 sup(Ci
1G

).

inf(Ci
1G

) • inf(Ci
1G

) = = inf(Oi) • inf(Oi)

= sup(Oie
−1
i−1) • sup(Oie

−1
i−1)

= e−2
i−1 sup(Oi)

= e−1
i−1 inf(Oi)

= e−1
i−1 inf(Ci

1G
).

By Proposition I.2.5, it is known that G/Ci
1G

is quasidiscrete with π(ei−1) = min{h ∈
G/Ci

1G
: h > 1}, where π : G → G/Ci

1G
is the canonical map.

�

II.3. Example: Levi-Civita Field

We start by stating the main definitions and properties of Levi-Civita field.

A subset M of the rational numbers Q is called left-finite if for every r ∈ Q there are

only finitely many elements of M that are smaller than r. The set of all left-finite subsets

of Q will be denoted by F .

Let M ∈ F . If M , ∅, the elements of M can be arranged in ascending order; and there

exists a minimum of M. If M is infinite, its elements form a strictly monotonic sequence

that is divergent.

Also, we have for M,N ∈ F
(1) M ∪ N ∈ F , M ∩ N ∈ F and if X ⊂ M then X ∈ F ,

(2) M + N = {a + b : a ∈ M, b ∈ N} ∈ F , and for every c ∈ M + N, there are only

finitely many pairs (a, b) ∈ M × N such that c = a + b.

Definition II.3.1.

Consider the set R of all real-valued functions on Q that are nonzero only on a left-finite
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set, that is, they have left-finite support

R := { f : Q→ R : supp( f ) ∈ F }.
We define two operations for the elements in R. Let f , g ∈ R and q ∈ Q:

(i) the addition on R is componentwise

( f + g)[q] = f [q] + g[q]

(ii) and multiplication is defined as follows

( f · g)[q] =
∑

q1+q2=q

f [q1] · g[q2]

We have that R can be embedded into R via the map Π. Let x ∈ R, the map Π : R→ R
is defined by

Π(x)[q] =

{

x , if q = 0

0 , else

Π is injective, Π(x + y) = Π(x) + Π(x) and Π(x · y) = Π(x) · Π(x). This embedding is

not surjective, note that if x ∈ R \ {0}, supp(Π(x)) = {0}.

Theorem II.3.1. ([2], Theorem 2.3)

(R,+, ·) is a field.

The field (R,+, ·) is called the Levi-Civita field ([2] and [17] contain interesting results

with respect to this field). From now on, its elements will be denoted by the letters x, y, z, ...

(instead of f , g, h...). Also we denote the identity element in R by 1, so

1[q] =

{

1 , if q = 0

0 , else

For x ∈ R with x , 0, we denote by λ(x) = min(supp(x)) which exists because of

left-finiteness of supp(x) and we define λ(0) = +∞.

To introduce an order structure to R, we consider the set R+ of all nonvanishing el-

ements x ∈ R that satisfy x[λ(x)] > 0. This is the cone of positivity in the Levi-Civita

Field.

R+ = {x ∈ R \ {0} : x[λ(x)] > 0} .
The basic properties of R+ are:

Lemma II.3.1. ([2], Lemma 3.1)

(i) R+ ∩ (−R+) = ∅, R+ ∩ {0} = ∅ and R+ ∪ {0} ∪ (−R+) = R
(ii) If x, y ∈ R+, then x + y ∈ R+ and xy ∈ R+.

Now, we define an order in R.
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Definition II.3.2.

Let x, y ∈ R be given. We say that y > x if x , y and (y− x) ∈ R+; and we say y ≥ x if y = x

or y > x. Also, we say y < x if x > y and y ≤ x if x ≥ y.

Notice that with this definition we have, for x , y,

y > x⇔ (y − x)[λ(y − x)] > 0

Theorem II.3.2. ([2], Theorem 3.1)

With the relation ≥, (R,+, ·) becomes a totally ordered field.

The order is compatible with the algebraic structure of R, that is, for any x, y, z, we

have: x > y⇒ x + z > y + z; and if z > 0, we have x > y⇒ x · z > y · z.

II.3.1. Levi-Civita Multiplicative Group (R+, ·). Later on, we will see that the mul-

tiplicative group (R+, ·) has infinite rank. Our aim here is the description of its convex

subgroups. In fact, if we consider the order given by the inclusion, we will show that

(i) the set

L = {x ∈ R+ : λ(x) = 0}
is the largest convex subgroup of (R+, ·)

(ii) the largest proper convex subgroup contained in L is

L0
= {x ∈ R+ : λ(x) = 0, x[0] = 1}

(ii) for each r ∈ Q+, the sets L0
r = {x ∈ R+ : λ(x) = 0, x[0] = 1, λ1(x) ≥ r} are convex

subgroups of (R+, ·) where

λ1(x) :=

{

min (supp(x) \ {λ(x)}) if supp(x) , {λ(x)}
+∞ else

Before we characterize the positive cone P = {x ∈ R+ : x > 1} we will show by an

example different types of elements of P.

Example 10.

We consider the following numbers:

x[q] =



























1 , q = −2

−1 , q = −1

2 , q = 1

0 , otherwise

y[q] =



























2 , q = 0

−1 , q = 1

3 , q = 2

0 , otherwise

z[q] =



























1 , q = 0

3 , q = 2

−1 , q = 5

0 , otherwise

See Figure II.9 for a graphic representation of these elements. They are in the positive

cone P of (R+, ·). Indeed,
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R

Q

y

R

Q

x

R

Q

z

2

1

Figure II.9. The numbers x, y, z ∈ P

λ(x − 1) = −2 and (x − 1)[−2] = 1 > 0

λ(y − 1) = 0 and (y − 1)[0] = 1 > 0

λ(z − 1) = 2 and (z − 1)[2] = 3 > 0

These three numbers allow us to visualize three subsets of the positive cone P.

(i) The subset P1 of elements such that the minimum of the support is negative (x ∈
P1).

(ii) The subset P2 of elements such that the minimum of the support is 0 and whose

value at 0 is greater than 1 (y ∈ P2).

(iii) The subset P3 of elements such that the minimum of the support is 0, whose value

at 0 is 1 and whose value at the next support point is greater than 0 (z ∈ P3).
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Lemma II.3.2.

Let

λ(x) :=

{

min (supp(x)) if x , 0

+∞ else

λ1(x) :=

{

min (supp(x) \ {λ(x)}) if supp(x) , {λ(x)}
+∞ else

and P1, P2 and P3 the following subsets of P

P1 =
{

x ∈ R+ : λ(x) < 0
}

P2 =
{

x ∈ R+ : λ(x) = 0 ∧ x[0] > 1
}

P3 =
{

x ∈ R+ : λ(x) = 0 ∧ x[0] = 1 ∧ x[λ1(x)] > 0)
}

.

Then P = P1 ∪ P2 ∪ P3.

Proof.

If x ∈ (P1 ∪ P2 ∪ P3) then (x − 1)[(λ(x − 1)] > 0 because 1[q] =

{

1 if q = 0

0 else
and

• if x ∈ P1, then λ(x − 1) < 0 and (x − 1)[λ(x − 1)] = x[λ(x)] > 0

• if x ∈ P2, then λ(x − 1) = 0 but (x − 1)[0] = x[0] − 1 > 0

• if x ∈ P3, then λ(x − 1) > 0 and (x − 1)[λ(x − 1)] = x[λ1(x)] > 0.

Therefore, P1 ∪ P2 ∪ P3 ⊂ P. So, we only need to prove that P ⊂ P1 ∪ P2 ∪ P3.

If x ∈ P then x[λ(x)] > 0 and λ(x) ≤ 0, since if we suppose λ(x) > 0 then (1 − x)[λ(1 −
x)] = (1 − x)[0] = 1, therefore 1 > x and x < P, a contradiction. If x ∈ P and x < (P2 ∪ P3)

then

(i) If λ(x) = 0 ∧ x[0] < 1 then x < 1 and hence x < P, a contradiction.

(ii) If λ(x) = 0 ∧ x[0] = 1 ∧ x[λ1(x)] < 0 then (x − 1)[λ(x − 1)] = (x)[λ1(x)] < 0; it

follows that x < 1 and hence x < P, a contradiction.

(iii) If λ(x) < 0, the only option is x[λ(x)] > 0 and therefore x ∈ P1.

�

Notice that P ∩ P−1
= ∅, P ∩ {1} = ∅, P ∪ {1} ∪ P−1

= R+ and x, y ∈ P ⇒ x · y ∈ P.

Also, the order defined on R induces an order in (R+, ·). Thus

y > x⇔ yx−1 ∈ P⇔ yx−1 ∈ (P1 ∪ P2 ∪ P3)

II.3.2. The convex subgroups of (R+, ·). In order to determine the rank of (R+, ·) we

will study the following subsets of R+

L = {x ∈ R+ : λ(x) = 0}
L0
= {x ∈ R+ : λ(x) = 0, x[0] = 1}

L0
r = {x ∈ R+ : λ(x) = 0, x[0] = 1, λ1(x) ≥ r}
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where r ∈ Q+ and for all x ∈ R+ λ(x) and λ1(x) are defined as in Lema II.3.2. We have for

all r ∈ Q+, L0
r ( L0 ( L. We will prove that these sets belong to a decreasing chain of

convex subgroups of R+.

Lemma II.3.3.

With the order given by inclusion, the set

L := {x ∈ R+ : λ(x) = 0}
is the largest convex subgroup of (R+, ·).

Proof.

Note that 1 ∈ L. Firstly, we must prove that L is closed under multiplication. Suppose

x, y ∈ L; then λ(x) = λ(y) = 0 and λ(x · y) = 0, because 0 ≤ q1 + q2 with q1 ∈ supp(x),

q2 ∈ supp(y) and (xy)[0] = x[0] · y[0] > 0. Now, let x ∈ L, we prove that x−1 ∈ L. Indeed,

we know that 0 = λ(1) = λ(xx−1) = λ(x) + λ(x−1) = λ(x−1), x[0] > 0 and 1 = (xx−1)[0] =

x[0] · x−1[0] therefore x−1[0] =
1

x[0]
> 0 and so x−1 ∈ L. The other group axioms are

inherited from (R+, ·).
Next, let x, y ∈ L and u ∈ R+ such that x < u < y. This implies that λ(u) = 0 because if

λ(u) > 0 then u < x, and if λ(u) < 0 then u > y. This shows that L is a convex subgroup.

Finally, letM be a proper convex subgroup of (R+, ·). If x ∈ M \ L then, without loss

of generality, we may assume that λ(x) < 0. Thus, we can always find n ∈ N such that

λ(x) < −1
n

and so the element d−
1
n , given by

d−
1
n [q] =

{

1 q = −1
n

0 q , −1
n

is in R+ and 1 < d−
1
n < x.

R+
1

d−
1
nd

1
nd

1
m d−

1
ma b d−m d−ndn dm

Figure II.10. a, b ∈ R with a < 1 < b; n,m ∈ N with m < n

Then, by the convexity of the subgroupM we have that d−1 ∈ M. Moreover, for any

y ∈ R+ we can always find a m ∈ N such that dm < y < d−m and hence y ∈ M, which

contradicts thatM is a proper subgroup of R+.
�

Lemma II.3.4.

The set

L0
= {x ∈ R+ : λ(x) = 0, x[0] = 1}

is a convex subgroup of (R+, ·).
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Proof.

Notice that if x ∈ L0 then λ(x−1) = 0 and x−1[0] = x[0]x−1[0] = 1[0] = 1 and therefore

x−1 ∈ L0. Let x, y ∈ L0 and u ∈ R+ such that x < u < y. Then

(i) λ(u) = 0: If λ(u) > 0 then u < x, and if λ(u) < 0 then u > y.

(ii) u[0] = 1: If u[0] > 1 then u > y, and if u[0] < 1 then u < x.

Thus u ∈ L0. �

Lemma II.3.5.

The set

L0
r = {x ∈ R+ : λ(x) = 0, x[0] = 1, λ1(x) ≥ r}

is a convex subgroup of (R+, ·) for each r ∈ Q+.

Proof.

Just as before, we can prove that if x ∈ L0
r then λ(x−1) = 0 and x−1[0] = 1.

Additionally, λ1(x−1) ≥ r, since if λ1(x−1) < r then (x · x−1)[λ1(x−1)] = x[0] ·
x−1[λ1(x−1)] = x−1[λ1(x−1)] , 0 but on the other hand (x · x−1)[λ1(x−1)] = 1[λ1(x−1)] = 0, a

contradiction. We conclude that x−1 ∈ L0
r .

Finally, we show that L0
r is a convex subgroup. Let x, y ∈ L0

r and u ∈ R+ such that

x < u < y. As in the proof of the previous Lemma, we have that λ(u) = 0 and u[0] = 1.

Also λ1(u) ≥ r, because assuming that λ1(u) < r leads to a contradiction: If u[λ1(u)] < 0

then u < x and if u[λ1(u)] > 0 then u > y .

Thus u ∈ L0
r and therefore L0

r is a convex group for all r ∈ Q+. �

Corollary II.3.1. (R+, ·) has infinite rank.

Lemma II.3.6.

There is a jump in (R+, ·), i.e. R+ does not contain any convex subgroup between L0 and

L.

Proof.

If L were a convex subgroup of (R+, ·) such that L0 ( L ⊆ L, then there would be an

element x ∈ L such that λ(x) = 0, x[0] = a , 1 (if for all x ∈ L, x[0] = 1, then L = L0).

But we know that L is a convex subgroup and in this case x−1[0] = a−1. Without loss of

generality, we may assume that a > 1. Thus, for any element y ∈ L such that y[0] = b

we can find an n ∈ N such that a−n < b < an. Note that xn[0] = an and x−n[0] = a−n

and therefore x−n < y < xn, so by convexity of L we have that y ∈ L. We conclude that

L = L. �

Lemma II.3.7.

For all r ∈ Q+, the largest proper convex subgroup in L0
r is (L0

r )⋆ =
⋃

i>r

L0
i
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Proof.

If L were a convex subgroup of (R+, ·) such that
⋃

i>r

L0
i ( L ⊆ L0

r

then we can find an element x ∈ L such that x < L0
i

for all i > r. This condition implies

that λ1(x) = r otherwise λ1(x) > r and x ∈ L0
λ1(x)
⊂ ⋃

i>r L0
i
.

Now, we prove the inclusion L0
r ⊆ L. Indeed, let x ∈ L0

r and put a := x[r] ∈ R; then

for all y ∈ L0
r with y[r] = b we could find n ∈ N such that −n|a| < b < n|a|. Also we know

that

λ1(xn) = λ1(x−n) = r, xn[r] = na and x−n[r] = −na.

Note that if a > 0 then x−n < y < xn, and if a < 0 then xn < y < x−n. Therefore y ∈ L,

because xn and x−n are elements of the convex subgroup L. Thus L = L0
r and hence (L0

r )⋆

is the greatest convex subgroup contained in L0
r . �

These two examples above show the behavior of some totally ordered groups with a

decreasing sequence of convex subgroups.

The results in the next section will complete the characterization of (G#)0.

II.4. Sufficient conditions for G ( (G#)0

Theorem II.4.1.

Let (G, ·,≤) be a totally ordered multiplicative group with rank(G) > 1. Let G# be the

Dedekind completion of G, and let α ∈ G# \G and Cα := {g ∈ G : g < α}. If there exists a

convex subgroup H of G such that H ⊆ Cα then H ⊆ S tab(α).

Proof.

Without loss of generality, we may assume that α > 1. Since G is cofinal (and coinitial) in

G#, we can always find f ∈ G such that α < f . Thus Cα is a bounded above subset of G

(see Figure II.11).

G#

1 α f

b bcbb

Figure II.11. Representation of Cα

Consider now the canonical morphism

π : G → G/H

g 7−→ g = gH.

We know that π is increasing. We will prove that π(Cα) is a cut in G/H.

(i) Cα , ∅, since G is coinitial in G# we can find u ∈ G such that u < α and therefore

π(Cα) , ∅.
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(ii) On the other hand, if π(u) < π(g) for any g ∈ Cα then u ≤ g (because π is

increasing), and since Cα is a cut in G then u ∈ Cα, therefore π(u) ∈ π(Cα).
Let s = sup(G/H)# π(Cα), where (G/H)# is the Dedekind completion of the group G/H,

and let h ∈ H with h > 1 . Then

h · α = h · sup
G#

{g ∈ G : g < α} = sup
G#

{h · g ∈ G : g ∈ Cα}

and since h > 1 then α ≤ h · α. Note that, for all g ∈ Cα, π(h · g) = π(h) · π(g) = π(g) and

therefore

sup
(G/H)#

π(h · Cα) = sup
(G/H)#

π(Cα) = s.

This implies that for all g ∈ Cα there is u ∈ Cα such that hg ≤ u; thus, hg ∈ Cα and

hence hα ≤ α. We conclude that h · α = α and therefore h ∈ S tab(α). �

Corollary II.4.1.

If G contains a chain C of non trivial convex subgroups such that
⋂

Γ∈C
Γ = {1} then G = (G#)0

Proof.

Under the same assumptions as in the previous theorem, let α ∈ (G#) \ G. If G contains a

decreasing chain of convex subgroups that converges to the trivial subgroup {1}, then there

exists a convex subgroup H ∈ C such that H ( Cα and therefore H ⊆ S tab(α). For instance,

we can consider in the previous theorem H =
⋃

Γ ∈ C
α < Γ

Γ. �

Lemma II.4.1.

let α ∈ G# \G and Cα := {g ∈ G : g < α}. Under the same assumptions as in the Theorem

II.4.1, if Cα contains no convex subgroup except the trivial one then G ( (G#)0.

Proof.

Let

H =
⋂

Γi⊆G

Hi

where for all i, Γi is a non trivial convex subgroup of G. Then α < sup(H), because

otherwise H ⊆ Cα, which contradicts our hypothesis. Therefore α ∈ H# and there are

h1, h2 ∈ H such that h1 < α < h2.

Since rank(H) = 1, there exists an isomorphism from H to a multiplicative subgroup

S of R+. S cannot be a discrete subgroup, i. e. S , 〈g〉 for all g ∈ R, because in this case

H#
= H and α < H. It follows that S is a dense subgroup of R+, i. e. H#

= R+ and therefore

there exists α−1 ∈ R+ such that α · α−1
= 1 and α ∈ (G#)0. �
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Corollary II.4.2.

(R+)#
0 = R+ and (G#)0 = G.

Proof.

Both of these totally ordered groups contain an infinite decreasing chain of convex sub-

groups. Indeed, in (R+, ·), for all p, q ∈ Q+ with p < q we have that

R+ ) L ) L0
1 )

(

L0
1

)⋆
) · · · ) L0

p )
(

L0
p

)⋆
) · · · ) L0

q )
(

L0
q

)⋆
) · · · ) {1} .

On the other hand, for the direct sum (G, ·), for all i, j ∈ N with i < j we have that

Ci ) C j; therefore the group G contains a decreasing sequence of convex subgroups such

that

G ) C1 ) C2 ) · · · ) Ci ) Ci+1 ) · · · ) C j ) · · · ) {1} .
From Corollary II.4.1, we deduce that (R+)#

0 = R+ and (G#)0 = G. �

Corollary II.4.3.

Let H and Γ be totally ordered groups, with rank(Γ) = 1. Let G = H × Γ be the direct sum

of H and Γ, with componentwise multiplication and lexicographic ordering. We have two

cases for (G#)0:

• If Γ is a cyclic subgroup of (R+, ·) then (G#)0 = G.

• If Γ is a dense subgroup of (R+, ·) then (G#)0 = H × R+.
Proof.

G = H × Γ is a totally ordered group with a first convex subgroup {1} × Γ. If Γ is a cyclic

subgroup of (R+, ·) then, by Corollary II.1.1, we have that (G#)0 = G. On the other hand, if

Γ is a dense subgroup of (R+, ·) then, by Theorem II.4.1, we have that (G#)0 = H × R+. �

We can summarize the description of (G#)0 as follows. Let G be a totally ordered group.

(i) If G contains a chain C of non trivial convex subgroups such that
⋂

Γ∈C
Γ = {1} then G = (G#)0

(ii) If the first non trivial convex subgroup of G is isomorphic to a proper dense sub-

group of R+ then G# contains a group larger than G; otherwise G is the largest

group contained in G#.





CHAPTER III

Order in M(X,G#)

Let G a totally ordered group and G# its Dedekind completion. Let X be a G-module

and M(X,G#) be the set of all the G-module maps from X to G# such that

M(X,G#) =
{

ϕ : X → G# : ϕ is increasing and ∀g ∈ G, ϕ(gx) = gϕ(x)
}

We consider the natural ordering on M(X,G#) given by

ϕ1 ≤ ϕ2 ⇔ ϕ1(x) ≤ ϕ2(x), for all x ∈ X

In this chapter our aim is to extend the results in [14], where the authors determined all

G-module maps G# → G#. We will study the set M(X,G#), where X can be any G-module

and prove that M(X,G#) is a totally ordered set; even more, it is a G-module. For this end,

we start in Section III.1 by studying the order of two families of morphisms contained in

M(X,G#).

M(X,G#)sup =

{

fx0
∈ M(X,G#) : fx0

(x) = sup
G#

{g ∈ G : gx0 ≤ x}, x0 ∈ X

}

M(X,G#)inf =

{

hx0
∈ M(X,G#) : hx0

(x) = inf
G#
{g ∈ G : gx0 ≥ x}, x0 ∈ X

}

Firstly we prove that the set M(X,G#)sup ∪ M(X,G#)inf is a totally ordered set. For this,

it was crucial to analyze the different cases depending on whether G is a quasidiscrete or

quasidense group and to considerate the orbits of the G-module X.

Later on, in Section III.2, we describe all G-module maps X → G# when X is the G-

module X2 with two orbits ( see item ( f ) in Example 6). This description allows to show

that M(X2,G
#) is a totally ordered set.

Finally, using G-module maps in M(G#,G#), M(X,G#)sup and M(X,G#)in f , we prove

that M(X,G#) is a totally ordered set and a G-module, for any G-module X.

III.1. The sets M(X,G#)sup and M(X,G#)inf

Lemma III.1.1.

M(X,G#)sup and M(X,G#)in f are totally ordered sets.

47
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Proof.

If x0, x1 ∈ X with x0 < x1 and

fx0
(x) = sup

G#

{g ∈ G : gx0 ≤ x}

fx1
(x) = sup

G#

{g ∈ G : gx1 ≤ x}

then fx1
≤ fx0

. Indeed, we consider the subsets of G

Ax0
(x) = {g ∈ G : gx0 ≤ x}

Ax1
(x) = {g ∈ G : gx1 ≤ x}

If g ∈ Ax1
(x) then gx1 ≤ x. Now, since x0 < x1, and X is a G-module we have that

gx0 ≤ gx1. Thus gx0 ≤ gx1 ≤ x, g ∈ Ax0
and therefore Ax1

⊆ Ax0
. With this inclusion, is

easy to see that for all x ∈ X, we have that

fx1
(x) = sup

G#

Ax1
(x) ≤ sup

G#

Ax0
(x) = fx0

(x)

fx1
fx0

M
(

X,G#
)

Figure III.1. For x0, x1 ∈ X with x0 < x1, then fx1
≤ fx0

In the same way, we will prove that hx1
≤ hx0

if x0, x1 ∈ X with x0 < x1 and

hx0
(x) = inf

G#
{g ∈ G : gx0 ≥ x}

hx1
(x) = inf

G#
{g ∈ G : gx1 ≥ x}

In this case, we consider the subsets of G

Bx0
(x) = {g ∈ G : gx0 ≥ x}

Bx1
(x) = {g ∈ G : gx1 ≥ x}

Note that if g ∈ Bx0
(x) then gx0 ≥ x. Since x0 < x1 and X is a G-module then gx0 < gx1.

Thus, gx1 > gx0 ≥ x, g ∈ Bx1
and therefore Bx0

⊆ Bx1
. Consequently, for all x ∈ X,

hx1
(x) = inf

G#
Bx1

(x) ≤ inf
G#

Bx0
(x) = hx0

(x)

hx1
hx0

M
(

X,G#
)

Figure III.2. For x0, x1 ∈ X with x0 < x1, then hx1
≤ hx0

We conclude that if x0 < x1, then fx1
(x) ≤ fx0

(x) and hx1
(x) ≤ hx0

(x), for all x ∈ X. �
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Now, our aim is to know if the union M(X,G#)sup ∪ M(X,G#)inf is a totally ordered set.

First for x0 ∈ X, we compare two G-module maps fx0
∈ M(X,G#)sup and hx0

∈ M(X,G#)inf .

Note that both maps are generated with the same point x0 ∈ X,

fx0
(x) = sup

G#

{g ∈ G : gx0 ≤ x} hx0
(x) = inf

G#
{g ∈ G : gx0 ≥ x}

First, we calculate fx0
(x0) and hx0

(x0).

fx0
(x0) = sup

G#

{g ∈ G : gx0 ≤ x0} = sup
G#

S tab(x0)

hx0
(x0) = inf

G#
{g ∈ G : gx0 ≥ x0} = inf

G#
S tab(x0)

Now, for any x ∈ X, we have the following two cases:

(i) If x ∈ Gx0 (x is in the orbit of x0), then there is g ∈ G such that x = gx0 and as a

result

fx0
(x) = fx0

(gx0) = g fx0
(x0) = g sup

G#

S tab(x0) = g sup
G#

S tab(x)

hx0
(x) = hx0

(gx0) = ghx0
(x0) = g inf

G#
S tab(x0) = g inf

G#
S tab(x)

Since infG# S tab(x) ≤ supG# S tab(x), we have that g infG# S tab(x) ≤
g supG# S tab(x) and

hx0
(x) ≤ fx0

(x) ∀x ∈ Gx0

(ii) if x < Gx0, then for all g ∈ G we have that g ∈ Ax0
(x) = {g ∈ G : gx0 < x} or

g ∈ Bx0
(x) = {g ∈ G : gx0 > x}, and

Ax0
(x) ∩ Bx0

(x) = ∅.
Now, if g ∈ Ax0

(x) and w ∈ G with w < g then wx0 ≤ gx0 < x and consequently

w ∈ Ax0
(x). In the same way, if g ∈ Bx0

(x), and u ∈ G with g < u then x < gx0 ≤
ux0 and therefore u ∈ Bx0

(x).

This fact implies that α = supG# Ax0
(x) ≤ infG# Bx0

(x) = β.

If we suppose that α < β, then there exists u ∈ G such that

α ≤ u < β or α < u ≤ β
(i) In the first case, ux0 < x because u < β, then α = u ∈ G. Also β ∈ G, if we

suppose that β < G then for each g ∈ G such that g < β we have that gx0 < x

and therefore g ≤ α = u. Thus,

β = inf
G#
{g ∈ G : g ≥ β}

= inf
G#
{g ∈ G : g > β}

= sup
G#

{g ∈ G : g < β}
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= sup
G#

{g ∈ G : g ≤ u}

= u ∈ G

(ii) Similarly, in the second case, we have that α, β ∈ G.

Thus, if α < β, then α, β ∈ G and we conclude that G must be quasidiscrete

with β = g0α where g0 = min {g ∈ G : g > 1}. This implies that, if G is quasidense

then α = β.

Ax
0
(x) Bx0

(x)

G

Figure III.3. In the case x < Gx0, the subsets Ax0
(x), Bx0

(x) ⊂ G

Remark 1. Note that, when G is quasidiscrete, if x < Gx0 and α < β then

necessarily S tab(x0) = {1}. Indeed, if we suppose that S tab(x0) , {1} then

g0 = min {g ∈ G : g > 1} ∈ S tab(x0), therefore

x < βx0 = (αg0)x0 = α(g0x0) = αx0 < x,

a contradiction.

When we analyze M(X,G#)sup ∪ M(X,G#)inf , it is crucial for the ordering, to know

whether G is quasidiscrete or quasidense. The following lemma summarizes this analysis.

Lemma III.1.2.

Let x0 ∈ X, fx0
∈ M(X,G#)sup and hx0

∈ M(X,G#)in f G-module maps. In the case G is

quasidense, for all x ∈ X we have that

(i) If x ∈ Gx0 and S tab(x0) = {1} then hx0
(x) = fx0

(x).

(ii) If x ∈ Gx0 and S tab(x0) , {1} then hx0
(x) < fx0

(x).

(iii) If x < Gx0 then hx0
(x) = fx0

(x).

Therefore hx0
≤ fx0

.

Remark 2. Note that, If G is quasidense and S tab(x0) = {1} then we do not need to know

whether g is in the orbit of x0 or not, because in both cases fx0
= hx0

.

Lemma III.1.3.

Let x0 ∈ X, fx0
∈ M(X,G#)sup and hx0

∈ M(X,G#)in f G-module maps. In the case G is

quasidiscrete, for all x ∈ X we have that

(1) If S tab(x0) = {1},
(i) If x ∈ Gx0 then fx0

(x) = hx0
(x).
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(ii) If x < Gx0 then fx0
(x) ≤ hx0

(x).

Therefore fx0
≤ hx0

.

(2) If S tab(x0) , {1},
(iii) If x ∈ Gx0 then hx0

(x) < fx0
(x).

(iv) If x < Gx0 then hx0
(x) = fx0

(x).

Therefore hx0
≤ fx0

.

Up to now, we have that if G is quasidense and x0, x1 ∈ X with x0 < x1 then

fx1
≤ fx0

hx1
≤ hx0

hx0
≤ fx0

hx1
≤ fx1

hx1
≤ fx0

By the last inequalities, we must compare hx0
and fx1

for x0 < x1. The next Lemma is true

for both cases, quasidense and quasidiscrete.

Lemma III.1.4.

Let G be a totally ordered group and X a G-module. Let x0, x1 ∈ X, with x0 < x1, fx1
∈

M(X,G#)sup and hx0
∈ M(X,G#)in f . Then for all x ∈ X we have that fx1

(x) ≤ hx0
(x).

Proof.

In this case we have Ax1
(x) ∩ Bx0

(x) = ∅. Indeed,

g ∈ Bx0
(x) ⇒ x ≤ gx0 < gx1 ⇒ g < Ax1

(x)

g ∈ Ax1
(x) ⇒ gx0 < gx1 ≤ x⇒ g < Bx0

(x)

Also, if

g ∈ Bx0
(x), g < u ∈ G ⇒ ux0 ≥ gx0 ≥ x⇒ u ∈ Bx0

(x)

g ∈ Ax1
(x), u < g ∈ G ⇒ ux1 ≤ gx1 ≤ x⇒ u ∈ Ax1

(x)

and it is true that

fx1
(x) = sup

G#

Ax1
(x) ≤ inf

G#
Bx0

(x) = hx0
(x)

�

We summarize the results for the quasidense case.

Theorem III.1.1.

Let G be a quasidense totally ordered group. Then M(X,G#)sup ∪ M(X,G#)in f is a totally

ordered set.



52 CHAPTER III. ORDER IN M(X,G#)

Proof.

By Lemma III.1.1, we know that M(X,G#)sup and M(X,G#)in f are totally ordered sets. We

just need to show that if fy ∈ M(X,G#)sup and hz ∈ M(X,G#)in f with y, z ∈ X, then fy ≤ hz

or fy ≥ hz. In fact, if

(i) y = z then, by Lemma III.1.2, we have that hz ≤ fy

(ii) y > z then, by Lemma III.1.4, we have that fy ≤ hz

(iii) y < z then, by Lemma III.1.1, we have that fz ≤ fy and, by Lemma III.1.2, we

know that hz ≤ fz. Therefore hz ≤ fy.

hz hy fyfz

M
(

X,G#
)

Figure III.4. Quasidense case, with y < z.

�

Now, let us analyze the quasidiscrete case.

Lemma III.1.5.

Let G be a quasidiscrete totally ordered group with g0 := min {g ∈ G : g > 1}. Let x0, x1 ∈
X, with x0 < x1 and fx1

∈ M(X,G#)sup and hx0
∈ M(X,G#)in f G-module maps. Then for all

x ∈ X we have:

(i) If S tab(x0) = {1} and S tab(x1) , {1} then hx1
≤ fx1

≤ fx0
≤ hx0

.

(ii) If S tab(x0) , {1} and S tab(x1) = {1} then fx1
≤ hx1

≤ hx0
≤ fx0

.

(iii) If S tab(x0) , {1} and S tab(x1) , {1} then hx1
≤ fx1

≤ hx0
≤ fx0

.

(iv) If S tab(x0) = {1} and S tab(x1) = {1} then

(a) If x0 < x1 < g0x0 then fx1
≤ fx0

≤ hx1
≤ hx0

.

(b) Otherwise, fx1
≤ hx1

≤ fx0
≤ hx0

.

Proof.

By Lemma III.1.1, we have that fx1
(x) ≤ fx0

(x) and hx1
(x) ≤ hx0

(x) for all x ∈ X.

(i) If S tab(x0) = {1} and S tab(x1) , {1} then, by Lemma III.1.3, we have that fx0
≤

hx0
and hx1

≤ fx1
. Thus hx1

≤ fx1
≤ fx0

≤ hx0
.

(ii) If S tab(x0) , {1} and S tab(x1) = {1} then, by Lemma III.1.3, we have that fx1
≤

hx1
and hx0

≤ fx0
. Thus fx1

≤ hx1
≤ hx0

≤ fx0
.

(iii) If S tab(x0) , {1} and S tab(x1) , {1} then, by Lemma III.1.3 we have that hx1
≤ fx1

and hx0
≤ fx0

. Now, we need to compare fx1
with hx0

. Lemma III.1.4, we have that

fx1
≤ hx0

. Therefore, hx1
≤ fx1

≤ hx0
≤ fx0

.

(iv) If S tab(x0) = {1} and S tab(x1) = {1} then, by Lemma III.1.3, we have that fx1
≤

hx1
and fx0

≤ hx0
. Now, we need to compare hx1

with fx0
.
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(a) If x0 < x1 < g0x0, then x1 and x0 are not in the same orbit (x1 < Gx0).

Let x ∈ X such that x ∈ Gx0, that is, x = ux0 with u ∈ G. Then fx0
(x) =

fx0
(ux0) = u, because S tab(x0) = {1}. Also, x = ux0 < ux1, and thus hx1

(x) ≤
u = fx0

(x). Furthermore hx1
(x) = fx0

(x), because if we suppose hx1
(x) < fx0

(x)

then hx1
(x) ≤ g−1

0 u, this implies that x = ux0 < g−1
0 ux1 (equality is excluded,

because x1 < Gx0), and so g0x0 < x1, a contradiction.

Now, if x ∈ Gx1 then x = vx1 with v ∈ G. Since S tab(x1) = {1} and vx0 <

vx1 = u, we have that hx1
(x) = v ≤ fx0

(x). As in the previous case, we have

that hx1
(x) = fx0

(x), because hx1
(x) < fx0

(x) then we deduce that g0x0 < x1, a

contradiction.

Therefore, if x ∈ Gx0 ∪Gx1 then hx1
(x) = fx0

(x).

Now, in the case x < (Gx0 ∪ Gx1), there are two possibilities. Firstly, if

Ax0
(x) ∩ Bx1

(x) , ∅ then there exists u ∈ G such that

ux0 < x < ux1 < ug0x0 and

g−1
0 ux0 < g−1

0 ux1 < ux0 < x < ux1.

We have that ux0 < x and for g0u, the successor of u in G, ug0x0 > x, so

fx0
(x) = u. In the same way ux1 > x and for g−1

0 u, the predecessor of u in G,

ug−1
0

x1 < x, so hx0
(x) = u. Therefore fx0

(x) = hx1
(x).

Secondly, if Ax0
(x) ∩ Bx1

(x) = ∅, then for all u ∈ Ax0
(x) and v ∈ Bx1

(x), we

have that

ux0 < ux1 < x < vx0 < vx1.

Consequently, u < v, and thus fx0
≤ hx1

.

We have proved the statement (a).

(b) Now, we will analyze the case x0 < g0x0 < x1. We suppose that there exists

x ∈ X such that fx0
(x) < hx1

(x). First, we have that Ax0
(x) ∩ Bx1

(x) = ∅,
otherwise, there exists w ∈ G such that wx0 ≤ x ≤ wx1 and this implies

hx1
(x) ≤ fx0

(x), a contradiction to our assumptions. Second, we know that

there exists u ∈ G such that

fx0
(x) ≤ u < hx1

(x) or fx0
(x) < u ≤ hx1

(x).

1. fx0
(x) ≤ u < hx1

(x) implies ux0 < ux1 < x, thus fx0
(x) = u ∈ G and

hx1
(x) = g0u ∈ G. Thus,

ux0 ≤ x < g0ux0 , ux1 < x ≤ ug0x1

and

ux0 < ux1 < x < g0ux0 < g0ux1.

This leads to x0 < x1 < g0x0, a contradiction.

2. the same happens when fx0
(x) < u ≤ hx1

(x), hx1
(x) = u ∈ G and

fx0
(x) = ug−1

0 ∈ G. Also, this leads to x0 < x1 < g0x0, a contradiction.
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Therefore, for all x ∈ X, hx1
(x) ≤ fx0

(x) when x0 < g0x0 ≤ x1 and we have

prove the statement (b).

�

We summarize the results for the quasidiscrete case.

Theorem III.1.2.

Let G be a quasidiscrete totally ordered group. Then M(X,G#)sup∪M(X,G#)in f is a totally

ordered set.

Proof.

By Lemma III.1.1, we know that M(X,G#)sup and M(X,G#)in f are totally ordered sets. We

just need to show that if fy ∈ M(X,G#)sup and hz ∈ M(X,G#)in f with y, z ∈ X, then fy ≤ hz

or fy ≥ hz. In fact,

(i) If y = z then, by Lemma III.1.2, we have that

a) If Stab(y) = Stab(z) = {1} then fy ≤ hz.

b) If Stab(y) = Stab(z) , {1} then hy ≤ fz.

(ii) If y < z then, by Lemma III.1.5, we have that

a) If Stab(y) = Stab(z) = {1} and y < z < g0y, then fy ≤ hz.

b) Otherwise, hz ≤ fy.

(iii) Finally, If y > z then, by Lemma III.1.4, we have that fy ≤ hz.

�

III.2. A totally ordered set of G-module maps

In this section we will show an example of a set G-module maps and we study the

ordering on this set for the quasidiscrete as well as the quasidense case. Firstly, let us

mention a general fact, which we will use later, about the behavior of any pair of G-module

maps.

Remark 3.

Let x0 be an element of the G-module X. Let r, t be G-module maps in M(X,G#). Note that,

if r(x0) = t(x0) then r(x) = t(x) for all x in the orbit of x0. In the same way, if r(x0) < t(x0)

then r(x) < t(x) for all x ∈ Gx0.

Indeed, for all g ∈ G

r(x0) = t(x0)⇒ g · r(x0) = g · t(x0)⇒ r(gx0) = t(gx0)

r(x0) < t(x0)⇒ g · r(x0) < g · t(x0)⇒ r(gx0) < t(gx0)

III.2.1. The G-module X2. For this example, we consider a totally ordered group

(G, ·,≤) and G− := {g− : g ∈ G} be a copy of G disjoint from G. We set X2 := G ∪ G−

and consider the following definitions:
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(i) For all s, t ∈ G with t < s, the element s− ∈ G− is such that t < s− < s.

(ii) We extending the multiplication of G to X2 as follows g · s− := (gs)− for all g ∈ G

and s− ∈ G−

With these definitions, (X2, ·,≤) is a G-module with two orbits, namely G and G−.
Notice, for all w ∈ X2, we can always write w = gw · 1 ∈ G or w = gw · 1− ∈ G−, with

gw ∈ G. Obviously, if w ∈ G then w = gw.

Now, let hw ∈ M(X2,G
#)inf and fw ∈ M(X2,G

#)sup. For all x ∈ X2 we have that

• If w = gw · 1 ∈ G then

fw(x) = sup
G#

{g ∈ G : gw ≤ x}

= sup
G#

{g ∈ G : ggw ≤ x}

= sup
G#

{(gw)−1z ∈ G : z ≤ x} where z = ggw ∈ G

= (gw)−1 sup
G#

{z ∈ G : z ≤ x}

= (gw)−1 f1(x)

hw(x) = (gw)−1h1(x)

• In the same way, if w = gw · 1− ∈ G− then fw(x) = (gw)−1 f1−(x) and hw(x) =

(gw)−1h1−(x).

Moreover, in this example, if x ∈ X2 then x = g ∈ G or x = g ·1− ∈ G− and therefore for

any G-module map t ∈ M(X2,G
#) we have that t(g) = gt(1) or t(g−) = gt(1−). Thus, by the

previous equalities, we just need to determine the values of fw(1), fw(1−) and hw(1), hw(1−),
with w = 1, 1−.

III.2.2. Case I: G quasidense. We will start determining the G-module maps in

M(X2,G
#)sup ∪ M(X2,G

#)inf when the totally ordered group G is quasidense.

f1(1) = sup
G#

{g ∈ G : g · 1 ≤ 1} = 1

f1(1−) = sup
G#

{g ∈ G : g · 1 ≤ 1−} = sup
G#

{g ∈ G : g < 1−} = 1

h1(1) = inf
G#
{g ∈ G : g · 1 ≥ 1} = 1

h1(1−) = inf
G#
{g ∈ G : g · 1 ≥ 1−} = inf

G#
{g ∈ G : g ≥ 1−} = 1

f1−(1) = sup
G#

{g ∈ G : g · 1− ≤ 1} = sup
G#

{g ∈ G : g− ≤ 1} = 1

f1−(1
−) = sup

G#

{g ∈ G : g · 1− ≤ 1−} = sup
G#

{g ∈ G : g− ≤ 1−} = 1
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h1−(1) = inf
G#
{g ∈ G : g · 1− ≥ 1} = 1

h1−(1
−) = inf

G#
{g ∈ G : g · 1− ≥ 1−} = inf

G#
{g ∈ G : g− > 1−} = 1

X2

G#

11−

1

Figure III.5. When G is quasidense, f1− = f1 = h1− = h1

Note that, for all w, x ∈ X2, hw(x) = fw(x) = (gw)−1gx, thus M(X2,G
#)sup = M(X2,G

#)inf

.

Now, let t ∈ M(X2,G
#) and we suppose that there exists x ∈ X2 such that t(x) = g ∈ G.

(i) if x = gx ∈ G then t(gx) = g, t(1) = (gx)
−1g and hence

t(1) = hgxg−1(1) = fgxg−1(1)

Therefore t(u) = hgxg−1(u) = fgxg−1(u) for all u ∈ G (see Remark 3).

Now, we show that t(1−) = (gx)
−1g. Indeed, if we suppose t(1−) = α <

(gx)
−1g with α ∈ G# then there is u ∈ G such that α < u < (gx)

−1g (because G is

quasidense) and since t is increasing 1− < ug−1gx < 1, which is impossible (note

that t(ug−1gx) = u).

X2

G#

11−

(gx)
−1g

t

u

t

α

gxg
−1u

(ii) In the same way, if x = gx · 1− ∈ G− then t(g−x ) = g, t(1−) = (gx)
−1g which implies

t(1−) = hgxg−1(1−) = fgxg−1(1−).

Therefore t(u−) = hgxg−1(u−) = fgxg−1(u−) for all u− ∈ G− (see Remark 3). Also,

t(1) = (gx)
−1g. Indeed, if we suppose t(1) = α > (gx)

−1g with α ∈ G# then there is

u ∈ G such that (gx)
−1g < u < α (because G is quasidense) and since t is increasing

1− < ug−1gx < 1, which is impossible (note that t(ug−1gx) = u).

In short, if there exists x ∈ X2 such that t(x) = g ∈ G then t = hw = fw with w = (gx)g
−1.

Otherwise, t(x) ∈ G# \G for all x ∈ X2.
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X2

G#

11−

(gx)
−1g u

t

gxg
−1u

α

t

III.2.3. Case II: G quasidiscrete. We determine the G-module maps in M(X2,G
#)sup∪

M(X2,G
#)inf when G is a quasidiscrete group. Let g0 := min {g ∈ G : g > 1}.

f1(1) = sup
G#

{g ∈ G : g · 1 ≤ 1} = 1

f1(1−) = sup
G#

{g ∈ G : g · 1 ≤ 1−} = sup
G#

{g ∈ G : g < 1−} = g−1
0

h1(1) = inf
G#
{g ∈ G : g · 1 ≥ 1} = 1

h1(1−) = inf
G#
{g ∈ G : g · 1 ≥ 1−} = inf

G#
{g ∈ G : g > 1−} = 1

X2

G#

11−

1g−1
0

f1 h1

Figure III.6. When G is quasidense, f1 < h1

f1−(1) = sup
G#

{g ∈ G : g · 1− ≤ 1} = sup
G#

{g ∈ G : g− ≤ 1} = 1

f1−(1
−) = sup

G#

{g ∈ G : g · 1− ≤ 1−} = sup
G#

{g ∈ G : g− ≤ 1−} = 1

h1−(1) = inf
G#
{g ∈ G : g · 1− ≥ 1} = g0

h1−(1
−) = inf

G#
{g ∈ G : g · 1− ≥ 1−} = inf

G#
{g ∈ G : g− ≥ 1−} = 1

Note that, f1− = h1 and h1− = g0 f1 = fg−1
0

. Hence, in our analysis we just consider fw

and hw, with w ∈ X2. Let x ∈ X2

• If x ∈ Gw then hw(x) = fw(x)

• If x < Gw then fw(x) < hw(x)
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X2

G#

11−

1 g0

h1− f1−

Figure III.7. When G is quasidiscrete, h1− < f1−

Now, let t ∈ M(X2,G
#) and suppose that there exists x ∈ X2 such that t(x) = g ∈ G.

(i) if x = gx ∈ G then t(gx) = g, t(1) = (gx)
−1g and hence

t(1) = hgxg−1(1) = fgxg−1(1)

Therefore t(u) = hgxg−1(u) = fgxg−1(u) for all u ∈ G (see Observation 3).

Now, since t is increasing, we have two possibilities for t(1−),
(1) t(1−) = (gx)

−1g and therefore t = hgxg−1 ∈ M(X2,G
#)in f or

(2) t(1−) = g−1
0 (gx)

−1g and therefore t = fgxg−1 ∈ M(X2,G
#)sup

X2

G#

11−

g−1
0 (gx)

−1g

hgxg−1

f gxg−1

(gx)
−1g

t

g−1
0

t

Figure III.8. We have two possibilities for t(1). In both cases t ∈
M(X2,G

#)sup ∪ M(X2,G
#)in f

(ii) if x = gx · 1− ∈ G− then t(gx · 1−) = g, t(1−) = (gx)
−1g which implies that

t(1−) = hgxg−1(1−).
Therefore t(u−) = hgxg−1(u−) for all u ∈ G (see Remark 3). As in the previous

analysis, we have two possibilities for t(1):

(1) t(1) = (gx)
−1g and therefore t = hgxg−1 ∈ M(X2,G

#)in f or

(2) t(1−) = g0(gx)
−1g and therefore t = fgxg−1g−1

0
∈ M(X2,G

#)sup.

Thus, if there exists x ∈ X2 such that t(x) = g ∈ G then t ∈ M(X2,G
#)in f ∪M(X2,G

#)sup.

Otherwise, t(x) ∈ G# \G for all x ∈ X2.

III.2.4. M(X2,G
#): Quasidense and quasidiscrete cases. Finally, for a quasidense or

qusidiscrete totally ordered group G, we analyze the G-module maps t ∈ M(X2,G
#) such

that t(x) = α ∈ G# \G for all x ∈ X2.
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X2

G#

11−

g0(gx)
−1g

hgxg−1

f gxg−1a−1

(gx)
−1g

t

g−
0

t

Figure III.9. We have two possibilities for t(1−). In both cases, t ∈
M(X2,G

#)sup ∪ M(X2,G
#)in f

Suppose that t is a G-module map such that t <
(

M(X2,G
#)sup ∪ M(X2,G

#)in f

)

, with

t(1) = α ∈ G# \G.

(i) if α > 1 then 1 = h1(1) < t(1) = α. Also, t is a G-module map, and hence for

any g ∈ G, t(g) = gα; moreover, t(g) ≤ α for all g ≤ 1. If we suppose that

t(1−) = β < α with β ∈ G# \ G, then there is u ∈ G such that β < u < α. In this

case, u < 1−, t(u) ≤ β, but this is a contradiction because h1(g) < t(g) for all g ∈ G

(see Remark 3) and therefore

u = h1(u) < t(u) ≤ β
Therefore t(1−) = α and so t(g−) = gα for all g ∈ G.

1−u
X2

u

α

(G)#

β

1

h1

We conclude that t(x) = gxα for all x ∈ X2.

(ii) For the case α < 1, we have that t(g) = gα for all g ∈ G. If we suppose that

t(1−) = β < α with β ∈ G# \G, then there is u ∈ G such that β < u < α < 1. Note

that, u < 1− and hence t(u) ≤ β, which is a contradiction because u = hu−1(1) <

t(1) = α but t(1−) = β < hu−1(1−) = u (see Remark 3). Therefore t(1−) = α and so

t(g−) = gα for all g ∈ G. We conclude that t(x) = gxα for all x ∈ X2.

Lemma III.2.1.

M(X2,G
#) is a totally ordered set.

Proof.
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First, if G is complete, then G = G#, and

(i) when G is quasidense, M(X2,G) = M(X2,G)sup = M(X2,G)in f ,

(ii) when G is quasidiscrete, M(X2,G) = M(X2,G)sup ∪ M(X2,G)in f ,

and by Theorems III.1.1, III.1.2 we conclude that M((X2,G) is a totally ordered

set.

Now, suppose that G is not complete, so G ( G#. Let t, r ∈ M(X2,G
#) be two G-module

maps such that

t(1) = t(1−) = α and r(1) = r(1−) = β

with α, β ∈ G# \G. Then for all x ∈ X2, t(x) = gxα and r(x) = gxβ. Note that if α < β then

gxα < gxβ for all gx ∈ G and therefore t < r.

Now, we want to compare the G-module map t with t(x) = gxα and α ∈ G# \ G with

any G-module map k ∈
(

M(X2,G
#)sup ∪ M(X2,G

#)in f

)

.

(i) When G is quasidense, there exists w ∈ X2 such that k(x) = hw(x) = (gw)−1gx for

all x ∈ X2. If k(1) = (gw)−1 < α then k(x) = g−1
w gx < gxα = t(x) for all x ∈ X2, and

so k < t. If k(1) = (gw)−1 > α then t(x) = gxα ≤ g−1
w gx = k(x) and therefore t < k.

(ii) When G is quasidiscrete, k = hw or k = fw for some w ∈ X2.

(1) In the case k = hw, we have that k(x) < t(x) or t(x) < k(x) (the proof is the

same as in the quasidense case).

(2) When k = fw, we have that k(1) = fw(1) = (gw)−1 and if (gw)−1 < α then

k(x) ≤ (gw)−1gx < gxα = t(x) for all x ∈ X2, and so k < t (remember

that fw(1−) = (g0)−1 fw(1) < fw(1) with g0 = min{g ∈ G : g > 1}). In

the other case, fw(1) = (gw)−1 > α, we have that the predecessor element

(g0)−1(gw)−1 > α and so fw(1−) = (g0)−1(gw)−1 > α. Consequently, we have

that t(x) = αgx < fw(x) = k(x) for all x ∈ X2 (see Figure III.10).

X2

G#

x

(gw)−1gx

t

gxα

(gw)−1gxg
−1
0

x−

f w

f w

Figure III.10. fw for all w ∈ X2
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�

Knowing the ordering of M(X2,G
#)in f ∪M(X2,G

#)sup was one of the key facts in deter-

mining that M(X2,G
#) is a totally ordered set.

In the following section, it is proved that M(X,G#) is a totally ordered set for any G-

module X.

III.3. Order in M(X,G#)

In [14] the set M(G#) of all G-module maps ϕ : G# → G# was described. In the

following Lemma, we use the characterization of the G-module maps in the subsets Ml(G#)

and Mr(G#) (see definitions and preliminaries in Chapter 1, Section I.5).

Lemma III.3.1.

Let G be a totally ordered group and let X be G-module. For all ϕ ∈ M(X,G#) and w ∈ X,

there are φϕ(w) ∈ Ml(G#) and ηϕ(w) ∈ Mr(G#) such that for all x ∈ X,

φϕ(w)( fw(x)) ≤ ϕ(x) ≤ ηϕ(w)(hw(x))

where fw ∈ M(X,G#)sup and hw ∈ M(X,G#)in f .

Proof.

Let w be an element in the G-module X. Let x ∈ X. Then for all g ∈ G such that g ≤ fw(x)

we have g · w ≤ x, hence gϕ(w) ≤ ϕ(x). Therefore ϕ(x) is an upper bound of the set

{gϕ(w) : g ∈ G, g ≤ fw(x)} .
Just as before, for g ∈ G such that g ≥ hw(x) we have that gϕ(w) ≥ ϕ(x) and therefore ϕ(x)

is a lower bound of the set

{gϕ(w) : g ∈ G, g ≥ hw(x)} .
Thus,

sup
G#

{gϕ(w) : g ∈ G, g ≤ fw(x)} ≤ ϕ(x) ≤ inf
G#
{gϕ(w) : g ∈ G, g ≥ hw(x)} .

We have that,

sup
G#

{gϕ(w) : g ∈ G, g ≤ fw(x)} = fw(x) • ϕ(w)

inf
G#
{gϕ(w) : g ∈ G, g ≥ hw(x)} = hw(x) ⋆ ϕ(w)

and so, for all x ∈ X,

fw(x) • ϕ(w) ≤ ϕ(x) ≤ hw(x) ⋆ ϕ(w).

Now, we consider two G module maps in M(G#).

ηϕ(w) : G# → G#

x 7→ x ⋆ ϕ(w)
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φϕ(w) : G# → G#

x 7→ x • ϕ(w)

Notice that, φϕ(w)( fw(x)) = fw(x) • ϕ(w) and ηϕ(w)(hw(x)) = hw(x) ⋆ ϕ(w). We conclude

that, for all x ∈ X,

φϕ(w)( fw(x)) ≤ ϕ(x) ≤ ηϕ(w)(hw(x))

�

Theorem III.3.1.

M(X,G#) is a totally ordered set.

Proof.

We will prove that if ϕ1, ϕ2 are G-module maps in M(X,G#) then ϕ1 ≤ ϕ2 or ϕ2 ≤ ϕ1. Let

w ∈ X. Then, without loss of generality, we can assume that ϕ1(w) < ϕ2(w),

By Lemma III.3.1, for all x ∈ X,

φϕ1(w)( fw(x)) ≤ ϕ1(x) ≤ ηϕ1(w)(hw(x))

φϕ2(w)( fw(x)) ≤ ϕ2(x) ≤ ηϕ2(w)(hw(x))

We will prove that ηϕ1(w)(hw(x)) ≤ φϕ1(w)( fw(x)). Indeed,

(i) when hw(x) ≤ fw(x), since η, φ are G-module maps in M(G#), we have that

ϕ1(x) ≤ ηϕ1(w)(hw(x)),

≤ ηϕ1(w)( fw(x)), η is increasing

≤ ηϕ2(w)( fw(x)), ϕ1(w) < ϕ2(w) and Proposition I.2.3 (iii)

≤ φϕ2(w)( fw(x)), and Proposition I.2.3 (iv)

≤ ϕ2(x)

(ii) when fw(x) < hw(x), by Lemmas III.1.2 and III.1.3, we have three necessary con-

ditions:

(1.) G must be quasidiscrete,

(2.) Stab(w) = {1} and

(3.) x < Gw.

In this case, fw(x), hw(x) ∈ G and hw(x) = g0 fw(x) with g0 = min{g ∈ G : g >

1} (hw(x) is the successor of fw(x) in G).

Using the previous conditions and the definition of fw ∈ M(X,G#)sup, it we

deduce that

fw(x) · w < x < g0 fw(x) · w, for all x ∈ X

Moreover ϕ1, ϕ2 are G-module maps, so for all x ∈ X

fw(x) · ϕ1(w) ≤ ϕ1(x) ≤ g0 fw(x) · ϕ1(w),

fw(x) · ϕ2(w) ≤ ϕ2(x) ≤ g0 fw(x) · ϕ2(w).



III.3. ORDER IN M(X,G#) 63

If we suppose that fw(x) · ϕ2(w) < g0 fw(x) · ϕ1(w) then ϕ2(w) < g0 · ϕ1(w)

because fw(x) ∈ G, and ϕ1(w) < ϕ2(w) < g0 ·ϕ1(w). Similarly, because g0 ∈ G, we

have that g0 · ϕ1(w) < g0 · ϕ2(w) and therefore

ϕ1(w) < ϕ2(w) < g0 · ϕ1(w) < g0 · ϕ2(w).

The previous inequality implies that ϕ1(w), ϕ2(w) ∈ G# \G, because if ϕ1(w) ∈
G then its successor is g0 ·ϕ1(w) > ϕ2(x), a contradiction. With the same argument

we prove that ϕ2(x) < G. Thus, there exists u ∈ G such that ϕ1(w) < u < ϕ2(w)

and g0 · ϕ1(w) < g0 · u < ϕ2(w), but ϕ2(w) < g0 · ϕ1(w) and this implies that

u < ϕ2(w) < g0 · u, where g0 · u is the successor of u ∈ G, a contradiction. We

conclude that fw(x) · ϕ2(w) ≥ g0 fw(x) · ϕ1(w) and therefore for all x ∈ X

ϕ1(x) ≤ g0 fw(x) · ϕ1(w) ≤ fw(x) · ϕ2(w) ≤ ϕ2(x)

�

Theorem III.3.2.

Let G be a totally ordered group and X a G-module. M(X,G#) is a G-module with the

action

G × M(X,G#) → M(X,G#)

(g, ϕ) 7→ (gϕ)

where (gϕ)(x) = gϕ(x) for all x ∈ X and ϕ ∈ M(X,G#).

Proof.

We know that M(X,G#) is a totally ordered set and M(X,G#) , ∅ for any G-module

X (remember that for any x0 ∈ X, the map fx0
: X → G# defined by fx0

(x) :=

supG# {g ∈ G : gx0 ≤ x} is in M(X,G#)).

Now, by the definition of the action, it is clear that g1(g2ϕ) = (g1g2)ϕ and (1ϕ) = ϕ for

all g1, g2 ∈ G and ϕ ∈ M(X,G#). We prove that M(X,G#) satisfies (iii), (iv), (v) Definition

I.4.1.

Let g, g1, g2 ∈ G, x ∈ X and ϕ1, ϕ2 ∈ M(X,G#).

(iii) If g1 ≤ g2 then g1x ≤ g2x because X is a G-module. For any G-module map

ϕ ∈ M(X,G#), we have that ϕ(g1x) ≤ ϕ(g2x) because ϕ is an increasing map, thus

g1ϕ(x) ≤ g2ϕ(x) for all x ∈ X and therefore g1ϕ ≤ g2ϕ.

(iv) Suppose that ϕ1 ≤ ϕ2 (this is possible because M(X,G#) is a totally ordered set),

then gϕ1(x) ≤ gϕ2(x) for all x ∈ X, because ϕ1(x) and ϕ2(x) belong to the G-

module G#. Thus gϕ1 ≤ gϕ2 for all g ∈ G and ϕ ∈ M(X,G#).

(v) Finally, we will prove that for all ϕ ∈ M(X,G#), the orbit Gϕ is cofinal in M(X,G#),

that is to say, for any ϕ1 ∈ M(X,G#) we can find g ∈ G such that ϕ1 ≤ gϕ.

If ϕ1 ≤ ϕ then g = 1 ∈ G satisfies the statement. Now, we supppose that

there exists w ∈ X such that ϕ(w) ≤ ϕ1(w) and we consider two G-module maps
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in M(G#)

ηϕ1(w) : G# → G#

x 7→ x ⋆ ϕ1(w)

φϕ(w) : G# → G#

x 7→ x • ϕ(w)

and the G-module maps hw and fw in M(X,G#)in f and M(X,G#)sup respectively.

M(G#) is a G-module (see Theorem I.5.4) and therefore there exists g ∈ G

such that ηϕ1(w) ≤ gφϕ(w). In particular, for hw(x) ∈ G# we have

ηϕ1(w)(hw(x)) ≤ gφϕ(w)(hw(x))

for all x ∈ X. First, If hw ≤ fw then

ηϕ1(w)(hw(x)) ≤ gφϕ(w)(hw(x)) ≤ gφϕ(w)( fw(x)).

By Lemma III.3.1 we have that for all x ∈ X

ϕ1(x) ≤ ηϕ1(w)(hw(x)) ≤ gφϕ(w)( fw(x)) ≤ gϕ(x)

and so ϕ1 ≤ gϕ.

Now, if fw < hw, then G is quasidiscrete and g0 fw = hw (see Lemma III.1.3).

Also, since ηϕ1(w) ≤ gφϕ(w)

ηϕ1(w)( fw(x)) = ηϕ1(w)(g
−1
0 hw(x)) ≤ gφϕ(w)( fw(x))

g−1
0 ηϕ1(w)(hw(x)) ≤ gφϕ(w)( fw(x))

ϕ1(x) ≤ ηϕ1(w)(hw(x)) ≤ (gg0φϕ(w)( fw(x)) ≤ (gg0)ϕ(x).

Hence, for all x ∈ X, ϕ1(x) ≤ (gg0)ϕ(x) and we conclude ϕ1 ≤ (gg0)ϕ.

�

III.4. Future work: G-module maps in M(X, Y)

We have shown that for all G-module X the set M(X,G#) is a totally ordered group

with the order relation ϕ1 ≤ ϕ2 if and only if for all x ∈ X, ϕ1(x) ≤ ϕ2(x). Now, let Y

be another G-module, if we consider the same order relation, is M(X, Y) a totally ordered

set? Is M(X, Y) a G-module with the action G × M(X, Y) → M(X, Y) given by (gϕ)(x) :=

gϕ(x) = ϕ(gx) for all x ∈ X and ϕ ∈ M(X, Y)?

In the study of G- module maps, the orbit of an element x0 ∈ X played an important

role in comparing r, t ∈ M(X,G#) (see Remark 3 in Chapter 3). In order to answer these

questions, I am thinking to work with the following two concepts and the results obtained

from them.

(i) In [8] the concept of Tight G-module to describe a G-module X that has a convex

base was introduced. B is a convex base of X, when X is generated by a convex

subset B ⊂ X and for all b1, b2 ∈ B the orbits Gb1 and Gb2 are disjoint. For
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example, the G-module X2 in the Section III.2.1 is a tight with convex base {g−, g}
for any g ∈ G.

(ii) The topological type of an element in the G-module X was defined in [10] as

follows. Let s0 be an element of X and for each s ∈ X, we consider

τl(s) := sup
X#

{x ∈ Gs : x ≤ s0}

τu(s) := sup
X#

{x ∈ Gs : x ≥ s0}

Note that these elements of X show to what extent we can approach s0 with ele-

ments of the orbit of s.

The topological type of an element s ∈ X was defined as the subset of G given

by

τ(s) := {h ∈ G : τl(s) ≤ hs0 ≤ τu(s)} .
As a first step, we could study M(X, Y) in the particular case where X or Y are tight

G-modules. Let G be a totally ordered group and let X be a tight G-module with a convex

base B. Note the followings facts:

• The base B contains one and only one element of each of the orbits Gb with b ∈ B.

• Let z,w, v ∈ X with z < w < v. Note that if gw ≤ v for some g ∈ G then, because

B is a convex subset of X, we have that gw < z.

• Choose v in the convex base B. For each w ∈ B, we have

τl(w) = sup
X#

{x ∈ Gw : x < v}

τu(w) = inf
X#
{x ∈ Gw : x > v}.

If w = v, then τl(w) = τu(w) = w and the topological type of w is τ(w) = stab(v).

If w < v, then τl(w) = w and for all b ∈ B, τu(w) ≥ b.

If h ∈ stab(v), then w < v = hv ≤ τu(w). If h < stab(v), then 1 < h leads to

τu(w) ≤ hw < hv and h < 1 implies that hw < hv < b for all b ∈ B. These facts

imply that

τ(w) = {h ∈ G : w ≤ hv ≤ τu(w)} = Stab(v)

In the same way, we show that τ(w) = stab(v) when v < w.

• Also, in [8] the authors proved that if X is a tight G-module, then the stabilizer of

an element x ∈ X is constant convex subgroup H ⊂ G. Therefore, the topological

type does not depend on the choice of v ∈ B, is constant on X.

We can to sort the elements of a tight G-module X with base B by considering the sets

gB for all b ∈ B. Because for all g ∈ G, gB is also a convex base of X, we have that

g−1
2 bi < g−1

2 b j < g−1
1 bi < g−1

1 b j < bi < b j < g1bi < g1b j < g2bi < g2b j

for all bi, b j ∈ B with bi < b j and g1, g2 ∈ G two elements that do not belong to

Stab(bi) = H with 1 < g1 < g2.
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Thus, we can analyze the orbits of the elements of the base B of X to compare two

G-module maps r, t : X → Y .
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