

UNIVERSIDAD DE LA FRONTERA

FACULTAD DE INGENIERÍA Y CIENCIAS

Departamento de Matemática y Estadística

On the Dedekind completion and G-module maps

Thesis submitted in partial fulfilment of the requirements for the degree of
Doctor en Ciencias mención Matemática

2022

Adrialy Muci Núñez

Advisers: Ángel Carocca, Elena Olivos

UNIVERSIDAD DE LA FRONTERA
VICERRECTORIA DE INVESTIGACION Y POSTGRADO

4CTA No 4765

En Temuco. el dia miércoles 26 de enero de 2022, a las 12:30 horas Chile, se reúnen en sala virtual, los señores Profesores.
\(\left.$$
\begin{array}{ll}\text { 1. Dr. ANGEL CAROCCAB. } & \begin{array}{l}\text { Profesor Guia de Tesis } \\
\text { (Universidad de La Frontera) }\end{array} \\
\text { 2. Dra. ELENA OLIVOSH. }\end{array}
$$ \begin{array}{l}Profesora Co Guía de Tesis

(Universidad de La Frontera)\end{array}\right\}\)| Profesor Evaluador Interno de Tesis |
| :--- |
| 3. Dr. MAURICIO GODOY M. |

Integrantes de la Comisión de Examen de Grado de la alumna del Programa Doctorado en Ciencias, mención Matemática

Doña ADRIALY LORENA MUCI NUNEZZ
 Matricula: 15622534714

y habiendo considerado su Trabajo de Tesis titulado
"On the Dedekind comtipletion andi G-haodule maps"

Manaisis Goly MI.

Dr. MAURICIO GODOYM. Profesor Evaluador Interno de Tesis

Cenanrelivotipharreros

Profesora Co Guia de Tesis

Profesor Evaluador Externo de Tesis

Dr. RUBEN HID.ALGO O.
Repres. Directora de Postgrado Facultad Ministro de Fe

CONTENT

Introduction 1
Chapter I. Preliminaries 3
I.1. Totally ordered groups and convex subgroups 3
I.2. Dedekind completion of a Totally Ordered Set 9
I.3. Hahn's Theorem 14
I.4. G-modules 15
I.5. G-module maps 18
Chapter II. The Largest Group Contained in $G^{\#}$ 23
II.1. A necessary condition for $G \subsetneq\left(G^{\#}\right)_{0}$ 23
II.2. Example: Lexicographic Direct Sum 25
II.3. Example: Levi-Civita Field 36
II.4. Sufficient conditions for $G \subset\left(G^{\#}\right)_{0}$ 43
Chapter III. Order in $M\left(X, G^{\#}\right)$ 47
III.1. The sets $M\left(X, G^{\#}\right)_{\text {sup }}$ and $M\left(X, G^{\#}\right)_{\text {inf }}$ 47
III.2. A totally ordered set of G-module maps 54
III.3. Order in $M\left(X, G^{\#}\right)$ 61
III.4. Future work: G-module maps in $M(X, Y)$ 64
REFERENCES 67

Introduction

The concept of G-module was developed by H. Ochsenius and W.H. Schikhof in the late 1990's. It arose as a consequence of the study of Banach spaces over fields with a Krull valuation when the value group has infinite rank. The aim was to give conditions that enabled to generalize in this context the theory of Hilbert spaces.

Previous work had been done in the theory of quadratic forms. Here the emphasis was placed on the Projection Theorem: Every orthogonally closed subspace X is an orthogonal summand of the space E. That is,

$$
\begin{equation*}
X=X^{\perp \perp} \quad \rightarrow \quad E=X \oplus X^{\perp} \tag{.1}
\end{equation*}
$$

Such a space, over a field different from \mathbb{R} or \mathbb{C} was described by H. Keller its numerably orthogonal base could not be normalized ([6]).
M. P. Soler proved that this was a central requirement. Her theorem [18] state that if a space E has an orthonomal base and satisfies (.1) then the base field must be \mathbb{R} or \mathbb{C} and E is a classical Hilbert space.

In [10] the problem was studied in the context of a field K with a Krull valuation in which the value group G has infinite rank. The norms of a K-vector space E would be elements of a G-module X. This structure is a linearly ordered set, different from G, and where an action $G \times X \rightarrow X$ is defined. Adequate selection of X ensures that E can never have an orthonomal base. These spaces were termed Norm-Hilbert spaces.

New concepts included G-cyclic modules, morphisms between G-modules, topological types (see [11], [12], [13] and [14]). And it is in this context that the questions that are studied in this thesis appear.

The first one refers to the totally ordered group G. Denote by $G^{\#}$ its completion. In [11] the authors introduced a set $\left(G^{\#}\right)_{0}$ which was proved to be the largest group contained in $G^{\#}$, in [13] they gave examples in which $\left(G^{\#}\right)_{0}$ was properly contained in $G^{\#}$, and others in which they were equal. The interest lies in the characterization of these cases.

The second one asked for an extension of the results of E. Olivos and W. H. Schikhof in [14] where the set of all G-module maps from $G^{\#}$ to $G^{\#}$ were described. Now if X is any G-module, what can be said of the set of all G-module maps $\varphi: X \rightarrow G^{\#}$?

In order to attain these goals, Chapter 1 summarizes the main definitions, properties and theorems about totally ordered groups, convex subgroups, G-modules and G-module maps. This chapter with preliminaries contains the necessary concepts for the development of the work and results in chapters 2 and 3.

Chapter 2 deals with $\left(G^{\#}\right)_{0}$. We will present two interesting examples in order to guide the analysis and conclusions. We will determine the necessary and sufficient conditions that G must satisfy in order to have $G \subsetneq\left(G^{\#}\right)_{0}$. The convex subgroups of G played a crucial role in this study.

Further, in Chapter 3, we are interested in extending the results in [14]. We show that if X is any G-module $M\left(X, G^{\#}\right)$, the set of all G-module maps $X \rightarrow G^{\#}$, is a totally ordered group. The results in this chapter are a consequence of the ordering of the two
subsets of $M\left(X, G^{\#}\right) ; M\left(X, G^{\#}\right)_{\text {sup }}$ and $M\left(X, G^{\#}\right)_{\text {inf }}$. In addition, it will be essential to know if $\min \{g \in G: g>1\}=1$ and to analyze the orbits of X. Finally, we present the next steps for the results of this thesis that could be addressed in future research.

CHAPTER I

Preliminaries

This chapter contains definitions, notations and main properties of a totally ordered group G, G-modules and G-module maps. These concepts are the basis for the study of this thesis: the group $\left(G^{\#}\right)_{0}$ and G-module maps over any G-module X. Most of the proofs of the results in this chapter will be referenced to books and classic articles.

We start in the first sections with the theory about totally ordered groups. We are specially interested in convex subgroups, Dedekind completions and the extension of the multiplication of the group G to its completion $G^{\#}$. Later, it is introduced G-module with some examples in order to present, in the last section, the main results about G-module maps.

I.1. Totally ordered groups and convex subgroups

Definition I.1.1.

Let A be a subset of a totally ordered set X. A is called cofinal in X if for all $x \in X$ there is an element $a \in A$ such that $x \leq a$.

Definition I.1.2.

Let (G, \cdot, \leq) be an abelian multiplicatively written group equipped with a total order \leq. We will call G a totally ordered group, if $x, y, z \in G, x \leq y$ implies $x z \leq y z$.

In a totally ordered group G we say that the order \leq is compatible with the multiplication defined in G. Also,
(1) G is a torsion free group. Indeed, every element of G has infinite order because if there is $g \in G$ with $g>1$ and $m \in \mathbb{Z}^{+}$such that $g^{m}=1$ then $1<g<g^{2}<\cdots<$ $g^{m}=1$, a contradiction.
(2) If $G \neq\{1\}$ then G has no smallest or largest element. In fact, suppose that $g<1$ is the smallest element of G then $g^{2} \leq g$ and necessarily $g^{2}=g$, it is to say $g=1$, a contradiction.

Example 1. Some typical examples of totally ordered groups are:
(1) $(\mathbb{R},+, \leq),\left(\mathbb{R}^{+}, \cdot, \leq\right)$, any multiplicative subgroup of \mathbb{R}^{+}where \leqis the natural ordering on \mathbb{R}.
(2) $\left(\mathbb{R}^{+}\right)^{2}$ with componentwise multiplication and lexicographical ordering, where for $(a, b),(c, d) \in\left(\mathbb{R}^{+}\right)^{2}$ we have that $(a, b) \leq(c, d)$ if and only if either $a<b$ or $a=b$ and $c \leq d$.
(3) The direct sum $G=\oplus_{i \in \mathbb{N}} G_{i}$, where for every $i \in \mathbb{N}, G_{i}$ is a totally ordered group and G is equipped with the lexicographical ordering and componentwise multiplication.
(4) Let $(\mathcal{R},+, \cdot)$ be the Levi-Civita field (see [17] for background). For $f \in \mathcal{R}$ with $f \neq 0$, we put $\lambda(f)=\min (\operatorname{supp}(f))$ and we define $\lambda(0)=+\infty$. Let \mathcal{R}^{+}be the set of all non-zero elements $x \in \mathcal{R}$ that satisfy $x[\lambda(x)]>0$.

$$
\mathcal{R}^{+}=\{x \in \mathcal{R}: x[\lambda(x)]>0\}
$$

Let $x, y \in \mathcal{R}$ be given. We say that $y>x$ if $x \neq y$ and $(y-x) \in \mathcal{R}^{+}$; and we say $y \geq x$ if $y=x$ or $y>x$. Also, we say $y<x$ if $x>y$ and $y \leq x$ if $x \geq y$. With the relation $\geq,(\mathcal{R},+, \cdot)$ becomes a totally ordered field. Furthermore, the order is compatible with the algebraic structure of \mathcal{R}, that is, for any x, y, z, we have: $x>y \Rightarrow x+z>y+z$; and if $z>0$, then $x>y \Rightarrow x \cdot z>y \cdot z$.

Definition I.1.3.

Let C be a subgroup of G. Let $x, y \in C$ and $z \in G$, if $x \leq z \leq y$ implies $z \in C$, we will call C a convex subgroup of G. We denote by Γ_{G} the set of all convex subgroups of G.

In addition, we have that
(1) Each proper convex subgroup C of G is bounded from below and from above (if we assume otherwise, it leads us to $C=G$).
(2) Γ_{G} is totally ordered by inclusion. Indeed, let $C_{1}, C_{2} \in \Gamma_{G}$ such that $C_{1} \nsubseteq C_{2}$. Then there is an element $x \in C_{1}$ with $1<x$ and $x \notin C_{2}$. Pick $y \in C_{2}$, with $y>1$. Then $x \not \leq y$, otherwise x belongs to the convex subgroup C_{2}. Thus $1<y<x$ and therefore $y \in C_{1}$ because C_{1} is convex. We conclude that $C_{2} \subset C_{1}$.

Figure I.1. A convex subgroup C of a totally ordered group G can be represented as an open interval of elements in G.

Example 2.

(1) Every totally ordered group $G \neq\{1\}$ contains two trivial convex subgroups, namely $\{1\}$ and G.
(2) $C=\{1\} \times\langle 3\rangle$ is the unique proper convex subgroup of the totally ordered group $G=\langle 2\rangle \times\langle 3\rangle$ with the lexicographical order and componentwise multiplication (see Figure [.2).

Figure I.2. for all $n \in \mathbb{Z},\left(1,3^{n}\right)<(2,1)$
(3) Let $G \subset \mathbb{Q} \times \mathbb{Q}$ be the additive group generated by the vectors $\left(p_{n}^{-1}, n p_{n}^{-1}\right)$, $n=$ $1,2,3, \ldots$, where p_{n} is the nth prime number, i. e., $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$, and let G be lexicographically ordered and with componentwise addition.

The set $C=\{0\} \times \mathbb{Z}$ is a convex subgroup of G. Indeed, for all $b \in \mathbb{Z}$, the element $(0, b) \in C$ can always be written as

$$
(0, b)=3 b\left(\frac{1}{3}, \frac{2}{3}\right)-2 b\left(\frac{1}{2}, \frac{1}{2}\right) \in G
$$

Now, let $n \in \mathbb{N}$ and $(a, b) \in G$ such that $(0,0) \leq(a, b) \leq(0, n)$. This implies that $a=0$, because the order of the elements in G is lexicographic. On the other hand, by the definition of C there are integers $n_{1}, n_{2}, \ldots, n_{k}$ such that

$$
(0, b)=n_{1}\left(\frac{1}{p_{i_{1}}}, \frac{i_{1}}{p_{i_{1}}}\right)+n_{2}\left(\frac{1}{p_{i_{2}}}, \frac{i_{2}}{p_{i_{2}}}\right)+\cdots+n_{k}\left(\frac{1}{p_{i_{k}}}, \frac{i_{k}}{p_{i_{k}}}\right),
$$

hence $0=\frac{n_{1}}{p_{i_{1}}}+\frac{n_{2}}{p_{i_{2}}}+\cdots+\frac{n_{k}}{p_{i_{k}}}$.
For $j=1, \ldots, k$ let

$$
P_{j}=p_{i_{1}} \cdot p_{i_{2}} \cdots p_{i_{j-1}} \cdot p_{i_{j+1}} \cdots p_{i_{k}}
$$

and thus $0=n_{1} P_{1}+n_{2} P_{2}+\cdots+n_{k} P_{k}$ or

$$
n_{j} P_{j}=-\left(n_{1} P_{1}+\cdots n_{j-1} P_{j-1}+n_{j+1} P_{j+1}+\cdots n_{k} P_{k}\right)
$$

As for all $j=1, \ldots, k, p_{i_{j}}$ divides P_{r} if and only if $j \neq r$, we deduce that $n_{j}=\lambda_{j} p_{i_{j}}$, with $\lambda_{j} \in \mathbb{Z}$ for all j. So, $b=i_{1} \lambda_{1}+\cdots+i_{j} \lambda_{j}+\cdots i_{k} \lambda_{k} \in \mathbb{Z}$, i. e., $(0, b) \in C$. For details see ([3, 19]).

Definition I.1.4.

A convex subgroup C is called principal if there is a $g \in G$ such that C is the smallest convex subgroup of G containing g. The order type of the set of all principal nontrivial subgroup is called the rank of G and denoted by $\operatorname{rank}(G)$.

Definition I.1.5.

Let K be a field and let G be an ordered group. A Krull valuation on K is a surjective map $|\cdot|: K \rightarrow G \cup\{0\}$ satisfying:
(i) $|0|=0$ iff $x=0$,
(ii) $|x+y| \leq \max \{|x|,|y|\}$,
(iii) $|x y|=|x||y|$,
where 0 is a symbol such that $0<g$ and $0 g=g 0=0$ for all $g \in G$. The rank of $|\cdot|$ is the rank of G, and G is called the value group of $(K,|\cdot|)$.

Example 3.

(i) Let p be a prime number. The p -adic valuation $\mid \|_{p}$ on \mathbb{Q} is defined by

$$
|0|_{p}=0 \quad \text { and } \quad\left|p^{n} \frac{r}{q}\right|=\frac{1}{p^{n}}
$$

where $n, r, q \in \mathbb{Z}$, and r, q are not divisible by p. This valuation has rank 1 .
(ii) Let us consider $F_{0}=\mathbb{R}$ with its usual ordering, and the set of variables $\left\{X_{1}, X_{2}, X_{3}, \ldots\right\}$. For $n \in \mathbb{N}$ define $F_{n}:=F_{0}\left(X_{1}, \ldots, X_{n}\right)$ and

$$
F_{\infty}:=\bigcup_{n=0}^{\infty} F_{n}
$$

F_{n} is ordered by powers of X_{n}. A polynomial $p\left(X_{n}\right)=a_{r} X_{n}^{r}+\ldots+a_{1} X_{1}+a_{0} \in$ $F_{n-1}\left[X_{n}\right]$ is positive in F_{n} if and only if $a_{r}>0 \in F_{n-1}$. For $\beta=\frac{p\left(X_{n}\right)}{q\left(X_{n}\right)}$ with $p\left(X_{n}\right)$ and $q\left(X_{n}\right)$ in $F_{n-1}\left(X_{n}\right)$ and $q\left(X_{n}\right) \neq 0$, we say that β is a positive element in F_{n} if and only if $p\left(X_{n}\right) q\left(X_{n}\right)>0$. Notice that the ordering of F_{n} extends the ordering of $F_{n-1} . F_{\infty}$ is an ordered field (see [7] for background).

Now, we will define a valuation v on F_{∞}. First, we describe the value group of v : for every $i \in \mathbb{N}$, let us consider the multiplicative cyclic group G_{i} generated by $g_{i}>1$ and ordered by

$$
g_{i}^{r}<g_{i}^{t} \quad \text { iff } \quad r<t
$$

Let G be the direct sum
$G:=\left\{\gamma=\left(g_{1}^{\alpha_{1}}, g_{2}^{\alpha_{2}}, g_{3}^{\alpha_{3}}, \ldots\right) \in \prod_{i=1}^{\infty} G_{i}: \quad \alpha_{i} \in \mathbb{Z}\right.$, such that $\operatorname{supp}(\gamma)$ is finite $\}$
where $\operatorname{supp}(\gamma):=\left\{i \in \mathbb{N}: \alpha_{i} \neq 0\right\} . G$ is a totally ordered group with the componentwise multiplication and antilexicographical ordering.

After that, we define $v: F_{\infty} \rightarrow \Gamma \cup\{0\}$ such that $\left.\right|_{\mathbb{R}}$ is the trivial valuation, $v\left(X_{n}\right):=\left(1, \ldots, 1, g_{n}, 1 \ldots\right)$ and 0 is a minimal element such that $0 \cdot g=g \cdot 0=0$.

The valuation v is a Krull valuation on F_{∞} with $\operatorname{rank} \omega$, the first infinite ordinal.

Definition I.1.6. An ordered group G is called archimedian iffor every $a, b \in G$ with $b>1$, there exists an integer n such that $a<b^{n}$.

Proposition I.1.1. ([1], Chapter III, 3.2)
A totally ordered group (G, \cdot) has $\operatorname{rank}(G)=1$ if and only if G is archimedian.
Proof.
(\Leftarrow) Let $C \neq\{1\}$ be a convex subgroup of G, and $c \in C$ with $c>1$. For every $g \in G$ there exists a $n \in \mathbb{Z}^{+}$such that $1 \leq|g| \leq c^{n}$, with $|g|=\max \left\{g, g^{-1}\right\}$, hence $g \in C$. Therefore $C=G$.
(\Rightarrow) Let $g, h \in G \backslash\{1\}$ with $g>1$. There exists $n \in \mathbb{Z}^{+}$such that $1 \leq|h| \leq g^{n}$. If we assume otherwise, $C=\langle g\rangle$ would be a proper convex subgroup of G, a contradiction.

Definition I.1.7. Two ordered groups G and G^{\prime} are called order-isomorphic if there exists an isomorphism $f: G \rightarrow G^{\prime}$ such that $a<b \Rightarrow f(a)<f(b)$ for all $a, b \in G$.

Theorem I.1.1. ([15], 1.1 ; [1], Chapter III, 3.4)
A totally ordered group (G, \cdot) has $\operatorname{rank}(G)=1$ if and only if it is isomorphic to a subgroup of $\left(R^{+}, \cdot\right)$.

Thus, for valuations of rank 1 we can always assume that the ordered group G is a subgroup of $\left(R^{+}, \cdot\right)$ with the natural ordering.

Example 4.

(1) Any subgroup of \mathbb{R}^{+}has rank 1.
(2) The group C in Example 2 has rank 2.
(3) Let \mathcal{G} be the direct sum

$$
\mathcal{G}=\bigoplus_{i \in \mathbb{N}} G_{i}=G_{1} \oplus G_{2} \oplus G_{3} \oplus \ldots
$$

where for each $i \in \mathbb{N}, G_{i}$ is an infinite cyclic group generated by $g_{i}>1$. Each element in G has the form

$$
\left(g_{1}^{\alpha_{1}}, g_{2}^{\alpha_{2}}, g_{3}^{\alpha_{3}}, \ldots\right)
$$

where $\alpha_{i} \in \mathbb{Z}$ and $\left\{i \in \mathbb{N}: \alpha_{i} \neq 0\right\}$ is finite. With componentwise multiplication and lexicographical order, \mathcal{G} has infinite rank. The subgroup

$$
C_{1}=\{1\} \oplus G_{2} \oplus G_{3} \oplus \cdots
$$

is the largest non trivial convex subgroup of \mathcal{G}. Also,

$$
C_{2}=\{1\} \oplus\{1\} \oplus G_{3} \oplus G_{4} \oplus \cdots
$$

$$
\begin{aligned}
C_{3} & =\{1\} \oplus\{1\} \oplus\{1\} \oplus G_{4} \oplus G_{5} \oplus \cdots \\
& \vdots \\
C_{n} & =\{1\} \oplus \cdots \oplus\{1\} \oplus G_{n+1} \oplus G_{n+2} \oplus \cdots \\
& \vdots
\end{aligned}
$$

are convex subgroups of \mathcal{G} for all $n \in \mathbb{N}$. They are ordered by inclusion

$$
\cdots C_{n+1} \subset C_{n} \subset \cdots \subset C_{1} \subset C_{0} \subset \mathcal{G}
$$

and \mathcal{G} has a decreasing sequence of convex subgroups.
Note that, if we consider the same group \mathcal{G} with componentwise multiplication and antilexicographical order, then \mathcal{G} also has rank ω. In this case, the subgroup

$$
D_{1}=G_{1} \oplus\{1\} \oplus\{1\} \oplus \cdots
$$

is the smallest non trivial convex subgroup of \mathcal{G},

$$
\begin{aligned}
D_{2} & =G_{1} \oplus G_{2} \oplus\{1\} \oplus\{1\} \oplus\{1\} \oplus \cdots \\
D_{3} & =G_{1} \oplus G_{2} \oplus G_{3} \oplus\{1\} \oplus\{1\} \oplus \cdots \\
& \vdots \\
D_{n} & =G_{1} \oplus G_{2} \oplus \cdots \oplus G_{n} \oplus\{1\} \oplus \cdots \\
& \vdots
\end{aligned}
$$

are convex subgroups of \mathcal{G} for all $n \in \mathbb{N}$ and we have that

$$
\{1\} \subset D_{1} \subset D_{2} \subset \cdots \subset D_{n} \subset D_{n+1} \subset \cdots \subset \mathcal{G} .
$$

Thus, with the antilexicographical order, \mathcal{G} has an increasing sequence of convex subgroups.
(4) Let $(\mathcal{R},+, \cdot)$ be the Levi-Civita field (see Example 1.4). The multiplicative group $\left(\mathcal{R}^{+}, \cdot\right)$ has infinite rank. In fact, the set

$$
\mathcal{L}=\left\{x \in \mathcal{R}^{+}: \lambda(x)=0\right\}
$$

is the largest convex subgroup of $\left(\mathcal{R}^{+}, \cdot\right)$. The largest proper convex subgroup contained in \mathcal{L} is

$$
\mathcal{L}^{0}=\left\{x \in \mathcal{R}^{+}: \lambda(x)=0, x[0]=1\right\} .
$$

Let $\lambda_{1}(x):=\min (\operatorname{supp}(x) \backslash\{\lambda(x)\})$. For each $r \in \mathbb{Q}^{+}$, the sets

$$
\mathcal{L}_{r}^{0}=\left\{x \in \mathcal{R}^{+}: \lambda(x)=0, x[0]=1, \lambda_{1}(x) \geq r\right\}
$$

is a convex subgroup of $\left(\mathcal{R}^{+}, \cdot\right)$.
Proposition I.1.2. ([15], 1. 2)
If C is a subgroup of G then $\bar{G}=G / C$ is in a natural way a totally ordered group. C is
a convex subgroup of G if and only if the canonical quotient map $\pi: G \rightarrow G / C$ is an increasing homomorphism.

Proof.
The quotient map is given by

$$
\begin{aligned}
\pi: G & \rightarrow G / C \\
g & \mapsto \bar{g}=g C
\end{aligned}
$$

C is a subgroup of the abelian group G and therefore G / C is a group with the multiplication $\overline{g_{1}} \cdot \overline{g_{2}}=\overline{g_{1} \cdot g_{2}}$.

Let P be the positive cone of G, that is, $P=\{g \in G: g \geq 1\}$, we will show that $\bar{P}=\pi(P)$ satisfies that $\bar{P} \cap \bar{P}^{-1}=\{1\}$ and for all $\overline{p_{1}}, \overline{p_{2}} \in \bar{P}$ then $\overline{p_{1} p_{2}} \in \bar{P}$ and therefore \bar{P} defines an order on G / C.

- since $1 \in P$ we have $\pi(1)=\overline{1} \in \bar{P}$.
- If $\overline{p_{1}}, \overline{p_{2}} \in \bar{P}$ then $p_{1}, p_{2} \in P$ and $\overline{p_{1}} \cdot \overline{p_{2}}=\overline{p_{1} p_{2}} \in \bar{P}$, because $p_{1} p_{2} \in P$.
- If $\bar{p} \in\left(\bar{P} \cap(\bar{P})^{-1}\right)$ then there are $p_{1}, p_{2} \in P$ such that $\pi\left(p_{1}\right)=\pi\left(p_{2}\right)^{-1}=\bar{p}$. Thus $\pi\left(p_{1} p_{2}\right)=\overline{1}$ and therefore $p_{1} p_{2} \in C$. Since C is a convex subgroup and $1 \leq p_{1} \leq p_{1} p_{2}$ we have that $p_{1} \in C$ and therefore $\bar{p}=\pi\left(p_{1}\right)=\overline{1}$.
Then \bar{P} defines an order in \bar{G} with positive cone $\pi(P)=\bar{P}$, therefore π is an order homomorphism.

Reciprocally, if \bar{P} is a set of positive elements by an order in \bar{G}, then for every $c \in C$ and $g \in G$ such that $1 \leq g \leq c$ we have that $1 \leq \pi(g) \leq \pi(c)=\overline{1}, \pi(g)=\overline{1}$ and so $g \in C$. Therefore C is a convex subgroup of G.

The order relation defined on \bar{G} is: $\overline{g_{1}} \leq \overline{g_{2}}$ in $\bar{G} \Leftrightarrow$ there is $c \in C$ such that $g_{1} \leq g_{2} c$.

I.2. Dedekind completion of a Totally Ordered Set

Let A, B be totally ordered sets with $A \subset B$. We say that $s \in B$ is the supremum of A in B and denote s by $\sup _{B} A$, if s is the smallest upper bound of A in B. Similarly we define $t:=\inf _{B} A$.

Definition I.2.1.

A totally ordered set S is called Dedekind complete if each non-empty and bounded above subset of S has a supremum.

Likewise, we can say that a totally ordered set S is Dedekind complete when every non-empty and bounded below subset of S has an infimum.

In the next proposition, it will be useful to remember the following property about supremum: Let $G \neq \emptyset$ be a totally ordered group and $A, B \neq \emptyset$ two subsets of G such that $\sup A, \sup B \in G$. Then $\sup A \cdot \sup B=\sup (A B)$ where $A B=\{a b: a \in A, b \in B\}$.

Proposition I.2.1.

Let G be a totally ordered group. If $\operatorname{rank}(G)>1$ then G is not Dedekind complete.
Proof.
If $\operatorname{rank}(G)>1$ then G has a proper non trivial convex subgroup C. By the convexity of G, we know that C is bounded (above and below). If we suppose that G is complete, then there exists $s=\sup C \in G$. It follows that

$$
s \cdot s=(\sup C)(\sup C)=\sup (C \cdot C)=\sup C=s \in G
$$

and so, $s \neq 1$ is an idempotent element of G, a contradiction since G is a group.

Definition I.2.2.

Let $X \neq \emptyset$ be a totally ordered set. A non empty subset S of C is called a cut if

1. S is bounded above
2. If $x \in S, y<x$ then $y \in S$.
3. If $\sup _{X} S$ exists then $\sup _{X} S \in S$.

Now, the cuts in X are used for the construction of the completion of X (for details see [10] pp. 5). Let $X^{\#}$ the collection of all cuts of X, and we consider the order by inclusion in $X^{\#}$. With this order $X^{\#}$ is a totally ordered set. Let $A \subset X^{\#}$ be non-empty and bounded above. There is a cut T such that $S \subset T$, for all $S \in A$. Then $V:=\cup_{S \in A} S$ is non-empty and bounded above by T, and by adding $\sup _{X}(V)$ (if it exists) to V we obtain a cut equal to $\sup _{X^{\#}} A$. We have the natural embedding $\varphi: X \rightarrow X^{\#}$ given by $\varphi(x)=\{s \in X: x \leq s\} . \varphi$ is strictly increasing and therefore an order-preserving embedding. $X^{\#}$ is called the Dedekind completion of $X . X^{\#}$ is the smallest totally ordered set, Dedekind complete, containing X.

The previous construction is a generalization of the classic construction by cuts of the real numbers (for details see [16], appendix of chapter 1).

Some basic properties about $X^{\#}$ are listed in the next Proposition.

Proposition I.2.2. ([10], [4])

Let X be a totally ordered set and $X^{\#}$ its completion by cuts. We have the following statements:
(1) X is complete if and only if $X=X^{\#}$.
(2) X is cofinal and coinitial in $X^{\#}$.
(3) For every $s \in X^{\#},\{x \in X: x \leq s\}$ is a cut in X; every cut in X has this form.
(4) If $s, t \in X^{\#}, s<t$ then there exist $x, y \in X$ such that $s \leq x<t, s<y \leq t$.
(5) For each $s \in X^{\#}, s=\sup _{X^{\#}}\{x \in X: x \leq s\}=\inf _{X^{\#}}\{x \in X: x \geq s\}$.
(6) Let $A \subset X$. If $s=\sup _{X} A$ then $s=\sup _{X^{\sharp}} A$. If $t=\inf _{X} A$ then $t=\inf _{X^{\#}} A$.
(7) For each $s \in X, s_{0}=\max \{x \in X: x<s\}$ exists if and only if $s_{1}=\max \left\{x \in X^{\#}\right.$: $x<s\}$ exists. In this case $s_{0}=s_{1}$.
(8) For each $s \in X, s=\sup _{X^{\#}}\{x \in X: x<s\}$ exists if and only if $s=\sup _{X^{\#}}\left\{x \in X^{\#}\right.$: $x<s\}$.
(9) For each $s \in X, \sup _{X^{\#}}\{x \in X: x<s\}=\sup _{X^{\#}}\left\{x \in X^{\#}: x<s\right\}$.
(10) The last three statements, are also true if one replace sup by inf.

Proof. The statements (1) to (6) are proved in [10] and (7) to (10) in [4].
In the Section 1.3.2 of [$\mathbf{1 0}]$, the completion for $G=\oplus_{i \in \mathbb{N}} G_{i}$, the direct sum of the groups $G_{i}=<g_{i}>, i \in \mathbb{N}$, was determined. Indeed, for this group with the componentwise multiplication and antilexicographic order, each $x \in G^{\#}$ can be written as $g s$, where $s=$ $\sup _{G^{\#}}(H)$, with H some convex subgroup of G.
I.2.1. Multiplications on $G^{\#}$. For a totally ordered group G, the extension of the multiplication from G to $G^{\#}$ is, in general, not unique. There are two canonical multiplication on $G^{\#}$ which extend the multiplication on G.

Definition I.2.3. For $x, y \in G^{\#}$ set

$$
\begin{aligned}
& x \bullet y:=\sup _{G^{*}}\left\{g_{1} g_{2} \in G: g_{1} \leq x \wedge g_{2} \leq y\right\} \\
& x \star y:=\inf _{G^{\#}}\left\{g_{1} g_{2} \in G: g_{1} \geq x \wedge g_{2} \geq y\right\}
\end{aligned}
$$

They are called the dot multiplication and the star multiplication, respectively.
Some properties of the dot and star multiplications are:
Proposition I.2.3. ([11]; 1.4.6, [13] ; 3.1)
Let $x, y, z \in G^{\#}$ with $y<z$, and let $g \in G$. We have that
(i) $g \bullet x=g \star x$.
(ii) $x \bullet y \leq x \star y$.
(iii) $x \bullet y \leq x \bullet z$ and $x \star y \leq x \star z$.
(iv) $y \star x \leq z \bullet x$.
(v) $\left(G^{\#}, \bullet\right)$ and $\left(G^{\#}, \star\right)$ are commutative semigroups with identity element.

In view of (i) in the Proposition above, for all $g \in G$ and $x \in X$ we denote $g x:=$ $g \bullet x=g \star x$. Also, from (ii) the dot and star multiplication, are called the small and large multiplication.

Proposition I.2.4. ([14];4.9)
The dot multiplication is left continuous i.e. it is continuous as a map

$$
\bullet:\left(G^{\#}, \tau_{G^{\#}}^{l}\right) \times\left(G^{\#}, \tau_{G^{\#}}^{l}\right) \rightarrow\left(G^{\#}, \tau_{G^{\#}}^{l}\right)
$$

where $\tau_{G^{\#}}^{l}$ is the left order topology. In the same way, the star multiplication is right continuous.

In [13] it was proved that if G has infinite rank, there are uncountably many proper extensions of the multiplication of G to its completion $G^{\#}$. The authors determine new proper multiplications, that is, multiplications $\diamond: G^{\#} \times G^{\#} \rightarrow G^{\#}$ that are associative, conmutative, increasing in both variables and extending the multiplication of G. The dot and star multiplications are proper multiplications. The proper multiplications constructed in [13] depend on some convex subgroup of G and the authors prove that if Γ_{G}, the set of all convex subgroups of G, has cardinality κ, then the set of all proper multiplications has cardinality $\geq 2^{\kappa}$.

Definition I.2.4. For $x \in G^{\#}, \operatorname{Stab}(x):=\{g \in G: g x=x\}$
Note that, for all $x \in G^{\#}$

- $1 \in \operatorname{Stab}(x)$. Moreover if $c \in \operatorname{Stab}(x)$ then $c x=x$ and hence $x=c^{-1} x$; so $c^{-1} \in \operatorname{Stab}(x)$,
- If $c_{1}, c_{2} \in \operatorname{Stab}(x)$ then $c_{1} c_{2} x=c_{1}\left(c_{2} x\right)=c_{1} x=x$. Thus $c_{1} c_{2} \in \operatorname{Stab}(x)$,
- If $c \in \operatorname{Stab}(x)$, we can suppose that $c>1$, and let $g \in G$ such that $1<g<c$. We have that $x \leq g x \leq c x=x$, thus $g \in \operatorname{Stab}(x)$ and $\operatorname{Stab}(x)$ is a convex subgroup of G.
- Let $g \in G$, then $c \in \operatorname{Stab}(g x) \Leftrightarrow c(g x)=g x \Leftrightarrow c x=x \Leftrightarrow c \in \operatorname{Stab}(x)$. Therefore $\operatorname{Stab}(G x)=\operatorname{Stab}(x)$.

Lemma I.2.1. ([1]];1.4.11, 1.4.13, [13]; 3.4 , 3.5)
Let $H \subset G$ be a proper convex subgroup of G, let $s:=\sup _{G^{\#}} H, t:=\inf _{G^{\#}} H$. Then
(i) $\operatorname{Stab}(s)=\operatorname{Stab}(t)=H$
(ii) $s \bullet s=s, s \bullet t=t, t \star t=t, s \star t=s$
(iii) If $x \in G^{\#}$ is such that $t \leq x \leq s$ and $H \subset \operatorname{Stab}(x)$ then $x=\operatorname{tor} x=s$.
(iv) For all $x, y \in G^{\#}, \operatorname{Stab}(x \star y)=\operatorname{Stab}(x \bullet y)=\operatorname{Stab}(x) \cap \operatorname{Stab}(y)$.

If G is not isomorphic to a subgroup of \mathbb{R}^{+}then $\left(G^{\#}, \star\right)$ and $\left(G^{\#}, \bullet\right)$ are not groups, because the elements s and t in the previous Lemma are idempotents. However, they contain at least one non-trivial group, namely G. We wonder if G is the largest possible.

Definition I.2.5. Let $\left(G^{\#}\right)_{0}:=\left\{x \in G^{\#}: \operatorname{Stab}(x)=\{1\}\right\}$
In general, for a totally ordered abelian group G, we have the inclusion $G \subseteq\left(G^{\#}\right)_{0} \subseteq G^{\#}$. $\left(G^{\#}\right)_{0}$ can contain G strictly; for example, if (G, \cdot) is any dense proper subgroup of $\left(\mathbb{R}^{+}, \cdot\right)$ then $G \subsetneq\left(G^{\#}\right)_{0}=\mathbb{R}^{+}$. On the other hand, if $G=\langle g\rangle$ is a cyclic subgroup of $\left(\mathbb{R}^{+}, \cdot\right)$ then $G=\left(G^{\#}\right)_{0}=G^{\#}$. We can find many groups G such that $G \subsetneq\left(G^{\#}\right)_{0} \subsetneq G^{\#}$, for example, if we consider the group $G=\mathbb{Q}^{+} \times \mathbb{Q}^{+}$with the multiplication by component and lexicographic order, then $G \subsetneq\left(G^{\#}\right)_{0}=\mathbb{Q}^{+} \times \mathbb{R}^{+} \subsetneq G^{\#}$.

The next Theorem shows that $\left(G^{\#}\right)_{0}$ is the largest group contained in $G^{\#}$.
Theorem I.2.1. [11]; 1.4.18
For each $x \in\left(G^{\#}\right)_{0}$ the map

$$
\begin{aligned}
G^{\#} & \rightarrow G^{\#} \\
y & \mapsto y \bullet x=y \star x
\end{aligned}
$$

is a bijection which maps $\left(G^{\#}\right)_{0}$ onto $\left(G^{\#}\right)_{0}$ and therefore induces a group structure on $\left(G^{\#}\right)_{0}$, with $x^{-1}=\sup _{G^{\#}}\{g \in G: g x \leq 1\}=\inf _{G^{\#}}\{g \in G: g x \geq 1\}$.

Definition I.2.6. Given a totally ordered group G, we say that it is quasidiscrete if the set $\{g \in G: g>1\}=1$ has a smallest element; otherwise G is quasidense.

In a quasidiscrete group G with $g_{0}=\min \{g \in G: g>1\}$, for all $g \in G$ its sucessor element is $g g_{0}$.

Example 5.

(1) Any cyclic subgroup of \mathbb{R}^{+}is quasidiscrete.
(2) We consider the direct sum in the Example 4

$$
\mathcal{G}=\bigoplus_{i \in \mathbb{N}} G_{i}=G_{1} \oplus G_{2} \oplus G_{3} \oplus \ldots
$$

where for each $i \in \mathbb{N}, G_{i}$ is an infinite cyclic group generated by $g_{i}>1$ and componentwise multiplication. With antilexicographical order, \mathcal{G} is quasidiscrete and $g_{0}=\min \{g \in G: g>1\}=\left(g_{1}, 1, \ldots\right)$. On other hand, if we consider lexicographical order, then \mathcal{G} is quasidense (this group will be studied in Chapter 2).

The prefix quasi in the previous definition is due to the fact that there are totally ordered groups where $\min \{g \in G: g>1\}$ exists yet they contain a subgroup for which this is not true. For example, let G be the totally ordered group $\mathbb{R}^{+} \times\langle 2\rangle$ with componentwise multiplication and lexicographic order. G is quasidiscrete because $\min \{g \in G: g>1\}=(1,2)$ and it contains the proper subgroup $H=\mathbb{R}^{+} \times\{1\}$ which is quasidense sice $\min \{g \in H: g>1\}=$ $(1,1)$.

Figure I.3. The quasidiscrete group $G=\mathbb{R}^{+} \times\langle 2\rangle$ with componentwise multiplication and lexicographical order. The sucessor of $(1,1)$ is $(1,2)$. For all $r \in \mathbb{R}^{+}$with $r>1$, we have that $(1,2)<(r, 1)$ and the sucessor of $(r, 1)$ is $(r, 2)$.

Proposition I.2.5. ([11]; 1.4.11)
Let $H \subset G$ be a proper convex subgroup, $H \neq\{1\}$, put $t:=\inf _{G^{\#}} H$ and $s:=\sup _{G^{\#}} H$. Then we have
(i) If G / H is quasidense then $s \star s=s$ and $t \bullet t=t$
(ii) If G / H is quasidiscrete then $s \star s=g_{0} s>s, t \bullet t=g_{0}^{-1} t<t$ where $g_{0} \in G, g_{0}>s$ and where, with $\pi: G \rightarrow G / H$ the canonical map, $\pi\left(g_{0}\right)=\min \{u \in G / H: u>1\}$

I.3. Hahn's Theorem

Definition I.3.1. Let I be a totally ordered set and, for each $i \in I$, let G_{i} be a totally ordered group written multiplicatively. For all $g=\left(g_{i}\right)_{i \in I} \in \prod_{i \in I} G_{i}$ where $g_{i} \in G_{i}$, for all $i \in I$, the support of g is defined by $\operatorname{supp}(g):=\left\{i \in I: g_{i} \neq 1\right\}$.

Definition 1.3.2. Let I be a totally ordered set and $\left\{G_{i}\right\}_{i \in I}$ be a family of totally ordered groups written multiplicatively, the Hahn product of the family $\left\{G_{i}\right\}_{\in I}$ is defined by

$$
\mathcal{H}_{i \in I} G_{i}:=\left\{g \in \prod_{i \in I} G_{i}: \operatorname{supp}(g) \text { is well-ordered }\right\}
$$

$\mathcal{H}_{i \in I} G_{i}$ is a subgroup of $\prod_{i \in I} G_{i}$ and, endowed with the lexicographical ordering, it is a totally ordered group (for details see [5, 15]).

Theorem I.3.1. (H. Hahn [15]) Every totally ordered group is isomorphic to a subgroup of a Hahn product of copies of \mathbb{R}.

Proposition I.3.1. ([15] p.14)
Let $H \neq\{1\}$ be a convex subgroup of a totally ordered group G. There is a largest convex subgroup H^{*} such that $H^{*} \subsetneq H$ and the quotient group H / H^{*} is a totally ordered group with rank 1.

Let J be a set of indices in one-to-one correspondence with the set of principal convex subgroups of G. We denote by H_{j} the principal convex subgroup associated to $j \in J$. The index set J is totally ordered with the following rule: for all $j_{1}, j_{2} \in J, j_{1} \leq j_{2} \Leftrightarrow H_{j_{2}} \subset H_{j_{1}}$.

For each $j \in J$ let $R_{j}:=H_{j} / H_{j}^{*}$ since, by Proposition I.3.1, R_{j} has rank 1 it is isomorphic to a subgroup of \mathbb{R}.

Definition I.3.3. For a totally ordered group G the family $\left(R_{j}\right)_{j \in J}$ is called the skeleton of G.

I.4. G-modules

The structure of G-modules was introduced specifically to serve as a natural range set X for norms defined on a vector space E over a Krull valued field K with value group G.

A generalized norm on E is then defined as a map $\|\cdot\|: E \rightarrow X \cup\{0\}$, where 0 is a minimal element adjoined to X, satisfying the following axioms.
(i) $\|x\|=0 \Leftrightarrow x=0$
(iI) $\|\lambda x\|=\mid \lambda\|x\|$
(iii) $\|x+y\| \leq \max \{\|x\|,\|y\|\}$
for all $x, y \in E$ and $\lambda \in K$.
For instance, the space

$$
c_{0}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \prod_{n \in N} K: \lim x_{n}=0\right\}
$$

is a X-normed space with $\left\|\left(x_{n}\right)_{n}\right\|:=\max \left\{\left|x_{n}\right|: n \in \mathbb{N}\right\}$. Notice that, $\|\cdot\|: c_{0} \rightarrow G \cup\{0\}$ where G is the same totally ordered group such that $|\cdot|: K \rightarrow G \cup\{0\}$. So, the range set of $\|\cdot\|$ is G.

Throughout this chapter $G=(G, \leq, \cdot)$ is a totally ordered group with unit element 1.

Definition I.4.1.

Let (X, \leq) be a totally ordered set containing at least two elements. It is called a G-module if there exists a map,

$$
\begin{aligned}
& G \times X \longrightarrow X \\
& (g, x) \longmapsto g x
\end{aligned}
$$

such that for all $g, g_{1}, g_{2} \in G, x, x_{1}, x_{2} \in X$ we have
(i) $g_{1}\left(g_{2} x\right)=\left(g_{1} g_{2}\right) x$
(ii) $1 x=x$
(iii) $g_{1} \geq g_{2} \Rightarrow g_{1} x \geq g_{2} x$
(iv) $x_{1} \geq x_{2} \Rightarrow g x_{1} \geq g x_{2}$
(v) Gx is coinitial in X.

From the conditions (i)-(v), we can deduce some properties of a G-module X (proofs in [10] 1.5.1).
(1) G acts on X and this action preserves the ordering in G and X.
(2) If $x_{1}<x_{2}$ then $g x_{1}<g x_{2}$, for all $g \in G$ and $x_{1}, x_{2} \in X$.
(3) For all $x \in X$, the orbit $G x$ is cofinal in X.
(4) X has no largest and no smallest elements.

Example 6. ([10], 1.5; [4])
(a) G is trivially a G-module where the action is simply the multiplication on G.
(b) $G^{\#}$, the completion by cuts of G, is a G-module. with the action $g \alpha:=g \bullet \alpha=g \star \alpha$.
(c) Let \mathcal{D} be the divisible closure of G. Let $G^{0}:=\left\{d \in \mathcal{D}: d^{2} \in G\right\}$ and consider the map

$$
\begin{array}{ll}
\theta: & G^{0} \longrightarrow G \\
& d \longmapsto d^{2}
\end{array}
$$

The totally ordered set $\sqrt{G}:=G^{0} / \operatorname{Ker}(\theta)$ is a G-module with the action $g \cdot \sqrt{k}:=$ $\sqrt{g^{2} k}$.
(d) If (G, \cdot, \leq) has a non-trivial convex subgroup H, then G / H is a G-module with $g(s H)=(g s) H$.
(e) Let β an ordinal. We consider

$$
X:=\left\{x=\left(x_{\alpha}\right)_{\alpha<\beta} \in \prod_{\alpha<\beta} G_{\alpha}: \operatorname{supp}(x) \text { has an upper bound }\right\}
$$

and the antilexicographic order on $X . X$ is a G-module with the action given by $g \cdot x:=\left(g x_{\alpha}\right)_{\alpha<\beta}$ for all $g \in G$ and $x \in X$.
(f) Let (G, \cdot, \leq) be a totally ordered group and $G^{-}:=\left\{g^{-}: g \in G\right\}$ a copy of G. We consider $X_{2}:=G \cup G^{-}$and the following rule of order for all $s, t \in G$ such that $t<s, t<s^{-}<s$. We define the action as follows $g \cdot s^{-}:=(g s)^{-}$. With these definitions, X_{2} is a G-module (see Figure I.4).

Figure I.4. For all $s \in G, s^{-}$is the predecessor of s. For all $t \in G$ with $t<s$ we have that $t<s^{-}<s$.
(g) The above example can be generalized as follows. Let β an ordinal and for each ordinal $\alpha<\beta$ let $G^{(\alpha)}:=G \times\{\alpha\}$ be a copy of G. Notice that $G^{\left(\alpha_{1}\right)} \cap G^{\left(\alpha_{2}\right)}=\emptyset$ for $\alpha_{1} \neq \alpha_{2}$. Now consider the disjoint union

$$
X_{\beta}:=\bigcup_{\alpha<\beta} G^{(\alpha)}
$$

with the order defined by

$$
\left(g, \alpha_{1}\right) \leq\left(h, \alpha_{2}\right) \Leftrightarrow g<h \text { or } g=h \text { and } \alpha_{1} \leq \alpha_{2} .
$$

The action of G on X_{β} is given by $g \cdot(x, \alpha):=(g x, \alpha)$ for all $g \in G$ and $x \in X_{\beta}$ (see Figure I.5).
(h) A G-module X is called cyclic, if $X=<s>=G s$ for some element $s \in X$. An arbitrary G-modulo X is the disjoint union of its cyclic submodules

Figure I.5. For all $t, s \in G$ with $t<s$ and $\alpha_{1}<\alpha_{2} \leq \beta$, where $s^{\alpha_{1}}:=\left(s, \alpha_{1}\right)$ and $s^{\alpha_{2}}:=\left(s, \alpha_{2}\right)$

$$
X=\bigcup_{s_{i} \in G,}^{\circ} G s_{i}
$$

Conversely, if we have a collection $\left\{G s_{i}, i \in I\right\}$ of cyclic G-modules, we can extend the ordering on the subsets $G s_{i}$ to the union

$$
X:=\bigcup_{i \in I} G s_{i}
$$

such that X becomes a G-module. For example, we can set a total ordering on I and by declaring that $g s_{i}>g^{\prime} s_{j}$ if either $g>g^{\prime}$ or $g=g^{\prime}$ and $i>j$.

In the previous chapter (see Definition I.2.4) we introduced the stabilizer of an element x in the G-module $G^{\#}$. The definition easily carries over to arbitrary G-modules.

Definition I.4.2.

Let x be any element in the G-module X. Then we define $\operatorname{Stab}(x)=\{g \in G: g x=x\}$.
Note that $\operatorname{Stab}(x)$ is a proper convex subgroup of G. Indeed, $1 \in \operatorname{Stab}(x)$, and if $g \in$ $\operatorname{Stab}(x)$ then $g x=x$; thus, $x=g^{-1} x$ and $g^{-1} \in \operatorname{Stab}(x)$. Besides, let $u \in G$ such that $g_{1}<u<g_{2}$, with $g_{1}, g_{2} \in \operatorname{Stab}(x)$. Because of the requirement (iv) in the definition of a G-module, we have that $x=g_{1} x \leq u x \leq g_{2} x=x$, and hence $u \in \operatorname{Stab}(x)$.

On the other hand, if $x_{0}, x_{1} \in X$ and $x_{1} \in G x_{0}$ then $\operatorname{Stab}\left(x_{0}\right)=\operatorname{Stab}\left(x_{1}\right)$.

Example 7.

Let $x_{0} \in X$ and consider the canonical homomorphism $\pi: G \rightarrow G / \operatorname{Stab}\left(x_{0}\right)$. The orbit $G x_{0}$ is a $G / \operatorname{Stab}\left(x_{0}\right)$-module with the action $\pi(g) x_{0}:=g x_{0} . G x_{0}$ has only elements with trivial stabilizer.

Proposition I.4.1. ([10], 1.5.3)
Let X be a G-module.
(i) Let $V \subset X, g \in G$. If $\sup (V)$ exists then $g \sup (V)=\sup (g V)$. If $\inf (V)$ exists then $g \inf (V)=\inf (g V)$. If V is not bounded above (below) neither is $g V$.
(ii) Let $W \subset G, x_{0} \in X$. If $\sup _{G}(W)$ and $\sup _{X}\left(W x_{0}\right)$ exist then $\sup _{G}\left(W x_{0}\right) \leq$ $x_{0} \sup _{G}(W)$. If $\inf _{G}(W)$ and $\inf _{X}\left(W x_{0}\right)$ exist then inf $f_{G}\left(W x_{0}\right) \geq x_{0} \inf _{G}(W)$. If W is not bounded above (below) neither is $x_{0} W$, and conversely.

I.5. G-module maps

Definition I.5.1.

Let X, Y be G-modules. A map $\varphi: X \rightarrow Y$ is called a G-module map if φ is increasing and $\forall g \in G, x \in X, \varphi(g x)=g \varphi(x)$
$M(X, Y)$ is the set of all G-module maps from X to Y, and we put $M(X):=M(X, X)$. The set $M(X, Y)$ can be empty, for example, if X has an element x_{0} such that $\operatorname{Stab}\left(x_{0}\right) \neq\{1\}$ then $M(X, G)=\emptyset$. Indeed, we have that for any G-module map $\varphi, \operatorname{Stab}\left(x_{0}\right) \subset \operatorname{Stab}\left(\varphi\left(x_{0}\right)\right)$ and hence if $1 \neq g \in \operatorname{Stab}\left(x_{0}\right)$ then $g \in \operatorname{Stab}\left(\varphi\left(x_{0}\right)\right)$, but $\varphi\left(x_{0}\right) \in G$, a contradiction.

When we consider $Y=G^{\#}$ we can always determine a G-module map $\phi: X \rightarrow G^{\#}$, where X is any G-module. The following theorem shows this facts, the set $M\left(X, G^{\#}\right)$ is always non empty. We include the demonstration because it is fundamental for the theory of G-module maps.

Theorem I.5.1. ([10]; 1.5.6)
Let X be a G-module. Then there exists a G-module map $\phi: X \rightarrow G^{\#}$.
Proof.
Let x_{0} be any element in the G-module X. We know that $G x_{0}$ is coinitial in X and $G^{\#}$ is complete, therefore we can set

$$
\begin{aligned}
\phi: & X \longrightarrow G^{\#} \\
& x \longmapsto \sup _{G^{\#}}\left\{g \in G: g x_{0} \leq x\right\}
\end{aligned}
$$

Obviously, if $x_{1} \leq x_{2}$ then $\phi\left(x_{1}\right) \leq \phi\left(x_{2}\right)$, for all $x_{1}, x_{2} \in X$. Also, we have that for all $h \in G$,

$$
\begin{aligned}
\phi(h x) & =\sup _{G^{\#}}\left\{g \in G: g x_{0} \leq h x\right\} \\
& =\sup _{G^{\#}}\left\{g \in G: h^{-1} g x_{0} \leq x\right\} \\
& =\sup _{G^{\#}}\left\{h u \in G: u x_{0} \leq x\right\} \quad \text { with } u=h^{-1} g \\
& =h \sup _{G^{\#}}\left\{u \in G: u x_{0} \leq x\right\} \\
& =h \phi(x)
\end{aligned}
$$

As $G x_{0}$ is cofinal in X, we can also define $\phi(x)=\inf _{G^{\#}}\left\{g \in G: g x_{0} \geq x\right\}$.

In the study of X-normed Banach space $(E,\| \|)$, in [12] the authors use this theorem and extend a G-module map $\phi: X \rightarrow G^{\#}$ to a map $\phi: X \cup\{0\} \rightarrow G^{\#} \cup\{0\}$ to define a norm $\left\|\|_{\phi}\right.$ on $G^{\#}$. With this new norm, $\left(E,\| \|_{\phi}\right)$ is a Banach space. They use these two norms for comparing two Norm Hilbert Spaces and their operators.

In [14], all G-module maps in $M\left(G^{\#}\right)$ were determined. For this, in $G^{\#}$ they consider two topologies stronger than the order topology: the left order topology, τ^{l}, generated by the intervals $(x, y]:=\left\{z \in G^{\#}: x<z \leq y\right\}$ where $x, y \in G^{\#}$ and $x<y$ and the right order topology, τ^{r}, generated by the intervals $[x, y):=\left\{z \in G^{\#}: x \leq z<y\right\}$ where $x, y \in G^{\#}$ and $x<y$.

Definition I.5.2.

Let $f: A \rightarrow B$ a map with A, B totally ordered sets. We say that f is left continuous, if $f:\left(A, \tau^{l}\right) \rightarrow\left(B, \tau^{l}\right)$ is continuous. In the same way, we define right continuity.

In [14] we find a description of the following sets of G-module maps:

- $M\left(G^{\#}\right)=\left\{\varphi: G^{\#} \rightarrow G^{\#}: \varphi\right.$ is a G-module map $\}$
- $M^{l}\left(G^{\#}\right)=\left\{\varphi \in M\left(G^{\#}\right): \varphi\right.$ is left continuous $\}$
- $M^{r}\left(G^{\#}\right)=\left\{\varphi \in M\left(G^{\#}\right): \varphi\right.$ is right continuous $\}$

The next Theorem uses the fact that the dot multiplication \bullet and the star multiplication \star are left and right continuous respectively (see Chapter I Definition I.2.3, Proposition [.2.4, [14] and [13]).

Theorem I.5.2. ([14]; 5.1,5.2)
Let $\varphi \in M\left(G^{\#}\right)$. Then
(i) $\varphi \in M^{l}\left(G^{\#}\right)$ if and only if it has the form $x \mapsto x \bullet \alpha$ for some $\alpha \in G^{\#}$.
(ii) $\varphi \in M^{r}\left(G^{\#}\right)$ if and only if it has the form $x \mapsto x * \alpha$ for some $\alpha \in G^{\#}$.
(iii) $M\left(G^{\#}\right)=M^{l}\left(G^{\#}\right) \cup M^{r}\left(G^{\#}\right)$.

The previous theorem shows that each G-module map in $M\left(G^{\#}\right)$ is left continuous or right continuous.

Definition I.5.3.

We define an order relation \leq on $M(X, Y)$ by $\varphi_{1} \leq \varphi_{2}$ if only if $\varphi_{1}(x) \leq \varphi_{2}(x)$ for all $x \in X$.
The next theorem shows that this order is total on $M\left(G^{\#}\right)$.
Theorem I.5.3. ([14]; 5.3)
$M\left(G^{\#}\right)$ is a totally ordered set.

So, for all $\varphi_{1}, \varphi_{2} \in M\left(G^{\#}\right)$ we have that $\varphi_{1} \leq \varphi_{2}$ or $\varphi_{2} \leq \varphi_{1}$. We show the different possible cases in the next Corollary.

Corollary I.5.1.

Let $\varphi_{1}, \varphi_{2} \in M\left(G^{\#}\right)$ and $\alpha, \beta \in G^{\#}$ with $\alpha<\beta$. We have the following cases:
(i) If $\varphi_{1}(x)=x \bullet \alpha, \varphi_{2}(x)=x \bullet \beta$; then $\varphi_{1} \leq \varphi_{2}$.
(ii) If $\varphi_{1}(x)=x \star \alpha, \varphi_{2}(x)=x \star \beta$; then $\varphi_{1} \leq \varphi_{2}$.
(iii) If $\varphi_{1}(x)=x \star \alpha, \varphi_{2}(x)=x \bullet \beta$; then $\varphi_{1} \leq \varphi_{2}$.
(iv) If $\varphi_{1}(x)=x \bullet \alpha, \varphi_{2}(x)=x \star \beta$; then $\varphi_{1} \leq \varphi_{2}$.

Proof.
(i) By the result of Proposition I.2.3 in Chapter【, we have that for all $x \in G^{\#} x \bullet \alpha \leq$ $x \bullet \beta$ and therefore $\varphi_{1}(x) \leq \varphi_{2}(x)$, so $\varphi_{1} \leq \varphi_{2}$.
(ii) Similarly, we have that $x \star \alpha \leq x \star \beta$ for all $x \in X$, then $\varphi_{1} \leq \varphi_{2}$.
(iii) By Proposition I.2.3 (iv) in Chapter I we have that if $\alpha \leq \beta$ then $x \star \alpha \leq x \bullet \beta$ for all $x \in G^{\#}$. Thus, $\varphi_{1}(x)=x \star \alpha \leq x \bullet \beta=\varphi_{2}(x)$ for all $x \in G^{\#}$, that is to say $\varphi_{1} \leq \varphi_{2}$.
(iv) We have that $\varphi_{1}(x)=x \bullet \alpha \leq x \bullet \beta$ and hence by I.2.3 (ii), $x \bullet \beta \leq x \star \beta$ for all $x \in X$, so $x \bullet \alpha \leq x \star \beta$. Therefore $\varphi_{1} \leq \varphi_{2}$.

Theorem I.5.4. ([14]; 5.4)
$M\left(G^{\#}\right)$ is a G-module with the action $g \cdot \varphi:=(g \varphi)$ where for all $x \in X,(g \varphi)(x):=\varphi(g x)$.
Proof.
The first two requirements in the definition of a G-module are clear from the definition of the action of G on $M\left(G^{\#}\right)$. We will show (iii), (iv) and (v) (see Definition.4.1]in the section I.4). Let $g_{1}, g_{2} \in G$ and $\varphi, \varphi_{1}, \varphi_{2} \in M\left(G^{\#}\right)$. Then
(iii) If $g_{1}<g_{2}$ then $g_{1} x \leq g_{2} x$ for all $x \in G^{\#}$, because $G^{\#}$ is a G-module. Also, since φ is a G-module map, we have that $\varphi\left(g_{1} x\right) \leq \varphi\left(g_{2} x\right)$, thus $g_{1} \varphi(x) \leq g_{2} \varphi(x)$ for all $x \in G^{\#}$, and hence $g_{1} \varphi \leq g_{2} \varphi$.
(iv) $\varphi_{1}(x), \varphi_{2}(x) \in G^{\#}$ for all $x \in G^{\#}$. If $\varphi_{1}(x)<\varphi_{2}(x)$, then since $G^{\#}$ is a G-module, for all $x \in G^{\#}$ we have that $g \varphi_{1}(x) \leq g \varphi_{2}(x)$ and therefore $g \varphi_{1} \leq g \varphi_{2}$.
(v) Let φ_{1} be a G-module map with $\varphi_{1}(x)=x \bullet \beta$ and $\beta \in G^{\#}$. We will prove that the orbit $G \varphi_{1}$ is cofinal in $M\left(G^{\#}\right)$, that is, for all $\varphi(x)=x \bullet \alpha$ with $\alpha \in G^{\#}$ we can find $g \in G$ such that $\varphi \leq g \varphi_{1}$. Indeed, $G \beta$ is cofinal in $G^{\#}$, because $G^{\#}$ is a G-module, then we can always find a $g_{\alpha} \in G$ such that $\alpha \leq g_{\alpha} \beta$ and by Theorem I.5.3 and Corollary [.5.1 we have that for all $x \in G^{\#}$,

$$
\varphi(x)=x \bullet \alpha \leq x \bullet\left(g_{\alpha} \beta\right)=g_{\alpha}(x \bullet \beta)=g_{\alpha} \varphi_{1}(x) .
$$

Therefore $\varphi \leq g_{\alpha} \varphi_{1}$.

Similarly, if $\varphi(x)=x \star \alpha$ then we can find $g_{\alpha} \in G$ such that $\alpha \leq g_{\alpha} \beta$ and by Corollary I.5.1, $x \in G^{\#}$,

$$
\varphi(x)=x \star \alpha \leq x \bullet\left(g_{\alpha} \beta\right)=g_{\alpha}(x \bullet \beta)=g_{\alpha} \varphi_{1}(x) .
$$

The same argument applies if $\varphi_{1}(x)=x \star \beta$.

CHAPTER II

The Largest Group Contained in $G^{\#}$

Let G be a totally ordered group written multiplicatively and $G^{\#}$ be its Dedekind completion, that is, the completion by cuts. In the Preliminaries we saw that it is posible to extend the multiplication on G to a multiplication for elements in $G^{\#}$ in many ways [$\left.\mathbf{1 3}\right]$. Two canonical extensions were presented: the dot \bullet and star \star multiplications. In addition, if G is not isomorphic to a subgroup of \mathbb{R}^{+}then $\left(G^{\#}, \bullet\right)$ and $\left(G^{\#}, \star\right)$ are not groups, but they contain at least one non-trivial subgroup, G.

In Proposition 1.4.18 in [11], the authors show that

$$
\left(G^{\#}\right)_{0}=\left\{x \in G^{\#}: \operatorname{Stab}(x)=\{1\}\right\}
$$

is the largest group contained in $G^{\#}$, in which for all $x \in\left(G^{\#}\right)_{0}$ and $y \in G^{\#}, x \bullet y=x \star y$.
Basic examples show that G and $\left(G^{\#}\right)_{0}$ may coincide or differ. For instance, if G is any cyclic subgroup of $\left(\mathbb{R}^{+}, \cdot\right)$ then $G=\left(G^{\#}\right)_{0}=G^{\#}$, yet if $G=\mathbb{Q}^{+}$then $G \subsetneq\left(G^{\#}\right)_{0}=G^{\#}=\mathbb{R}^{+}$. In this case, both groups are of rank 1. An example of a totally ordered group with rank greater than 1 is the group in Example 2.2 of [13], the direct sum $G=\bigoplus_{i \in \mathbb{N}} G_{i}$, where each G_{i} is a multiplicative copy of \mathbb{Z} with componentwise multiplication and antilexicographical ordering. In this example $\left(G^{\#}\right)_{0}=G$, because each $x \in G^{\#}$ can be written as $g s$, where $g \in G$, and s is the supremum of some convex subgroup (see [10] Example 1.3.2.). Thus, whether or not $G=\left(G^{\#}\right)_{0}$ does not depend on the rank. Our aim in this chapter is to determine the conditions for $G \subsetneq\left(G^{\#}\right)_{0}$.

In the Section II.1 we give a necessary condition for the strict inclusion $G \subsetneq\left(G^{\#}\right)_{0}$. Following this we shall study two non-trivial examples of totally ordered groups with a decreasing sequence of convex subgroups. We determine its convex subgroups and some useful properties of them. In the last section we establish a sufficient condition on G that ensures that $G \subsetneq\left(G^{\#}\right)_{0}$.

II.1. A necessary condition for $G \subsetneq\left(G^{\#}\right)_{0}$

The following definition gives us a classification of totally ordered groups and allows us to determine a sufficient condition for $G=\left(G^{\#}\right)_{0}$.

Definition II.1.1.

Given a totally ordered group G, we say that it is quasidiscrete if the set $\{g \in G: g>1\}$ has a minimal element; otherwise G is quasidense.

The prefix quasi in the previous definition is due to the fact that there are totally ordered groups where $\min \{g \in G: g>1\}$ exists yet they contain a subgroup for which this is not true. Note that, if G is a cyclic subgroup of \mathbb{R}^{+}, then G is quasidiscrete and $G=\left(G^{\#}\right)_{0}$. The same happens with the direct sum $G=\bigoplus_{i \in \mathbb{N}} G_{i}$, where each G_{i} is a multiplicative copy of \mathbb{Z} with componentwise multiplication and antilexicographical ordering (Example 2.2 in [13]), where the successor of 1_{G} is the element $\left(g_{1}, 1, \ldots\right), G$ is quasidiscrete and $G=\left(G^{\#}\right)_{0}$. This behavior of $\left(G^{\#}\right)_{0}$ was reported in [9], but the proof was not included. We present one in the following Lemma.

Lemma II.1.1. If G is quasidiscrete then $\left(G^{\#}\right)_{0}=G$.
Proof. It is enough to prove that $\left(G^{\#}\right)_{0} \subset G$. Suppose that there is $s \in\left(G^{\#}\right)_{0}$ with $1<s$ and $s \notin G$. Thus, by definition, $S \operatorname{tab}(s)=\{1\}$.

Now, let $g_{0}=\min \{g \in G: g>1\}$. We have that $1<g_{0}<s$, since if $s<g_{0}$ then, by Proposition I.2.2 (iv), there would exist $g \in G$ such that $1<g<s<g_{0}$, which would contradict our choice of g_{0}.

Now, for all $g \in G$ with $g>1$ we have that $1<g_{0} \leq g$; then, multiplying by s, we obtain that

$$
1<g_{0}<s \leq g_{0} s \leq s g .
$$

But $s \neq g_{0} s$ since $\operatorname{Stab}(s)=\{1\}$; it follows that $1<g_{0}<s<g_{0} s \leq s g$.
Now, let $u \in G$ with $u<s$. Then $1<u^{-1} s$ and, by the definition of g_{0}, we have that $1<g_{0}<u^{-1} s$, so $u<g_{0}^{-1} s$ for all $u<s$. Therefore, as $s=\sup _{u \in G}\{u<s\}$ then $s \leq g_{0}^{-1} s$ or $g_{0} s \leq s$, which contradicts the fact that $s<g_{0} s$ shown above.

LemmaII.1.1 gives a necessary condition for $G \subsetneq\left(G^{\#}\right)_{0}$, that is, G must be quasidense. However this condition is not sufficient. We will show this in the next example.

Example 8.

We consider $G=\langle 2\rangle \times \mathbb{R}^{+}$with the lexicographical order and componentwise multiplication. Firstly, note that the sequence of elements of $G,\left(1, \frac{n+1}{n}\right)_{n \in \mathbb{N}}$ is decreasing and converges to 1_{G} and therefore $\min \{g \in G: g>1\}=1_{G}$, i. e. G is a quasidense group.

Secondly, we know that $H=\{1\} \times \mathbb{R}^{+}$is a convex subgroup of G and $s=\sup \{H\}$ or $t=\inf \{H\}$ are not in $\left(G^{\#}\right)_{0}$ because $S \operatorname{tab}(s)=S \operatorname{tab}(t)=H$ (see Preliminaries Lemma I.2.1).

Next, if $\alpha \in G^{\#} \backslash G$ then $\alpha=\sup (A)$, with A some bounded above subset of G.

$$
\begin{aligned}
\alpha & =\sup _{G^{\#}}\{g \in G: g<\alpha\} \\
& =\sup _{G^{\#}}\left\{\left(2^{n}, r\right) \in A: n \in \mathbb{Z}, r \in \mathbb{R}^{+},\left(2^{n}, r\right)<\alpha\right\} .
\end{aligned}
$$

Because A is bounded, there exists $m \in \mathbb{Z}$ such that $\left(2^{m}, r\right) \in A$ and $\left(2^{m+1}, r\right)>\alpha$. Note that, $\left(2^{m}, r\right) \in A$ for all $r \in \mathbb{R}$. Indeed, if we suppose that there exists $q \in \mathbb{R}^{+}$such that $\alpha<\left(2^{m}, q\right)$ then for $\left(2^{m}, r\right) \in A$,

$$
\left(2^{m}, r\right)<\alpha<\left(2^{m}, q\right),
$$

multiplying this inequality by $\left(2^{-m}, 1\right) \in G$,

$$
(1, r)<\alpha<(1, q) .
$$

This implies that $\alpha \in H$, the convex subgroup of G, a contradiction.
Finally,

$$
\begin{aligned}
\alpha & =\sup _{G^{\#}}\{g \in G: g<\alpha\} \\
& =\sup _{G^{\#}}\left\{\left(2^{m}, r\right): r \in \mathbb{R}^{+}\right\} \\
& =\sup _{G^{\#}}\left\{\left(2^{m}, 1\right) \cdot(1, r): r \in \mathbb{R}^{+}\right\} \\
& =\left(2^{m}, 1\right) \cdot \sup _{G^{\#}}\left\{(1, r): r \in \mathbb{R}^{+}\right\} \\
& =\left(2^{m}, 1\right) \cdot s .
\end{aligned}
$$

Therefore, $\left(G^{\#}\right)_{0}=G=\langle 2\rangle \times \mathbb{R}^{+}$and G is a quasidense group.
In short, for a totally ordered group G written multiplicatively, we have the inclusion $G \subseteq\left(G^{\#}\right)_{0} \subseteq G^{\#}$. The strict inclusion $G \subsetneq\left(G^{\#}\right)_{0}$ does not depend neither on $\operatorname{rank}(G)$ nor on G being quasidense.

Corollary II.1.1. If G contains a first non trivial cyclic convex subgroup, then $G=\left(G^{\#}\right)_{0}$.
Proof. Let $H_{1}=\langle h\rangle$, generated by $h>1$, be the first convex subgroup of G. This implies that $h=\inf \{g \in G: g>1\}$, so G is quasidiscrete and therefore $G=\left(G^{\#}\right)_{0}$.

For the aforementioned reason, we are interested in groups with a decreasing sequence of convex subgroups. We shall study in detail two ordered groups with these characteristics in the following two examples.

II.2. Example: Lexicographic Direct Sum

Let $\left(G_{i}\right)_{i \in \mathbb{N}}$ be a family of infinite cyclic groups, where $G_{i}=\left(\left\langle g_{i}\right\rangle, \cdot\right)$ and $g_{i}>1$. Each group $G_{i}=\left\{g_{i}^{\alpha}: \alpha \in \mathbb{Z}\right\}$ becomes a totally ordered group by the order relation $g_{i}^{\alpha}<g_{i}^{\beta} \Leftrightarrow$ $\alpha<\beta$.

Now, let \mathcal{G} be the direct sum of the groups G_{i}

$$
\mathcal{G}=\bigoplus_{i \in \mathbb{N}} G_{i}=G_{1} \oplus G_{2} \oplus G_{3} \oplus \cdots
$$

An element $g \in \mathcal{G}$ will be written as $g=\left(g_{i}^{\alpha_{i}}\right)_{i \in \mathbb{N}}=\left(g_{1}^{\alpha_{1}}, g_{2}^{\alpha_{2}}, g_{3}^{\alpha_{3}}, \ldots\right)$ where $\alpha_{i} \in \mathbb{Z}$ for all $i \in \mathbb{N}$ and $|\operatorname{supp}(g)|=\left|\left\{i \in \mathbb{N}: \alpha_{i} \neq 0\right\}\right|<\infty$. With the componentwise multiplication and the lexicographic order, \mathcal{G} becomes a totally ordered group. Hence, if $f=\left(g_{i}^{\alpha_{i}}\right)_{i \in \mathbb{N}}$, $h=\left(g_{i}^{\beta_{i}}\right)_{i \in \mathbb{N}}$ with $h \neq f$ and $r=\min \left\{i \in \mathbb{N}: \alpha_{i} \neq \beta_{i}\right\}$ then $f<h \Leftrightarrow \alpha_{r}<\beta_{r}$.

If we denote by e_{k} the element $\left(g_{i}^{\gamma_{i}}\right)_{i \in \mathbb{N}} \in \mathcal{G}$ such that $\gamma_{i}=0$ for all $i \neq k$ and $\gamma_{k}=1$, then

$$
e_{1}=\left(g_{1}, 1,1, \cdots\right) \quad e_{2}=\left(1, g_{2}, 1, \cdots\right) \quad e_{3}=\left(1,1, g_{3}, 1, \cdots\right) \quad \cdots
$$

and each element $g \in \mathcal{G}$ can be written as the product

$$
g=e_{1}^{\alpha_{1}} e_{2}^{\alpha_{2}} e_{3}^{\alpha_{3}} \cdots=\prod_{i \in \mathbb{N}} e_{i}^{\alpha_{i}},
$$

where the set $\left\{i: \alpha_{i} \neq 0\right\}$ is bounded.
Using this notation, we will make a tree diagram of \mathcal{G}, as shown in Figure II. 1 .

Figure II.1. Tree representation for the totally ordered group \mathcal{G}

The levels in the tree diagram, from top to bottom are numbered from one downwards and represent the different options for the components $e_{i}^{\alpha_{i}}$ of an element $g=\left(e_{i}^{\alpha_{i}}\right)_{i \in \mathbb{N}} \in \mathcal{G}$. Each possible path represents one element in \mathcal{G} and its location in the tree indicates its position in \mathcal{G}.

This scheme allows us to visualize some notable subsets and properties of \mathcal{G}. For example, given two paths in the tree, the element in \mathcal{G} represented by the path located in a branch further to the right is larger than the element represented by the path located on the left.
II.2.1. Two outstanding subsets of \mathcal{G}. Consider the following subsets of \mathcal{G}. For $i \in \mathbb{N}$ and $g \in \mathcal{G}$, we define

$$
A_{g}^{i}:=\left\{g e_{i}^{v}: v \in \mathbb{Z}\right\} .
$$

as well as

$$
C_{g}^{i}:=\left\{h=g e_{i}^{\nu_{i}} e_{i+1}^{v_{i+1}} \cdots e_{r}^{\nu_{r}}: r \in \mathbb{N}, i \leq r, v_{j} \in \mathbb{Z}, i \leq j \leq r\right\}
$$

We can make a tree diagram of A_{g}^{i} and C_{g}^{i} as shown by the Figures $I I .2$ and II.3,

Figure II.2. The branch in the figure represents the set A_{g}^{i}

Example 9. As an example to describe the tree diagram and subsets A_{g}^{i} and C_{g}^{i}, we consider the totally ordered group $G=\langle 2\rangle \times\langle 3\rangle \times\langle 5\rangle \times\langle 7\rangle$ with componentwise multiplication and lexicographic order.

Let $i=3$ and let $g=\left(2,3,1,7^{2}\right) \in G$. Then, we have that

Figure II.3. The branch in the figure represents the set C_{g}^{i}

$$
\begin{aligned}
& e_{1}=(2,1,1,1), \quad e_{2}=(1,3,1,1), \quad e_{3}=(1,1,5,1), \quad e_{4}=(1,1,1,7), \\
& \text { so } g=(2,3,1,7)=(2,1,1,1) \cdot(1,3,1,1) \cdot(1,1,5,1)^{0} \cdot(1,1,1,7)^{2} \text { and } \\
& A_{g}^{3}=\left\{g e_{3}^{v}: v \in \mathbb{Z}\right\} \\
&=\left\{\left(2,3,5^{v}, 7^{2}\right): v \in \mathbb{Z}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
C_{g}^{3} & =\left\{g e_{3}^{\nu_{3}} e_{4}^{v_{4}}: v_{j} \in \mathbb{Z}, i \leq j\right\} \\
& =\left\{\left(2,3,5^{\nu_{3}}, 7^{\nu_{4}}\right): v_{3}, v_{4} \in \mathbb{Z}\right\} .
\end{aligned}
$$

The following figures show the element $g=\left(2,3,1,7^{2}\right)$ and the subsets A_{g}^{3} and C_{g}^{3} in the tree diagram for the group G.

Figure II.4. The subset A_{g}^{3} where $g=\left(2,3,1,7^{2}\right)$

Figure II.5. The subset C_{g}^{3} where $g=\left(2,3,1,7^{2}\right)$
The next Proposition describes important properties of the subsets A_{g}^{i} and C_{g}^{i}.

Proposition II.2.1.

Let $g, h \in \mathcal{G}$ and $1<i \in \mathbb{N}$.
(i) The group \mathcal{G} is quasidense.
(ii) The sets A_{g}^{i} and C_{g}^{i} are bounded.
(iii) $\sup C_{g}^{i}$ and $\inf C_{g}^{i}$ do not belong to \mathcal{G}.
(iv) $\sup C_{g}^{i}=\sup A_{g}^{i}$.
(v) Given $k>1$ with $k \neq i$, we have $\sup A_{g}^{i} \neq \sup A_{g}^{k}$.

Proof.

(i) If we suppose that the set $\{g \in \mathcal{G}: g>1\}$ has a first element,

$$
g_{0}=\left(g_{i}^{\alpha_{i}}\right)_{i \in \mathbb{N}}=\min \{g \in \mathcal{G}: g>1\}
$$

then there exists an element $u=g_{0} e_{k+1}^{-1} \in \mathcal{G}$ where $k=\min \left\{i \in \mathbb{N}: \alpha_{i} \neq 0\right\}$ which satisfies $1<u<g_{0}$, a contradiction (see Figure II.6).

Figure II.6. The blue path represents g_{0} and the red path the element u.
(ii) Basically, it can be seen in the diagrams the procedure that gives bounds for any of these sets. We locate the set in the diagram and we move to the right for upper bounds and to the left for lower bounds. As an example, the element $g e_{i-1}$ is an upper bound and $g e_{i-1}^{-1}$ is a lower bound of A_{g}^{i} and C_{g}^{i} (see Figure II.7).
(iii) The $\sup C_{g}^{i}$ must satisfy that for all $n_{j} \in \mathbb{Z}, j \geq i$

$$
\left(g_{1}^{\alpha_{1}}, g_{2}^{\alpha_{2}}, \cdots g_{i-1}^{\alpha_{i-1}}, g_{i}^{v_{i}}, g_{i+1}^{v_{i+1}}, \ldots\right) \leq \sup C_{g}^{i} \leq g e_{i-1} .
$$

Figure II.7. Representation in the tree of the upper and lower bound of A_{g}^{i}
The assumption that $\sup C_{g}^{i}=\left(g_{j}^{\beta_{j}}\right)_{j \in \mathbb{N}} \in \mathcal{G}$ leads to a contradiction, because from the above inequality we deduce that

$$
\beta_{j}=\alpha_{j} \quad \forall j<i-1
$$

and

$$
\beta_{i-1}=\alpha_{i-1} \quad \text { or } \quad \beta_{i-1}=1+\alpha_{i-1}
$$

Therefore,
a) If $\beta_{i-1}=\alpha_{i-1}$ then the element $e_{1}^{\alpha_{1}} \cdots e_{i-1}^{\alpha_{i-1}} e_{i}^{\beta_{i}+1}$ is in C_{g}^{i} and is larger than $\sup C_{g}^{i}$.
b) If $\beta_{i-1}=1+\alpha_{i-1}$ then the element $e_{1}^{\alpha_{1}} \cdots e_{i-1}^{1+\alpha_{i-1}} e_{i}^{\beta_{i}-1}$ is an upper bound of C_{g}^{i} and is less than $\sup C_{g}^{i}$.
For the case of $\inf C_{g}^{i}$, the proof has the same structure.
(iv) By definition, $A_{g}^{i} \subset C_{g}^{i}$ and it is clear that $\sup A_{g}^{i} \leq \sup C_{g}^{i}$. In order to show that $\sup A_{g}^{i} \geq \sup C_{g}^{i}$ we note that for $h \in C_{g}^{i} \backslash A_{g}^{i}$ we can always determine an element $f \in A_{g}^{i}$ such that $h<f$. Indeed, let $g=\left(g_{i}\right)_{i \in \mathbb{N}}^{\alpha_{i}}$. If $h=\left(g_{j}^{\beta_{j}}\right)_{j \in \mathbb{N}} \in C_{g}^{i}$, then $f=g e_{i}^{\beta_{j}-\alpha_{j}+1}$ is an element A_{g}^{i} larger than h. Thus $\sup C_{g}^{i}=\sup A_{g}^{i}$.
(v) We suppose that $i<k$, in this case, the elements $h_{1}=g e_{i}$ and $h_{2}=g e_{i}^{2}$ belong to A_{g}^{i} and they satisfy $f<h_{1}<h_{2}$ for all $f \in A_{g}^{k}$. Therefore, $\sup A_{g}^{k}<\sup A_{g}^{i}$.
II.2.2. The convex subgroups of \mathcal{G}. The following proposition gives us a description of the proper convex subgroups of \mathcal{G}.

Proposition II.2.2.

For each $i \in \mathbb{N}$ with $i>1$, let

$$
C_{i}=\left\{g=\left(g_{j}^{\alpha_{j}}\right)_{j \in \mathbb{N}}: \alpha_{j} \in \mathbb{Z} \wedge \forall j<i, \alpha_{j}=0\right\} .
$$

Then every set C_{i} is a proper convex subgroup of \mathcal{G} and there are no others; thus \mathcal{G} has infinite rank.

Proof.
In fact, the first $i-1$ components of the elements in C_{i}, are equal to 1 . Let $f, h \in C_{i}$ with $f<h$ and let $g=\left(g_{j}^{\alpha_{j}}\right)_{j \in \mathbb{N}} \in \mathcal{G}$ such that $f<g<h$. If there exists $\alpha_{j} \neq 0$ with $j<i$ then $g<f$ or $h<g$, which would contradict the definition of g. Then, necessarily, $\alpha_{j}=0$ for all $j<i$. Therefore $g \in C_{i}$.

On the other hand, the collection of convex subgroups of \mathcal{G} is a totally ordered set. Clearly we have that $C_{i} \supsetneq C_{j}$ when $i<j$. Suppose that H is a proper convex subgroup of $\mathcal{G}, H \neq C_{i}$ for all $i>1$, then there exists $1<j \in \mathbb{N}$ such that $C_{j+1} \subsetneq H \subsetneq C_{j}$. The strict inclusion above implies the existence of an element $h=\left(g_{i}^{\alpha_{i}}\right)_{i \in \mathbb{N}} \in H$ such that $\alpha_{i}=0$ for all $i<j$ and $\alpha_{j}>0$. In addition H is convex, thus every element $f=\left(g_{i}^{\gamma_{i}}\right)_{i \in \mathbb{N}} \in G$ such that $\gamma_{i}=0$ for all $i<j$ and $-n \alpha_{j}<\gamma_{j}<n \alpha_{j}$ for some $n \in \mathbb{N}$ also belongs to H. Then $H=C_{j}$, and we obtain a contradiction to the strict inclusion above.

Proposition II.2.3.

Consider the set $O_{i}=\left\{e_{i}^{n}: n \in \mathbb{Z}\right\}$. For any $g, h \in \mathcal{G}$ and $1<i \in \mathbb{N}$ we have that
(1) $\sup A_{g}^{i}=g \cdot \sup O_{i}$ and $\inf A_{g}^{i}=g \cdot \inf O_{i}$.
(2) $\sup O_{i}=\inf \left(e_{i-1} O_{i}\right)$ and $\inf O_{i}=\sup \left(e_{i-1}^{-1} O_{i}\right)$.
(3) If $j<k$ then
(i) $\sup O_{k} \bullet \sup O_{j}=\sup O_{j}$ and $\inf O_{k} \star \inf O_{j}=\inf O_{j}$,
(ii) $\sup O_{j} \bullet \inf O_{j}=\inf O_{j}$ and $\sup O_{j} \star \inf O_{j}=\sup O_{j}$
(iii) $\sup A_{g}^{k} \bullet \sup A_{h}^{j}=\sup A_{g h}^{j}$
(iv) $\sup A_{g}^{k} \star \sup A_{h}^{j}=\sup A_{g h}^{j}$
(4) $\operatorname{Stab}\left(\sup A_{g}^{i}\right)=C_{1_{\mathcal{G}}}^{i}$

Proof.
(1) $\sup A_{g}^{i}=\sup \left\{g e_{i}^{n}: n \in \mathbb{Z}\right\}=g \cdot \sup \left\{e_{i}^{n}: n \in \mathbb{Z}\right\}=g \cdot \sup O_{i}$. In the same way we prove $\inf A_{g}^{i}=g \cdot \inf O_{i}$.

Figure II.8. Representation of the proper convex subgroup C_{3}
(2) If $\sup O_{i}<\inf \left(e_{i-1} O_{i}\right)$ then there exists $h=\left(g_{j}^{\gamma_{j}}\right)_{j \in \mathbb{N}} \in \mathcal{G}$ such that $\sup O_{i}<h<$ $\inf \left(e_{i-1} O_{i}\right)$. This last condition implies that $\gamma_{j}=0$ for all $j<i-1$. As $h>\sup O_{i}$ necessarily $\gamma_{i-1}=1$ but this is impossible, because $h<\inf \left(e_{i-1} O_{i}\right)$.
(3) We know that the dot and star multiplications are associative and if $g \in \mathcal{G}, x \in \mathcal{G}^{\#}$ then $g \bullet x=g \star x$.
(i) First, note that for $i<k, e_{j}^{q-1}<e_{k}^{p} e_{j}^{q}<e_{j}^{q+1}$. Now,

$$
\begin{aligned}
\sup O_{k} \bullet \sup O_{j} & =\sup _{\mathcal{G}^{\#}}\left\{u v: u, v \in \mathcal{G}, u<\sup O_{k}, v<\sup O_{j}\right\} \\
& =\sup _{\mathcal{G}^{\sharp}}\left\{e_{k}^{p} e_{j}^{q}: p, q \in \mathbb{N}\right\}=\sup _{\mathcal{G}^{*}}\left\{e_{j}^{q}: q \in \mathbb{N}\right\}=\sup O_{j} .
\end{aligned}
$$

$$
\begin{aligned}
\inf O_{k} \star \inf O_{j} & =\inf _{\mathcal{G}^{*}}\left\{u v: u, v \in \mathcal{G}, u>\inf O_{k}, v>\inf O_{j}\right\} \\
& =\inf _{\mathcal{G}^{\sharp}}\left\{e_{k}^{p} e_{j}^{q}: p, q \in \mathbb{N}\right\}=\inf _{\mathcal{G}^{\sharp}}\left\{e_{j}^{q}: q \in \mathbb{N}\right\}=\inf O_{j} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\sup O_{j} \bullet \inf O_{j} & =\sup O_{j} \bullet \sup \left(O_{j} e_{j-1}^{-1}\right) \\
& =e_{j-1}^{-1} \sup O_{j} \bullet \sup \left(O_{j}\right) \\
& =e_{j-1}^{-1} \sup O_{j} \\
& =\inf O_{j} .
\end{aligned}
$$

$$
\begin{aligned}
\sup O_{j} \star \inf O_{j} & =\inf \left(O_{j} e_{j-1}\right) \star \inf O_{j} \\
& =e_{j-1} \inf O_{j} \star \inf \left(O_{j}\right) \\
& =e_{j-1} \inf O_{j} \\
& =\sup O_{j} .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\sup A_{g}^{k} \bullet \sup A_{h}^{j} & =\left(g \cdot \sup O_{i}\right) \bullet\left(h \cdot \sup O_{k}\right) \\
& =g h\left(\sup O_{k} \bullet \sup O_{j}\right) \\
& =g h \cdot \sup O_{j} \\
& =\sup A_{g h}^{j} .
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\sup A_{g}^{k} \star \sup A_{h}^{j} & =\left(g \cdot \sup O_{k}\right) \star\left(h \cdot \sup O_{j}\right) \\
& =g h \cdot\left[\inf \left(e_{k-1} O_{k}\right) \star \inf \left(e_{j-1} O_{j}\right)\right] \\
& =g h e_{k-1} e_{j-1} \cdot\left[\inf \left(O_{k}\right) \star \inf \left(O_{j}\right)\right] \\
& =g h e_{k-1} e_{j-1} \inf \left(O_{j}\right) \\
& =g h e_{k-1} \sup \left(O_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =g h \sup \left(O_{j}\right) \\
& =\sup A_{g h .}^{j} .
\end{aligned}
$$

(4) $\operatorname{Stab}\left(\sup A_{g}^{i}\right)=\operatorname{Stab}\left(g \cdot \sup O_{i}\right)=\operatorname{Stab}\left(\sup O_{i}\right)=\operatorname{Stab}\left(\sup C_{1_{\mathcal{G}}}^{i}\right)=C_{1_{\mathcal{G}}}^{i}$

The rank of the totally ordered group \mathcal{G} is ω. Thus \mathcal{G} is not complete. In the next theorem we will characterize its completion $\mathcal{G}^{\#}$.

Theorem II.2.1.

$$
\mathcal{G}^{\#}=\mathcal{G} \cup \bigcup_{1<i \in \mathbb{N}} \mathcal{G} \sup O_{i}
$$

Proof.
The existence of $u \in \mathcal{G}^{\#} \backslash \mathcal{G}$ that does not belong to any orbit $\mathcal{G} \sup O_{i}$ with $i>1$ will lead to a contradiction. Indeed, we know that

$$
u=\sup _{\mathcal{G}^{\sharp}}\left\{h=\left(g_{i}^{\alpha_{i}(h)}\right)_{i \in \mathbb{N}} \in \mathcal{G}: h<u\right\}
$$

We denote by $B_{u}^{1}=\left\{h=\left(g_{i}^{\alpha_{i}(h)}\right)_{i \in \mathbb{N}} \in G: h<u\right\}$. Necessarily there is an $m_{1} \in \mathbb{N}$ such that

$$
m_{1}=\max \left\{\alpha_{1}(h): h \in B_{u}^{1}\right\}
$$

since, otherwise, B_{u}^{1} is not a bounded set. Now, denote by

$$
B_{u}^{2}=\left\{h \in B_{u}^{1}: \alpha_{1}(h)=m_{1}\right\}
$$

We have that $m_{2}=\max \left\{\alpha_{2}(h): h \in B_{u}^{2}\right\}$ must exist. If not, $u=\sup \left(e_{1}^{m_{1}} O_{2}\right)$ which is impossible by the definition of u. Denote now, for each $k \in \mathbb{N}$,

$$
B_{u}^{k}=\left\{h \in B_{u}^{k-1}: \alpha_{k-1}(h)=m_{k-1}\right\}
$$

and we will prove by induction that $m_{k}=\max \left\{\alpha_{k}(h): h \in B_{u}^{k}\right\}$ does exist for all $k \in \mathbb{N}$.
We have already proved the existence of m_{1} and m_{2}. Now, suppose that $m_{k}=$ $\max \left\{\alpha_{k}(h): h \in B_{u}^{k}\right\}$ exists and so

$$
B_{u}^{k+1}=\left\{h \in B_{u}^{k}: \alpha_{k}(h)=m_{k}\right\} .
$$

If we suppose that $m_{k+1}=\max \left\{\alpha_{k+1}(h): h \in B_{u}^{k+1}\right\}$ does not exist we are led to

$$
u=e_{1}^{m_{1}} e_{2}^{m_{2}} \cdots e_{k}^{m_{k}} \sup \left(O_{k+1}\right)
$$

which contradicts the definition of u. We conclude that there is m_{k}, as defined above, for all $k \in \mathbb{N}$.

Thus,

$$
u=\sup _{G^{\#}}\left\{h=\left(g_{i}^{\alpha_{i}(h)}\right)_{i \in \mathbb{N}} \in G: h<u\right\}=\left(g_{i}^{m_{i}}\right)_{i \in \mathbb{N}}
$$

and this contradicts the definition of u.
Proposition II.2.4. If $1<i \in \mathbb{N}$ then $\mathcal{G} / C_{1_{\mathcal{G}}}^{i}$ is quasidiscrete.
Proof. Note that,

$$
\begin{aligned}
\sup \left(C_{1_{\mathcal{G}}}^{i}\right) \star \sup \left(C_{1_{\mathcal{G}}}^{i}\right) & =\sup \left(O_{i}\right) \star \sup \left(O_{i}\right) \\
& =\inf \left(O_{i} e_{i-1}\right) \star \inf \left(O_{i} e_{i-1}\right) \\
& =e_{i-1}^{2} \inf \left(O_{i}\right) \\
& =e_{i-1} \sup \left(O_{i}\right) \\
& =e_{i-1} \sup \left(C_{1_{\mathcal{G}}}^{i}\right) . \\
\inf \left(C_{1_{\mathcal{G}}}^{i}\right) \bullet \inf \left(C_{1_{\mathcal{G}}}^{i}\right)= & =\inf \left(O_{i}\right) \bullet \inf \left(O_{i}\right) \\
& =\sup \left(O_{i} e_{i-1}^{-1}\right) \bullet \sup \left(O_{i} e_{i-1}^{-1}\right) \\
& =e_{i-1}^{-2} \sup \left(O_{i}\right) \\
& =e_{i-1}^{-1} \inf \left(O_{i}\right) \\
& =e_{i-1}^{-1} \inf \left(C_{1_{G}}^{i}\right) .
\end{aligned}
$$

By Proposition I.2.5, it is known that $\mathcal{G} / C_{1_{\mathcal{G}}}^{i}$ is quasidiscrete with $\pi\left(e_{i-1}\right)=\min \{h \in$ $\left.\mathcal{G} / C_{1_{\mathcal{G}}}^{i}: h>1\right\}$, where $\pi: \mathcal{G} \rightarrow \mathcal{G} / C_{1_{\mathcal{G}}}^{i}$ is the canonical map.

II.3. Example: Levi-Civita Field

We start by stating the main definitions and properties of Levi-Civita field.
A subset M of the rational numbers \mathbb{Q} is called left-finite if for every $r \in \mathbb{Q}$ there are only finitely many elements of M that are smaller than r. The set of all left-finite subsets of \mathbb{Q} will be denoted by \mathcal{F}.

Let $M \in \mathcal{F}$. If $M \neq \emptyset$, the elements of M can be arranged in ascending order; and there exists a minimum of M. If M is infinite, its elements form a strictly monotonic sequence that is divergent.

Also, we have for $M, N \in \mathcal{F}$
(1) $M \cup N \in \mathcal{F}, M \cap N \in \mathcal{F}$ and if $X \subset M$ then $X \in \mathcal{F}$,
(2) $M+N=\{a+b: a \in M, b \in N\} \in \mathcal{F}$, and for every $c \in M+N$, there are only finitely many pairs $(a, b) \in M \times N$ such that $c=a+b$.

Definition II.3.1.

Consider the set \mathcal{R} of all real-valued functions on \mathbb{Q} that are nonzero only on a left-finite
set, that is, they have left-finite support

$$
\mathcal{R}:=\{f: \mathbb{Q} \rightarrow \mathbb{R}: \operatorname{supp}(f) \in \mathcal{F}\}
$$

We define two operations for the elements in \mathcal{R}. Let $f, g \in \mathcal{R}$ and $q \in \mathbb{Q}$:
(i) the addition on \mathcal{R} is componentwise

$$
(f+g)[q]=f[q]+g[q]
$$

(ii) and multiplication is defined as follows

$$
(f \cdot g)[q]=\sum_{q_{1}+q_{2}=q} f\left[q_{1}\right] \cdot g\left[q_{2}\right]
$$

We have that \mathbb{R} can be embedded into \mathcal{R} via the map Π. Let $x \in \mathbb{R}$, the map $\Pi: \mathbb{R} \rightarrow \mathcal{R}$ is defined by

$$
\Pi(x)[q]= \begin{cases}x & , \text { if } q=0 \\ 0 & , \text { else }\end{cases}
$$

Π is injective, $\Pi(x+y)=\Pi(x)+\Pi(x)$ and $\Pi(x \cdot y)=\Pi(x) \cdot \Pi(x)$. This embedding is not surjective, note that if $x \in \mathbb{R} \backslash\{0\}, \operatorname{supp}(\Pi(x))=\{0\}$.

Theorem II.3.1. ([2], Theorem 2.3)
$(\mathcal{R},+, \cdot)$ is a field.
The field $(\mathcal{R},+, \cdot)$ is called the Levi-Civita field ([2] and [17] contain interesting results with respect to this field). From now on, its elements will be denoted by the letters x, y, z, \ldots (instead of $f, g, h \ldots$... Also we denote the identity element in \mathcal{R} by 1 , so

$$
1[q]= \begin{cases}1 & , \text { if } q=0 \\ 0 & , \text { else }\end{cases}
$$

For $x \in \mathcal{R}$ with $x \neq 0$, we denote by $\lambda(x)=\min (\operatorname{supp}(x))$ which exists because of left-finiteness of $\operatorname{supp}(x)$ and we define $\lambda(0)=+\infty$.

To introduce an order structure to \mathcal{R}, we consider the set \mathcal{R}^{+}of all nonvanishing elements $x \in \mathcal{R}$ that satisfy $x[\lambda(x)]>0$. This is the cone of positivity in the Levi-Civita Field.

$$
\mathcal{R}^{+}=\{x \in \mathcal{R} \backslash\{0\}: x[\lambda(x)]>0\} .
$$

The basic properties of \mathcal{R}^{+}are:
Lemma II.3.1. ([2], Lemma 3.1)
(i) $\mathcal{R}^{+} \cap\left(-\mathcal{R}^{+}\right)=\emptyset, \mathcal{R}^{+} \cap\{0\}=\emptyset$ and $\mathcal{R}^{+} \cup\{0\} \cup\left(-\mathcal{R}^{+}\right)=\mathcal{R}$
(ii) If $x, y \in \mathbb{R}^{+}$, then $x+y \in \mathbb{R}^{+}$and $x y \in \mathbb{R}^{+}$.

Now, we define an order in \mathcal{R}.

Definition II.3.2.

Let $x, y \in \mathcal{R}$ be given. We say that $y>x$ if $x \neq y$ and $(y-x) \in \mathcal{R}^{+}$; and we say $y \geq x$ if $y=x$ or $y>x$. Also, we say $y<x$ if $x>y$ and $y \leq x$ if $x \geq y$.

Notice that with this definition we have, for $x \neq y$,

$$
y>x \Leftrightarrow(y-x)[\lambda(y-x)]>0
$$

Theorem II.3.2. ([2], Theorem 3.1)
With the relation $\geq,(\mathcal{R},+, \cdot)$ becomes a totally ordered field.
The order is compatible with the algebraic structure of \mathcal{R}, that is, for any x, y, z, we have: $x>y \Rightarrow x+z>y+z$; and if $z>0$, we have $x>y \Rightarrow x \cdot z>y \cdot z$.
II.3.1. Levi-Civita Multiplicative Group $\left(\mathcal{R}^{+}, \cdot\right)$. Later on, we will see that the multiplicative group $\left(\mathcal{R}^{+}, \cdot\right)$ has infinite rank. Our aim here is the description of its convex subgroups. In fact, if we consider the order given by the inclusion, we will show that
(i) the set

$$
\mathcal{L}=\left\{x \in \mathcal{R}^{+}: \lambda(x)=0\right\}
$$

is the largest convex subgroup of $\left(\mathcal{R}^{+}, \cdot\right)$
(ii) the largest proper convex subgroup contained in \mathcal{L} is

$$
\mathcal{L}^{0}=\left\{x \in \mathcal{R}^{+}: \lambda(x)=0, x[0]=1\right\}
$$

(ii) for each $r \in \mathbb{Q}^{+}$, the sets $\mathcal{L}_{r}^{0}=\left\{x \in \mathcal{R}^{+}: \lambda(x)=0, x[0]=1, \lambda_{1}(x) \geq r\right\}$ are convex subgroups of $\left(\mathcal{R}^{+}, \cdot\right)$ where

$$
\lambda_{1}(x):= \begin{cases}\min (\operatorname{supp}(x) \backslash\{\lambda(x)\}) & \text { if } \operatorname{supp}(x) \neq\{\lambda(x)\} \\ +\infty & \text { else }\end{cases}
$$

Before we characterize the positive cone $P=\left\{x \in \mathcal{R}^{+}: x>1\right\}$ we will show by an example different types of elements of P.

Example 10.

We consider the following numbers:

$$
x[q]=\left\{\begin{array}{ll}
1 & , q=-2 \\
-1 & , q=-1 \\
2 & , q=1 \\
0 & , \text { otherwise }
\end{array} \quad y[q]=\left\{\begin{array}{ll}
2 & , q=0 \\
-1 & , q=1 \\
3 & , q=2 \\
0 & , \text { otherwise }
\end{array} \quad z[q]= \begin{cases}1 & , q=0 \\
3 & , q=2 \\
-1 & , q=5 \\
0 & , \text { otherwise }\end{cases}\right.\right.
$$

See Figure II. 9 for a graphic representation of these elements. They are in the positive cone P of $\left(\mathcal{R}^{+}, \cdot\right)$. Indeed,

Figure II.9. The numbers $x, y, z \in P$

$$
\begin{array}{lll}
\lambda(x-1)=-2 & \text { and } & (x-1)[-2]=1>0 \\
\lambda(y-1)=0 & \text { and } & (y-1)[0]=1>0 \\
\lambda(z-1)=2 & \text { and } & (z-1)[2]=3>0
\end{array}
$$

These three numbers allow us to visualize three subsets of the positive cone P.
(i) The subset P_{1} of elements such that the minimum of the support is negative ($x \in$ P_{1}).
(ii) The subset P_{2} of elements such that the minimum of the support is 0 and whose value at 0 is greater than $1\left(y \in P_{2}\right)$.
(iii) The subset P_{3} of elements such that the minimum of the support is 0 , whose value at 0 is 1 and whose value at the next support point is greater than $0\left(z \in P_{3}\right)$.

Lemma II.3.2.

Let

$$
\begin{gathered}
\lambda(x):= \begin{cases}\min (\sup (x)) & \text { if } x \neq 0 \\
+\infty & \text { else }\end{cases} \\
\lambda_{1}(x):= \begin{cases}\min (\operatorname{supp}(x) \backslash\{\lambda(x)\}) & \text { if } \operatorname{supp}(x) \neq\{\lambda(x)\} \\
+\infty & \text { else }\end{cases}
\end{gathered}
$$

and P_{1}, P_{2} and P_{3} the following subsets of P

$$
\begin{aligned}
& P_{1}=\left\{x \in \mathcal{R}^{+}: \lambda(x)<0\right\} \\
& P_{2}=\left\{x \in \mathcal{R}^{+}: \lambda(x)=0 \wedge x[0]>1\right\} \\
& \left.P_{3}=\left\{x \in \mathcal{R}^{+}: \lambda(x)=0 \wedge x[0]=1 \wedge x\left[\lambda_{1}(x)\right]>0\right)\right\}
\end{aligned}
$$

Then $P=P_{1} \cup P_{2} \cup P_{3}$.
Proof.
If $x \in\left(P_{1} \cup P_{2} \cup P_{3}\right)$ then $(x-1)\left[(\lambda(x-1)]>0\right.$ because $1[q]=\left\{\begin{array}{ll}1 & \text { if } q=0 \\ 0 & \text { else }\end{array}\right.$ and

- if $x \in P_{1}$, then $\lambda(x-1)<0$ and $(x-1)[\lambda(x-1)]=x[\lambda(x)]>0$
- if $x \in P_{2}$, then $\lambda(x-1)=0$ but $(x-1)[0]=x[0]-1>0$
- if $x \in P_{3}$, then $\lambda(x-1)>0$ and $(x-1)[\lambda(x-1)]=x\left[\lambda_{1}(x)\right]>0$.

Therefore, $P_{1} \cup P_{2} \cup P_{3} \subset P$. So, we only need to prove that $P \subset P_{1} \cup P_{2} \cup P_{3}$.
If $x \in P$ then $x[\lambda(x)]>0$ and $\lambda(x) \leq 0$, since if we suppose $\lambda(x)>0$ then $(1-x)[\lambda(1-$ $x)]=(1-x)[0]=1$, therefore $1>x$ and $x \notin P$, a contradiction. If $x \in P$ and $x \notin\left(P_{2} \cup P_{3}\right)$ then
(i) If $\lambda(x)=0 \wedge x[0]<1$ then $x<1$ and hence $x \notin P$, a contradiction.
(ii) If $\lambda(x)=0 \wedge x[0]=1 \wedge x\left[\lambda_{1}(x)\right]<0$ then $(x-1)[\lambda(x-1)]=(x)\left[\lambda_{1}(x)\right]<0$; it follows that $x<1$ and hence $x \notin P$, a contradiction.
(iii) If $\lambda(x)<0$, the only option is $x[\lambda(x)]>0$ and therefore $x \in P_{1}$.

Notice that $P \cap P^{-1}=\emptyset, P \cap\{1\}=\emptyset, P \cup\{1\} \cup P^{-1}=\mathcal{R}^{+}$and $x, y \in P \Rightarrow x \cdot y \in P$. Also, the order defined on \mathcal{R} induces an order in $\left(\mathcal{R}^{+}, \cdot\right)$. Thus

$$
y>x \Leftrightarrow y x^{-1} \in P \Leftrightarrow y x^{-1} \in\left(P_{1} \cup P_{2} \cup P_{3}\right)
$$

II.3.2. The convex subgroups of $\left(\mathcal{R}^{+}, \cdot\right)$. In order to determine the rank of $\left(\mathcal{R}^{+}, \cdot\right)$ we will study the following subsets of \mathcal{R}^{+}

$$
\begin{aligned}
\mathcal{L} & =\left\{x \in \mathcal{R}^{+}: \lambda(x)=0\right\} \\
\mathcal{L}^{0} & =\left\{x \in \mathcal{R}^{+}: \lambda(x)=0, x[0]=1\right\} \\
\mathcal{L}_{r}^{0} & =\left\{x \in \mathcal{R}^{+}: \lambda(x)=0, x[0]=1, \lambda_{1}(x) \geq r\right\}
\end{aligned}
$$

where $r \in \mathbb{Q}^{+}$and for all $x \in \mathcal{R}^{+} \lambda(x)$ and $\lambda_{1}(x)$ are defined as in Lema II.3.2. We have for all $r \in \mathbb{Q}^{+}, \mathcal{L}_{r}^{0} \subsetneq \mathcal{L}^{0} \subsetneq \mathcal{L}$. We will prove that these sets belong to a decreasing chain of convex subgroups of \mathcal{R}^{+}.

Lemma II.3.3.

With the order given by inclusion, the set

$$
\mathcal{L}:=\left\{x \in \mathcal{R}^{+}: \lambda(x)=0\right\}
$$

is the largest convex subgroup of $\left(\mathcal{R}^{+}, \cdot\right)$.
Proof.
Note that $1 \in \mathcal{L}$. Firstly, we must prove that \mathcal{L} is closed under multiplication. Suppose $x, y \in \mathcal{L}$; then $\lambda(x)=\lambda(y)=0$ and $\lambda(x \cdot y)=0$, because $0 \leq q_{1}+q_{2}$ with $q_{1} \in \operatorname{supp}(x)$, $q_{2} \in \operatorname{supp}(y)$ and $(x y)[0]=x[0] \cdot y[0]>0$. Now, let $x \in \mathcal{L}$, we prove that $x^{-1} \in \mathcal{L}$. Indeed, we know that $0=\lambda(1)=\lambda\left(x x^{-1}\right)=\lambda(x)+\lambda\left(x^{-1}\right)=\lambda\left(x^{-1}\right), x[0]>0$ and $1=\left(x x^{-1}\right)[0]=$ $x[0] \cdot x^{-1}[0]$ therefore $x^{-1}[0]=\frac{1}{x[0]}>0$ and so $x^{-1} \in \mathcal{L}$. The other group axioms are inherited from $\left(\mathcal{R}^{+}, \cdot\right)$.

Next, let $x, y \in \mathcal{L}$ and $u \in \mathcal{R}^{+}$such that $x<u<y$. This implies that $\lambda(u)=0$ because if $\lambda(u)>0$ then $u<x$, and if $\lambda(u)<0$ then $u>y$. This shows that \mathcal{L} is a convex subgroup.

Finally, let \mathcal{M} be a proper convex subgroup of $\left(\mathcal{R}^{+}, \cdot\right)$. If $x \in \mathcal{M} \backslash \mathcal{L}$ then, without loss of generality, we may assume that $\lambda(x)<0$. Thus, we can always find $n \in \mathbb{N}$ such that $\lambda(x)<-\frac{1}{n}$ and so the element $d^{-\frac{1}{n}}$, given by

$$
d^{-\frac{1}{n}}[q]= \begin{cases}1 & q=-\frac{1}{n} \\ 0 & q \neq-\frac{1}{n}\end{cases}
$$

is in \mathcal{R}^{+}and $1<d^{-\frac{1}{n}}<x$.

Figure II.10. $a, b \in \mathbb{R}$ with $a<1<b ; n, m \in \mathbb{N}$ with $m<n$
Then, by the convexity of the subgroup \mathcal{M} we have that $d^{-1} \in \mathcal{M}$. Moreover, for any $y \in \mathcal{R}^{+}$we can always find a $m \in \mathbb{N}$ such that $d^{m}<y<d^{-m}$ and hence $y \in \mathcal{M}$, which contradicts that \mathcal{M} is a proper subgroup of \mathcal{R}^{+}.

Lemma II.3.4.

The set

$$
\mathcal{L}^{0}=\left\{x \in \mathcal{R}^{+}: \lambda(x)=0, x[0]=1\right\}
$$

is a convex subgroup of $\left(\mathcal{R}^{+}, \cdot\right)$.

Proof.
Notice that if $x \in \mathcal{L}^{0}$ then $\lambda\left(x^{-1}\right)=0$ and $x^{-1}[0]=x[0] x^{-1}[0]=1[0]=1$ and therefore $x^{-1} \in \mathcal{L}^{0}$. Let $x, y \in \mathcal{L}^{0}$ and $u \in \mathcal{R}^{+}$such that $x<u<y$. Then
(i) $\lambda(u)=0$: If $\lambda(u)>0$ then $u<x$, and if $\lambda(u)<0$ then $u>y$.
(ii) $u[0]=1$: If $u[0]>1$ then $u>y$, and if $u[0]<1$ then $u<x$.

Thus $u \in \mathcal{L}^{0}$.

Lemma II.3.5.

The set

$$
\mathcal{L}_{r}^{0}=\left\{x \in \mathcal{R}^{+}: \lambda(x)=0, x[0]=1, \lambda_{1}(x) \geq r\right\}
$$

is a convex subgroup of $\left(\mathcal{R}^{+}, \cdot\right)$ for each $r \in \mathbb{Q}^{+}$.
Proof.
Just as before, we can prove that if $x \in \mathcal{L}_{r}^{0}$ then $\lambda\left(x^{-1}\right)=0$ and $x^{-1}[0]=1$.
Additionally, $\lambda_{1}\left(x^{-1}\right) \geq r$, since if $\lambda_{1}\left(x^{-1}\right)<r$ then $\left(x \cdot x^{-1}\right)\left[\lambda_{1}\left(x^{-1}\right)\right]=x[0]$. $x^{-1}\left[\lambda_{1}\left(x^{-1}\right)\right]=x^{-1}\left[\lambda_{1}\left(x^{-1}\right)\right] \neq 0$ but on the other hand $\left(x \cdot x^{-1}\right)\left[\lambda_{1}\left(x^{-1}\right)\right]=1\left[\lambda_{1}\left(x^{-1}\right)\right]=0$, a contradiction. We conclude that $x^{-1} \in \mathcal{L}_{r}^{0}$.

Finally, we show that \mathcal{L}_{r}^{0} is a convex subgroup. Let $x, y \in \mathcal{L}_{r}^{0}$ and $u \in \mathcal{R}^{+}$such that $x<u<y$. As in the proof of the previous Lemma, we have that $\lambda(u)=0$ and $u[0]=1$. Also $\lambda_{1}(u) \geq r$, because assuming that $\lambda_{1}(u)<r$ leads to a contradiction: If $u\left[\lambda_{1}(u)\right]<0$ then $u<x$ and if $u\left[\lambda_{1}(u)\right]>0$ then $u>y$.

Thus $u \in \mathcal{L}_{r}^{0}$ and therefore \mathcal{L}_{r}^{0} is a convex group for all $r \in \mathbb{Q}^{+}$.
Corollary II.3.1. $\left(\mathcal{R}^{+}, \cdot\right)$ has infinite rank.

Lemma II.3.6.

There is a jump in $\left(\mathcal{R}^{+}, \cdot\right)$, i.e. \mathcal{R}^{+}does not contain any convex subgroup between \mathcal{L}^{0} and \mathcal{L}.

Proof.
If $\overline{\mathcal{L}}$ were a convex subgroup of $\left(\mathcal{R}^{+}, \cdot\right)$ such that $\mathcal{L}^{0} \subsetneq \overline{\mathcal{L}} \subseteq \mathcal{L}$, then there would be an element $x \in \overline{\mathcal{L}}$ such that $\lambda(x)=0, x[0]=a \neq 1$ (if for all $x \in \overline{\mathcal{L}}, x[0]=1$, then $\overline{\mathcal{L}}=\mathcal{L}^{0}$). But we know that $\overline{\mathcal{L}}$ is a convex subgroup and in this case $x^{-1}[0]=a^{-1}$. Without loss of generality, we may assume that $a>1$. Thus, for any element $y \in \mathcal{L}$ such that $y[0]=b$ we can find an $n \in \mathbb{N}$ such that $a^{-n}<b<a^{n}$. Note that $x^{n}[0]=a^{n}$ and $x^{-n}[0]=a^{-n}$ and therefore $x^{-n}<y<x^{n}$, so by convexity of $\overline{\mathcal{L}}$ we have that $y \in \overline{\mathcal{L}}$. We conclude that $\overline{\mathcal{L}}=\mathcal{L}$.

Lemma II.3.7.

For all $r \in \mathbb{Q}^{+}$, the largest proper convex subgroup in \mathcal{L}_{r}^{0} is $\left(\mathcal{L}_{r}^{0}\right)^{\star}=\bigcup_{i>r} \mathcal{L}_{i}^{0}$

Proof.
If $\overline{\mathcal{L}}$ were a convex subgroup of $\left(\mathcal{R}^{+}, \cdot\right)$ such that

$$
\bigcup_{i>r} \mathcal{L}_{i}^{0} \subsetneq \overline{\mathcal{L}} \subseteq \mathcal{L}_{r}^{0}
$$

then we can find an element $x \in \overline{\mathcal{L}}$ such that $x \notin \mathcal{L}_{i}^{0}$ for all $i>r$. This condition implies that $\lambda_{1}(x)=r$ otherwise $\lambda_{1}(x)>r$ and $x \in \mathcal{L}_{\lambda_{1}(x)}^{0} \subset \bigcup_{i>r} \mathcal{L}_{i}^{0}$.

Now, we prove the inclusion $\mathcal{L}_{r}^{0} \subseteq \overline{\mathcal{L}}$. Indeed, let $x \in \mathcal{L}_{r}^{0}$ and put $a:=x[r] \in \mathbb{R}$; then for all $y \in \mathcal{L}_{r}^{0}$ with $y[r]=b$ we could find $n \in \mathbb{N}$ such that $-n|a|<b<n|a|$. Also we know that

$$
\lambda_{1}\left(x^{n}\right)=\lambda_{1}\left(x^{-n}\right)=r, \quad x^{n}[r]=n a \quad \text { and } \quad x^{-n}[r]=-n a
$$

Note that if $a>0$ then $x^{-n}<y<x^{n}$, and if $a<0$ then $x^{n}<y<x^{-n}$. Therefore $y \in \overline{\mathcal{L}}$, because x^{n} and x^{-n} are elements of the convex subgroup $\overline{\mathcal{L}}$. Thus $\overline{\mathcal{L}}=\mathcal{L}_{r}^{0}$ and hence $\left(\mathcal{L}_{r}^{0}\right)^{\star}$ is the greatest convex subgroup contained in \mathcal{L}_{r}^{0}.

These two examples above show the behavior of some totally ordered groups with a decreasing sequence of convex subgroups.

The results in the next section will complete the characterization of $\left(G^{\#}\right)_{0}$.

II.4. Sufficient conditions for $G \subsetneq\left(G^{\#}\right)_{0}$

Theorem II.4.1.

Let (G, \cdot, \leq) be a totally ordered multiplicative group with $\operatorname{rank}(G)>1$. Let $G^{\#}$ be the Dedekind completion of G, and let $\alpha \in G^{\#} \backslash G$ and $C_{\alpha}:=\{g \in G: g<\alpha\}$. If there exists a convex subgroup H of G such that $H \subseteq C_{\alpha}$ then $H \subseteq S \operatorname{tab}(\alpha)$.

Proof.
Without loss of generality, we may assume that $\alpha>1$. Since G is cofinal (and coinitial) in $G^{\#}$, we can always find $f \in G$ such that $\alpha<f$. Thus C_{α} is a bounded above subset of G (see Figure II.11).

Figure II.11. Representation of C_{α}
Consider now the canonical morphism

$$
\begin{aligned}
\pi: & G \rightarrow G / H \\
& g \longmapsto \bar{g}=g H
\end{aligned}
$$

We know that π is increasing. We will prove that $\pi\left(C_{\alpha}\right)$ is a cut in G / H.
(i) $C_{\alpha} \neq \emptyset$, since G is coinitial in $G^{\#}$ we can find $u \in G$ such that $u<\alpha$ and therefore $\pi\left(C_{\alpha}\right) \neq \emptyset$.
(ii) On the other hand, if $\pi(u)<\pi(g)$ for any $g \in C_{\alpha}$ then $u \leq g$ (because π is increasing), and since C_{α} is a cut in G then $u \in C_{\alpha}$, therefore $\pi(u) \in \pi\left(C_{\alpha}\right)$.
Let $s=\sup _{(G / H)^{\#}} \pi\left(C_{\alpha}\right)$, where $(G / H)^{\#}$ is the Dedekind completion of the group G / H, and let $h \in H$ with $h>1$. Then

$$
h \cdot \alpha=h \cdot \sup _{G^{\#}}\{g \in G: g<\alpha\}=\sup _{G^{\#}}\left\{h \cdot g \in G: g \in C_{\alpha}\right\}
$$

and since $h>1$ then $\alpha \leq h \cdot \alpha$. Note that, for all $g \in C_{\alpha}, \pi(h \cdot g)=\pi(h) \cdot \pi(g)=\pi(g)$ and therefore

$$
\sup _{(G / H)^{\#}} \pi\left(h \cdot C_{\alpha}\right)=\sup _{(G / H)^{\#}} \pi\left(C_{\alpha}\right)=s .
$$

This implies that for all $g \in C_{\alpha}$ there is $u \in C_{\alpha}$ such that $h g \leq u$; thus, $h g \in C_{\alpha}$ and hence $h \alpha \leq \alpha$. We conclude that $h \cdot \alpha=\alpha$ and therefore $h \in \operatorname{Stab}(\alpha)$.

Corollary II.4.1.

If G contains a chain C of non trivial convex subgroups such that

$$
\bigcap_{\Gamma \in \mathcal{C}} \Gamma=\{1\} \text { then } G=\left(G^{\#}\right)_{0}
$$

Proof.
Under the same assumptions as in the previous theorem, let $\alpha \in\left(G^{\#}\right) \backslash G$. If G contains a decreasing chain of convex subgroups that converges to the trivial subgroup \{1\}, then there exists a convex subgroup $H \in C$ such that $H \subsetneq C_{\alpha}$ and therefore $H \subseteq S \operatorname{tab}(\alpha)$. For instance, we can consider in the previous theorem $H=$

$\Gamma \in C$
$\alpha \notin \Gamma$

Lemma II.4.1.

let $\alpha \in G^{\#} \backslash G$ and $C_{\alpha}:=\{g \in G: g<\alpha\}$. Under the same assumptions as in the Theorem II.4.1] if C_{α} contains no convex subgroup except the trivial one then $G \subsetneq\left(G^{\#}\right)_{0}$.

Proof.
Let

$$
H=\bigcap_{\Gamma_{i} \subseteq G} H_{i}
$$

where for all i, Γ_{i} is a non trivial convex subgroup of G. Then $\alpha<\sup (H)$, because otherwise $H \subseteq C_{\alpha}$, which contradicts our hypothesis. Therefore $\alpha \in H^{\#}$ and there are $h_{1}, h_{2} \in H$ such that $h_{1}<\alpha<h_{2}$.

Since $\operatorname{rank}(H)=1$, there exists an isomorphism from H to a multiplicative subgroup S of \mathbb{R}^{+}. S cannot be a discrete subgroup, i. e. $S \neq\langle g\rangle$ for all $g \in \mathbb{R}$, because in this case $H^{\#}=H$ and $\alpha \notin H$. It follows that S is a dense subgroup of \mathcal{R}^{+}, i. e. $H^{\#}=\mathbb{R}^{+}$and therefore there exists $\alpha^{-1} \in \mathcal{R}^{+}$such that $\alpha \cdot \alpha^{-1}=1$ and $\alpha \in\left(G^{\#}\right)_{0}$.

Corollary II.4.2.

$\left(\mathcal{R}^{+}\right)_{0}^{\#}=\mathcal{R}^{+}$and $\left(\mathcal{G}^{\#}\right)_{0}=\mathcal{G}$.

Proof.

Both of these totally ordered groups contain an infinite decreasing chain of convex subgroups. Indeed, in $\left(\mathcal{R}^{+}, \cdot\right)$, for all $p, q \in \mathbb{Q}^{+}$with $p<q$ we have that

$$
\mathcal{R}^{+} \supsetneq \mathcal{L} \supsetneq \mathcal{L}_{1}^{0} \supsetneq\left(\mathcal{L}_{1}^{0}\right)^{\star} \supsetneq \cdots \supsetneq \mathcal{L}_{p}^{0} \supsetneq\left(\mathcal{L}_{p}^{0}\right)^{\star} \supsetneq \cdots \supsetneq \mathcal{L}_{q}^{0} \supsetneq\left(\mathcal{L}_{q}^{0}\right)^{\star} \supsetneq \cdots \supsetneq\{1\}
$$

On the other hand, for the direct $\operatorname{sum}(\mathcal{G}, \cdot)$, for all $i, j \in \mathbb{N}$ with $i<j$ we have that $C_{i} \supsetneq C_{j}$; therefore the group \mathcal{G} contains a decreasing sequence of convex subgroups such that

$$
\mathcal{G} \supsetneq C_{1} \supsetneq C_{2} \supsetneq \cdots \supsetneq C_{i} \supsetneq C_{i+1} \supsetneq \cdots \supsetneq C_{j} \supsetneq \cdots \supsetneq\{1\}
$$

From Corollary II.4.1, we deduce that $\left(\mathcal{R}^{+}\right)_{0}^{\#}=\mathcal{R}^{+}$and $\left(\mathcal{G}^{\#}\right)_{0}=\mathcal{G}$.

Corollary II.4.3.

Let H and Γ be totally ordered groups, with $\operatorname{rank}(\Gamma)=1$. Let $G=H \times \Gamma$ be the direct sum of H and Γ, with componentwise multiplication and lexicographic ordering. We have two cases for $\left(G^{\#}\right)_{0}$:

- If Γ is a cyclic subgroup of $\left(\mathbb{R}^{+}, \cdot\right)$ then $\left(G^{\#}\right)_{0}=G$.
- If Γ is a dense subgroup of $\left(\mathbb{R}^{+}, \cdot\right)$ then $\left(G^{\#}\right)_{0}=H \times \mathbb{R}^{+}$.

Proof.
$G=H \times \Gamma$ is a totally ordered group with a first convex subgroup $\{1\} \times \Gamma$. If Γ is a cyclic subgroup of $\left(\mathbb{R}^{+}, \cdot\right)$ then, by Corollary II.1.1, we have that $\left(G^{\#}\right)_{0}=G$. On the other hand, if Γ is a dense subgroup of $\left(\mathbb{R}^{+}, \cdot\right)$ then, by Theorem II.4.1, we have that $\left(G^{\#}\right)_{0}=H \times \mathbb{R}^{+}$.

We can summarize the description of $\left(G^{\#}\right)_{0}$ as follows. Let G be a totally ordered group.
(i) If G contains a chain C of non trivial convex subgroups such that

$$
\bigcap_{\Gamma \in C} \Gamma=\{1\} \text { then } G=\left(G^{\#}\right)_{0}
$$

(ii) If the first non trivial convex subgroup of G is isomorphic to a proper dense subgroup of \mathbb{R}^{+}then $G^{\#}$ contains a group larger than G; otherwise G is the largest group contained in $G^{\#}$.

CHAPTER III

Order in $M\left(X, G^{\#}\right)$

Let G a totally ordered group and $G^{\#}$ its Dedekind completion. Let X be a G-module and $M\left(X, G^{\#}\right)$ be the set of all the G-module maps from X to $G^{\#}$ such that

$$
M\left(X, G^{\#}\right)=\left\{\varphi: X \rightarrow G^{\#}: \varphi \text { is increasing and } \forall g \in G, \varphi(g x)=g \varphi(x)\right\}
$$

We consider the natural ordering on $M\left(X, G^{\#}\right)$ given by

$$
\varphi_{1} \leq \varphi_{2} \Leftrightarrow \varphi_{1}(x) \leq \varphi_{2}(x), \text { for all } x \in X
$$

In this chapter our aim is to extend the results in [14], where the authors determined all G-module maps $G^{\#} \rightarrow G^{\#}$. We will study the set $M\left(X, G^{\#}\right)$, where X can be any G-module and prove that $M\left(X, G^{\#}\right)$ is a totally ordered set; even more, it is a G-module. For this end, we start in Section III.1] by studying the order of two families of morphisms contained in $M\left(X, G^{\#}\right)$.

$$
\begin{gathered}
M\left(X, G^{\#}\right)_{\text {sup }}=\left\{f_{x_{0}} \in M\left(X, G^{\#}\right): f_{x_{0}}(x)=\sup _{G^{\#}}\left\{g \in G: g x_{0} \leq x\right\}, x_{0} \in X\right\} \\
M\left(X, G^{\#}\right)_{\text {inf }}=\left\{h_{x_{0}} \in M\left(X, G^{\#}\right): h_{x_{0}}(x)=\inf _{G^{\#}}\left\{g \in G: g x_{0} \geq x\right\}, x_{0} \in X\right\}
\end{gathered}
$$

Firstly we prove that the set $M\left(X, G^{\#}\right)_{\text {sup }} \cup M\left(X, G^{\#}\right)_{\text {inf }}$ is a totally ordered set. For this, it was crucial to analyze the different cases depending on whether G is a quasidiscrete or quasidense group and to considerate the orbits of the G-module X.

Later on, in Section III.2, we describe all G-module maps $X \rightarrow G^{\#}$ when X is the G module X_{2} with two orbits (see item (f) in Example 6). This description allows to show that $M\left(X_{2}, G^{\#}\right)$ is a totally ordered set.

Finally, using G-module maps in $M\left(G^{\#}, G^{\#}\right), M\left(X, G^{\#}\right)_{\text {sup }}$ and $M\left(X, G^{\#}\right)_{\text {inf }}$, we prove that $M\left(X, G^{\#}\right)$ is a totally ordered set and a G-module, for any G-module X.

III.1. The sets $M\left(X, G^{\#}\right)_{\text {sup }}$ and $M\left(X, G^{\#}\right)_{\text {inf }}$

Lemma III.1.1.

$M\left(X, G^{\#}\right)_{\text {sup }}$ and $M\left(X, G^{\#}\right)_{\text {inf }}$ are totally ordered sets.

Proof.

If $x_{0}, x_{1} \in X$ with $x_{0}<x_{1}$ and

$$
\begin{aligned}
& f_{x_{0}}(x)=\sup _{G^{\#}}\left\{g \in G: g x_{0} \leq x\right\} \\
& f_{x_{1}}(x)=\sup _{G^{\#}}\left\{g \in G: g x_{1} \leq x\right\}
\end{aligned}
$$

then $f_{x_{1}} \leq f_{x_{0}}$. Indeed, we consider the subsets of G

$$
\begin{aligned}
& A_{x_{0}}(x)=\left\{g \in G: g x_{0} \leq x\right\} \\
& A_{x_{1}}(x)=\left\{g \in G: g x_{1} \leq x\right\}
\end{aligned}
$$

If $g \in A_{x_{1}}(x)$ then $g x_{1} \leq x$. Now, since $x_{0}<x_{1}$, and X is a G-module we have that $g x_{0} \leq g x_{1}$. Thus $g x_{0} \leq g x_{1} \leq x, g \in A_{x_{0}}$ and therefore $A_{x_{1}} \subseteq A_{x_{0}}$. With this inclusion, is easy to see that for all $x \in X$, we have that

$$
f_{x_{1}}(x)=\sup _{G^{\#}} A_{x_{1}}(x) \leq \sup _{G^{\#}} A_{x_{0}}(x)=f_{x_{0}}(x)
$$

Figure III.1. For $x_{0}, x_{1} \in X$ with $x_{0}<x_{1}$, then $f_{x_{1}} \leq f_{x_{0}}$
In the same way, we will prove that $h_{x_{1}} \leq h_{x_{0}}$ if $x_{0}, x_{1} \in X$ with $x_{0}<x_{1}$ and

$$
\begin{aligned}
& h_{x_{0}}(x)=\inf _{G^{\#}}\left\{g \in G: g x_{0} \geq x\right\} \\
& h_{x_{1}}(x)=\inf _{G^{\#}}\left\{g \in G: g x_{1} \geq x\right\}
\end{aligned}
$$

In this case, we consider the subsets of G

$$
\begin{aligned}
& B_{x_{0}}(x)=\left\{g \in G: g x_{0} \geq x\right\} \\
& B_{x_{1}}(x)=\left\{g \in G: g x_{1} \geq x\right\}
\end{aligned}
$$

Note that if $g \in B_{x_{0}}(x)$ then $g x_{0} \geq x$. Since $x_{0}<x_{1}$ and X is a G-module then $g x_{0}<g x_{1}$. Thus, $g x_{1}>g x_{0} \geq x, g \in B_{x_{1}}$ and therefore $B_{x_{0}} \subseteq B_{x_{1}}$. Consequently, for all $x \in X$,

$$
h_{x_{1}}(x)=\inf _{G^{\#}} B_{x_{1}}(x) \leq \inf _{G^{\#}} B_{x_{0}}(x)=h_{x_{0}}(x)
$$

Figure III.2. For $x_{0}, x_{1} \in X$ with $x_{0}<x_{1}$, then $h_{x_{1}} \leq h_{x_{0}}$
We conclude that if $x_{0}<x_{1}$, then $f_{x_{1}}(x) \leq f_{x_{0}}(x)$ and $h_{x_{1}}(x) \leq h_{x_{0}}(x)$, for all $x \in X$.

Now, our aim is to know if the union $M\left(X, G^{\#}\right)_{\text {sup }} \cup M\left(X, G^{\#}\right)_{\text {inf }}$ is a totally ordered set. First for $x_{0} \in X$, we compare two G-module maps $f_{x_{0}} \in M\left(X, G^{\#}\right)_{\text {sup }}$ and $h_{x_{0}} \in M\left(X, G^{\#}\right)_{\text {inf }}$. Note that both maps are generated with the same point $x_{0} \in X$,

$$
f_{x_{0}}(x)=\sup _{G^{\#}}\left\{g \in G: g x_{0} \leq x\right\} \quad h_{x_{0}}(x)=\inf _{G^{\#}}\left\{g \in G: g x_{0} \geq x\right\}
$$

First, we calculate $f_{x_{0}}\left(x_{0}\right)$ and $h_{x_{0}}\left(x_{0}\right)$.

$$
\begin{aligned}
& f_{x_{0}}\left(x_{0}\right)=\sup _{G^{\#}}\left\{g \in G: g x_{0} \leq x_{0}\right\}=\sup _{G^{\#}} \operatorname{Stab}\left(x_{0}\right) \\
& h_{x_{0}}\left(x_{0}\right)=\inf _{G^{\#}}\left\{g \in G: g x_{0} \geq x_{0}\right\}=\inf _{G^{\#}} \operatorname{Stab}\left(x_{0}\right)
\end{aligned}
$$

Now, for any $x \in X$, we have the following two cases:
(i) If $x \in G x_{0}\left(x\right.$ is in the orbit of $\left.x_{0}\right)$, then there is $g \in G$ such that $x=g x_{0}$ and as a result

$$
\begin{aligned}
& f_{x_{0}}(x)=f_{x_{0}}\left(g x_{0}\right)=g f_{x_{0}}\left(x_{0}\right)=g \sup _{G^{\#}} S \operatorname{tab}\left(x_{0}\right)=g \sup _{G^{\#}} S \operatorname{tab}(x) \\
& h_{x_{0}}(x)=h_{x_{0}}\left(g x_{0}\right)=g h_{x_{0}}\left(x_{0}\right)=g \inf _{G^{\#}} S \operatorname{tab}\left(x_{0}\right)=g \inf _{G^{\#}} \operatorname{Stab}(x)
\end{aligned}
$$

Since $\inf _{G^{\#}} S \operatorname{tab}(x) \leq \sup _{G^{\#}} \operatorname{Stab}(x)$, we have that $g \inf _{G^{\#}} S \operatorname{tab}(x) \leq$ $g \sup _{G^{\#}} S \operatorname{tab}(x)$ and

$$
h_{x_{0}}(x) \leq f_{x_{0}}(x) \quad \forall x \in G x_{0}
$$

(ii) if $x \notin G x_{0}$, then for all $g \in G$ we have that $g \in A_{x_{0}}(x)=\left\{g \in G: g x_{0}<x\right\}$ or $g \in B_{x_{0}}(x)=\left\{g \in G: g x_{0}>x\right\}$, and

$$
A_{x_{0}}(x) \cap B_{x_{0}}(x)=\emptyset
$$

Now, if $g \in A_{x_{0}}(x)$ and $w \in G$ with $w<g$ then $w x_{0} \leq g x_{0}<x$ and consequently $w \in A_{x_{0}}(x)$. In the same way, if $g \in B_{x_{0}}(x)$, and $u \in G$ with $g<u$ then $x<g x_{0} \leq$ $u x_{0}$ and therefore $u \in B_{x_{0}}(x)$.

This fact implies that $\alpha=\sup _{G^{\#}} A_{x_{0}}(x) \leq \inf _{G^{\#}} B_{x_{0}}(x)=\beta$.
If we suppose that $\alpha<\beta$, then there exists $u \in G$ such that

$$
\alpha \leq u<\beta \text { or } \alpha<u \leq \beta
$$

(i) In the first case, $u x_{0}<x$ because $u<\beta$, then $\alpha=u \in G$. Also $\beta \in G$, if we suppose that $\beta \notin G$ then for each $g \in G$ such that $g<\beta$ we have that $g x_{0}<x$ and therefore $g \leq \alpha=u$. Thus,

$$
\begin{aligned}
\beta & =\inf _{G^{\#}}\{g \in G: g \geq \beta\} \\
& =\inf _{G^{\#}}\{g \in G: g>\beta\} \\
& =\sup _{G^{\#}}\{g \in G: g<\beta\}
\end{aligned}
$$

$$
\begin{aligned}
& =\sup _{G^{\#}}\{g \in G: g \leq u\} \\
& =u \in G
\end{aligned}
$$

(ii) Similarly, in the second case, we have that $\alpha, \beta \in G$.

Thus, if $\alpha<\beta$, then $\alpha, \beta \in G$ and we conclude that G must be quasidiscrete with $\beta=g_{0} \alpha$ where $g_{0}=\min \{g \in G: g>1\}$. This implies that, if G is quasidense then $\alpha=\beta$.

Figure III.3. In the case $x \notin G x_{0}$, the subsets $A_{x_{0}}(x), B_{x_{0}}(x) \subset G$

Remark 1. Note that, when G is quasidiscrete, if $x \notin G x_{0}$ and $\alpha<\beta$ then necessarily $\operatorname{Stab}\left(x_{0}\right)=\{1\}$. Indeed, if we suppose that $\operatorname{Stab}\left(x_{0}\right) \neq\{1\}$ then $g_{0}=\min \{g \in G: g>1\} \in \operatorname{Stab}\left(x_{0}\right)$, therefore

$$
x<\beta x_{0}=\left(\alpha g_{0}\right) x_{0}=\alpha\left(g_{0} x_{0}\right)=\alpha x_{0}<x,
$$

a contradiction.
When we analyze $M\left(X, G^{\#}\right)_{\text {sup }} \cup M\left(X, G^{\#}\right)_{\text {inf }}$, it is crucial for the ordering, to know whether G is quasidiscrete or quasidense. The following lemma summarizes this analysis.

Lemma III.1.2.

Let $x_{0} \in X, f_{x_{0}} \in M\left(X, G^{\#}\right)_{\text {sup }}$ and $h_{x_{0}} \in M\left(X, G^{\#}\right)_{\text {inf }} G$-module maps. In the case G is quasidense, for all $x \in X$ we have that
(i) If $x \in G x_{0}$ and $\operatorname{Stab}\left(x_{0}\right)=\{1\}$ then $h_{x_{0}}(x)=f_{x_{0}}(x)$.
(ii) If $x \in G x_{0}$ and $\operatorname{Stab}\left(x_{0}\right) \neq\{1\}$ then $h_{x_{0}}(x)<f_{x_{0}}(x)$.
(iii) If $x \notin G x_{0}$ then $h_{x_{0}}(x)=f_{x_{0}}(x)$.

Therefore $h_{x_{0}} \leq f_{x_{0}}$.
Remark 2. Note that, If G is quasidense and $\operatorname{Stab}\left(x_{0}\right)=\{1\}$ then we do not need to know whether g is in the orbit of x_{0} or not, because in both cases $f_{x_{0}}=h_{x_{0}}$.

Lemma III.1.3.

Let $x_{0} \in X, f_{x_{0}} \in M\left(X, G^{\#}\right)_{\text {sup }}$ and $h_{x_{0}} \in M\left(X, G^{\#}\right)_{\text {inf }} G$-module maps. In the case G is quasidiscrete, for all $x \in X$ we have that
(1) If $\operatorname{Stab}\left(x_{0}\right)=\{1\}$,
(i) If $x \in G x_{0}$ then $f_{x_{0}}(x)=h_{x_{0}}(x)$.
(ii) If $x \notin G x_{0}$ then $f_{x_{0}}(x) \leq h_{x_{0}}(x)$.

Therefore $f_{x_{0}} \leq h_{x_{0}}$.
(2) If $\operatorname{Stab}\left(x_{0}\right) \neq\{1\}$,
(iii) If $x \in G x_{0}$ then $h_{x_{0}}(x)<f_{x_{0}}(x)$.
(iv) If $x \notin G x_{0}$ then $h_{x_{0}}(x)=f_{x_{0}}(x)$.

Therefore $h_{x_{0}} \leq f_{x_{0}}$.
Up to now, we have that if G is quasidense and $x_{0}, x_{1} \in X$ with $x_{0}<x_{1}$ then

$$
\begin{aligned}
& f_{x_{1}} \leq f_{x_{0}} \\
& h_{x_{1}} \leq h_{x_{0}} \\
& h_{x_{0}} \leq f_{x_{0}} \\
& h_{x_{1}} \leq f_{x_{1}} \\
& h_{x_{1}} \leq f_{x_{0}}
\end{aligned}
$$

By the last inequalities, we must compare $h_{x_{0}}$ and $f_{x_{1}}$ for $x_{0}<x_{1}$. The next Lemma is true for both cases, quasidense and quasidiscrete.

Lemma III.1.4.

Let G be a totally ordered group and X a G-module. Let $x_{0}, x_{1} \in X$, with $x_{0}<x_{1}, f_{x_{1}} \in$ $M\left(X, G^{\#}\right)_{\text {sup }}$ and $h_{x_{0}} \in M\left(X, G^{\#}\right)_{\text {inf }}$. Then for all $x \in X$ we have that $f_{x_{1}}(x) \leq h_{x_{0}}(x)$.

Proof.
In this case we have $A_{x_{1}}(x) \cap B_{x_{0}}(x)=\emptyset$. Indeed,

$$
\begin{aligned}
& g \in B_{x_{0}}(x) \Rightarrow x \leq g x_{0}<g x_{1} \Rightarrow g \notin A_{x_{1}}(x) \\
& g \in A_{x_{1}}(x) \Rightarrow g x_{0}<g x_{1} \leq x \Rightarrow g \notin B_{x_{0}}(x)
\end{aligned}
$$

Also, if

$$
\begin{aligned}
& g \in B_{x_{0}}(x), g<u \in G \quad \Rightarrow \quad u x_{0} \geq g x_{0} \geq x \Rightarrow u \in B_{x_{0}}(x) \\
& g \in A_{x_{1}}(x), u<g \in G \quad \Rightarrow \quad u x_{1} \leq g x_{1} \leq x \Rightarrow u \in A_{x_{1}}(x)
\end{aligned}
$$

and it is true that

$$
f_{x_{1}}(x)=\sup _{G^{\#}} A_{x_{1}}(x) \leq \inf _{G^{\#}} B_{x_{0}}(x)=h_{x_{0}}(x)
$$

We summarize the results for the quasidense case.

Theorem III.1.1.

Let G be a quasidense totally ordered group. Then $M\left(X, G^{\#}\right)_{\text {sup }} \cup M\left(X, G^{\#}\right)_{\text {inf }}$ is a totally ordered set.

Proof.

By Lemma III.1.1, we know that $M\left(X, G^{\#}\right)_{\text {sup }}$ and $M\left(X, G^{\#}\right)_{\text {inf }}$ are totally ordered sets. We just need to show that if $f_{y} \in M\left(X, G^{\#}\right)_{\text {sup }}$ and $h_{z} \in M\left(X, G^{\#}\right)_{\text {inf }}$ with $y, z \in X$, then $f_{y} \leq h_{z}$ or $f_{y} \geq h_{z}$. In fact, if
(i) $y=z$ then, by Lemma III.1.2, we have that $h_{z} \leq f_{y}$
(ii) $y>z$ then, by Lemma III.1.4, we have that $f_{y} \leq h_{z}$
(iii) $y<z$ then, by Lemma III.1.1, we have that $f_{z} \leq f_{y}$ and, by Lemma III.1.2, we know that $h_{z} \leq f_{z}$. Therefore $h_{z} \leq f_{y}$.

Figure III.4. Quasidense case, with $y<z$.

Now, let us analyze the quasidiscrete case.

Lemma III.1.5.

Let G be a quasidiscrete totally ordered group with $g_{0}:=\min \{g \in G: g>1\}$. Let $x_{0}, x_{1} \in$ X, with $x_{0}<x_{1}$ and $f_{x_{1}} \in M\left(X, G^{\#}\right)_{\text {sup }}$ and $h_{x_{0}} \in M\left(X, G^{\#}\right)_{\text {inf }} G$-module maps. Then for all $x \in X$ we have:
(i) If $\operatorname{Stab}\left(x_{0}\right)=\{1\}$ and $\operatorname{Stab}\left(x_{1}\right) \neq\{1\}$ then $h_{x_{1}} \leq f_{x_{1}} \leq f_{x_{0}} \leq h_{x_{0}}$.
(ii) If $\operatorname{Stab}\left(x_{0}\right) \neq\{1\}$ and $\operatorname{Stab}\left(x_{1}\right)=\{1\}$ then $f_{x_{1}} \leq h_{x_{1}} \leq h_{x_{0}} \leq f_{x_{0}}$.
(iii) If $\operatorname{Stab}\left(x_{0}\right) \neq\{1\}$ and $\operatorname{Stab}\left(x_{1}\right) \neq\{1\}$ then $h_{x_{1}} \leq f_{x_{1}} \leq h_{x_{0}} \leq f_{x_{0}}$.
(iv) If $\operatorname{Stab}\left(x_{0}\right)=\{1\}$ and $\operatorname{Stab}\left(x_{1}\right)=\{1\}$ then
(a) If $x_{0}<x_{1}<g_{0} x_{0}$ then $f_{x_{1}} \leq f_{x_{0}} \leq h_{x_{1}} \leq h_{x_{0}}$.
(b) Otherwise, $f_{x_{1}} \leq h_{x_{1}} \leq f_{x_{0}} \leq h_{x_{0}}$.

Proof.
By Lemma III.1.1, we have that $f_{x_{1}}(x) \leq f_{x_{0}}(x)$ and $h_{x_{1}}(x) \leq h_{x_{0}}(x)$ for all $x \in X$.
(i) If $\operatorname{Stab}\left(x_{0}\right)=\{1\}$ and $\operatorname{Stab}\left(x_{1}\right) \neq\{1\}$ then, by Lemma III.1.3, we have that $f_{x_{0}} \leq$ $h_{x_{0}}$ and $h_{x_{1}} \leq f_{x_{1}}$. Thus $h_{x_{1}} \leq f_{x_{1}} \leq f_{x_{0}} \leq h_{x_{0}}$.
(ii) If $\operatorname{Stab}\left(x_{0}\right) \neq\{1\}$ and $\operatorname{Stab}\left(x_{1}\right)=\{1\}$ then, by Lemma III.1.3, we have that $f_{x_{1}} \leq$ $h_{x_{1}}$ and $h_{x_{0}} \leq f_{x_{0}}$. Thus $f_{x_{1}} \leq h_{x_{1}} \leq h_{x_{0}} \leq f_{x_{0}}$.
(iii) If $\operatorname{Stab}\left(x_{0}\right) \neq\{1\}$ and $\operatorname{Stab}\left(x_{1}\right) \neq\{1\}$ then, by LemmaIII.1.3 we have that $h_{x_{1}} \leq f_{x_{1}}$ and $h_{x_{0}} \leq f_{x_{0}}$. Now, we need to compare $f_{x_{1}}$ with $h_{x_{0}}$. Lemma III.1.4, we have that $f_{x_{1}} \leq h_{x_{0}}$. Therefore, $h_{x_{1}} \leq f_{x_{1}} \leq h_{x_{0}} \leq f_{x_{0}}$.
(iv) If $S \operatorname{tab}\left(x_{0}\right)=\{1\}$ and $\operatorname{Stab}\left(x_{1}\right)=\{1\}$ then, by Lemma III.1.3, we have that $f_{x_{1}} \leq$ $h_{x_{1}}$ and $f_{x_{0}} \leq h_{x_{0}}$. Now, we need to compare $h_{x_{1}}$ with $f_{x_{0}}$.
(a) If $x_{0}<x_{1}<g_{0} x_{0}$, then x_{1} and x_{0} are not in the same orbit ($x_{1} \notin G x_{0}$).

Let $x \in X$ such that $x \in G x_{0}$, that is, $x=u x_{0}$ with $u \in G$. Then $f_{x_{0}}(x)=$ $f_{x_{0}}\left(u x_{0}\right)=u$, because $\operatorname{Stab}\left(x_{0}\right)=\{1\}$. Also, $x=u x_{0}<u x_{1}$, and thus $h_{x_{1}}(x) \leq$ $u=f_{x_{0}}(x)$. Furthermore $h_{x_{1}}(x)=f_{x_{0}}(x)$, because if we suppose $h_{x_{1}}(x)<f_{x_{0}}(x)$ then $h_{x_{1}}(x) \leq g_{0}^{-1} u$, this implies that $x=u x_{0}<g_{0}^{-1} u x_{1}$ (equality is excluded, because $x_{1} \notin G x_{0}$), and so $g_{0} x_{0}<x_{1}$, a contradiction.
Now, if $x \in G x_{1}$ then $x=v x_{1}$ with $v \in G$. Since $\operatorname{Stab}\left(x_{1}\right)=\{1\}$ and $v x_{0}<$ $v x_{1}=u$, we have that $h_{x_{1}}(x)=v \leq f_{x_{0}}(x)$. As in the previous case, we have that $h_{x_{1}}(x)=f_{x_{0}}(x)$, because $h_{x_{1}}(x)<f_{x_{0}}(x)$ then we deduce that $g_{0} x_{0}<x_{1}$, a contradiction.
Therefore, if $x \in G x_{0} \cup G x_{1}$ then $h_{x_{1}}(x)=f_{x_{0}}(x)$.
Now, in the case $x \notin\left(G x_{0} \cup G x_{1}\right)$, there are two possibilities. Firstly, if $A_{x_{0}}(x) \cap B_{x_{1}}(x) \neq \emptyset$ then there exists $u \in G$ such that

$$
\begin{gathered}
u x_{0}<x<u x_{1}<u g_{0} x_{0} \quad \text { and } \\
g_{0}^{-1} u x_{0}<g_{0}^{-1} u x_{1}<u x_{0}<x<u x_{1} .
\end{gathered}
$$

We have that $u x_{0}<x$ and for $g_{0} u$, the successor of u in $G, u g_{0} x_{0}>x$, so $f_{x_{0}}(x)=u$. In the same way $u x_{1}>x$ and for $g_{0}^{-1} u$, the predecessor of u in G, $u g_{0}^{-1} x_{1}<x$, so $h_{x_{0}}(x)=u$. Therefore $f_{x_{0}}(x)=h_{x_{1}}(x)$.
Secondly, if $A_{x_{0}}(x) \cap B_{x_{1}}(x)=\emptyset$, then for all $u \in A_{x_{0}}(x)$ and $v \in B_{x_{1}}(x)$, we have that

$$
u x_{0}<u x_{1}<x<v x_{0}<v x_{1} .
$$

Consequently, $u<v$, and thus $f_{x_{0}} \leq h_{x_{1}}$.
We have proved the statement (a).
(b) Now, we will analyze the case $x_{0}<g_{0} x_{0}<x_{1}$. We suppose that there exists $x \in X$ such that $f_{x_{0}}(x)<h_{x_{1}}(x)$. First, we have that $A_{x_{0}}(x) \cap B_{x_{1}}(x)=\emptyset$, otherwise, there exists $w \in G$ such that $w x_{0} \leq x \leq w x_{1}$ and this implies $h_{x_{1}}(x) \leq f_{x_{0}}(x)$, a contradiction to our assumptions. Second, we know that there exists $u \in G$ such that

$$
f_{x_{0}}(x) \leq u<h_{x_{1}}(x) \quad \text { or } \quad f_{x_{0}}(x)<u \leq h_{x_{1}}(x) .
$$

1. $f_{x_{0}}(x) \leq u<h_{x_{1}}(x)$ implies $u x_{0}<u x_{1}<x$, thus $f_{x_{0}}(x)=u \in G$ and $h_{x_{1}}(x)=g_{0} u \in G$. Thus,

$$
u x_{0} \leq x<g_{0} u x_{0} \quad, \quad u x_{1}<x \leq u g_{0} x_{1}
$$

and

$$
u x_{0}<u x_{1}<x<g_{0} u x_{0}<g_{0} u x_{1} .
$$

This leads to $x_{0}<x_{1}<g_{0} x_{0}$, a contradiction.
2. the same happens when $f_{x_{0}}(x)<u \leq h_{x_{1}}(x), h_{x_{1}}(x)=u \in G$ and $f_{x_{0}}(x)=u g_{0}^{-1} \in G$. Also, this leads to $x_{0}<x_{1}<g_{0} x_{0}$, a contradiction.

Therefore, for all $x \in X, h_{x_{1}}(x) \leq f_{x_{0}}(x)$ when $x_{0}<g_{0} x_{0} \leq x_{1}$ and we have prove the statement (b).

We summarize the results for the quasidiscrete case.

Theorem III.1.2.

Let G be a quasidiscrete totally ordered group. Then $M\left(X, G^{\#}\right)_{\text {sup }} \cup M\left(X, G^{\#}\right)_{\text {inf }}$ is a totally ordered set.

Proof.
By Lemma III.1.1, we know that $M\left(X, G^{\#}\right)_{\text {sup }}$ and $M\left(X, G^{\#}\right)_{\text {inf }}$ are totally ordered sets. We just need to show that if $f_{y} \in M\left(X, G^{\#}\right)_{\text {sup }}$ and $h_{z} \in M\left(X, G^{\#}\right)_{\text {inf }}$ with $y, z \in X$, then $f_{y} \leq h_{z}$ or $f_{y} \geq h_{z}$. In fact,
(i) If $y=z$ then, by Lemma III.1.2, we have that
a) If $\operatorname{Stab}(y)=\operatorname{Stab}(z)=\{1\}$ then $f_{y} \leq h_{z}$.
b) If $\operatorname{Stab}(y)=\operatorname{Stab}(z) \neq\{1\}$ then $h_{y} \leq f_{z}$.
(ii) If $y<z$ then, by Lemma III.1.5, we have that
a) If $\operatorname{Stab}(y)=\operatorname{Stab}(z)=\{1\}$ and $y<z<g_{0} y$, then $f_{y} \leq h_{z}$.
b) Otherwise, $h_{z} \leq f_{y}$.
(iii) Finally, If $y>z$ then, by Lemma III.1.4, we have that $f_{y} \leq h_{z}$.

III.2. A totally ordered set of G-module maps

In this section we will show an example of a set G-module maps and we study the ordering on this set for the quasidiscrete as well as the quasidense case. Firstly, let us mention a general fact, which we will use later, about the behavior of any pair of G-module maps.

Remark 3.

Let x_{0} be an element of the G-module X. Let r, t be G-module maps in $M\left(X, G^{\#}\right)$. Note that, if $r\left(x_{0}\right)=t\left(x_{0}\right)$ then $r(x)=t(x)$ for all x in the orbit of x_{0}. In the same way, if $r\left(x_{0}\right)<t\left(x_{0}\right)$ then $r(x)<t(x)$ for all $x \in G x_{0}$.

Indeed, for all $g \in G$

$$
\begin{aligned}
& r\left(x_{0}\right)=t\left(x_{0}\right) \Rightarrow g \cdot r\left(x_{0}\right)=g \cdot t\left(x_{0}\right) \Rightarrow r\left(g x_{0}\right)=t\left(g x_{0}\right) \\
& r\left(x_{0}\right)<t\left(x_{0}\right) \Rightarrow g \cdot r\left(x_{0}\right)<g \cdot t\left(x_{0}\right) \Rightarrow r\left(g x_{0}\right)<t\left(g x_{0}\right)
\end{aligned}
$$

III.2.1. The G-module X_{2}. For this example, we consider a totally ordered group (G, \cdot, \leq) and $G^{-}:=\left\{g^{-}: g \in G\right\}$ be a copy of G disjoint from G. We set $X_{2}:=G \cup G^{-}$ and consider the following definitions:
(i) For all $s, t \in G$ with $t<s$, the element $s^{-} \in G^{-}$is such that $t<s^{-}<s$.
(ii) We extending the multiplication of G to X_{2} as follows $g \cdot s^{-}:=(g s)^{-}$for all $g \in G$ and $s^{-} \in G^{-}$
With these definitions, $\left(X_{2}, \cdot, \leq\right)$ is a G-module with two orbits, namely G and G^{-}.
Notice, for all $w \in X_{2}$, we can always write $w=g_{w} \cdot 1 \in G$ or $w=g_{w} \cdot 1^{-} \in G^{-}$, with $g_{w} \in G$. Obviously, if $w \in G$ then $w=g_{w}$.

Now, let $h_{w} \in M\left(X_{2}, G^{\#}\right)_{\text {inf }}$ and $f_{w} \in M\left(X_{2}, G^{\#}\right)_{\text {sup }}$. For all $x \in X_{2}$ we have that

- If $w=g_{w} \cdot 1 \in G$ then

$$
\begin{aligned}
f_{w}(x) & =\sup _{G^{\#}}\{g \in G: g w \leq x\} \\
& =\sup _{G^{\#}}\left\{g \in G: g g_{w} \leq x\right\} \\
& =\sup _{G^{\#}}\left\{\left(g_{w}\right)^{-1} z \in G: z \leq x\right\} \quad \text { where } z=g g_{w} \in G \\
& =\left(g_{w}\right)^{-1} \sup _{G^{\#}}\{z \in G: z \leq x\} \\
& =\left(g_{w}\right)^{-1} f_{1}(x) \\
h_{w}(x) & =\left(g_{w}\right)^{-1} h_{1}(x)
\end{aligned}
$$

- In the same way, if $w=g_{w} \cdot 1^{-} \in G^{-}$then $f_{w}(x)=\left(g_{w}\right)^{-1} f_{1^{-}}(x)$ and $h_{w}(x)=$ $\left(g_{w}\right)^{-1} h_{1^{-}}(x)$.
Moreover, in this example, if $x \in X_{2}$ then $x=g \in G$ or $x=g \cdot 1^{-} \in G^{-}$and therefore for any G-module map $t \in M\left(X_{2}, G^{\#}\right)$ we have that $t(g)=g t(1)$ or $t\left(g^{-}\right)=g t\left(1^{-}\right)$. Thus, by the previous equalities, we just need to determine the values of $f_{w}(1), f_{w}\left(1^{-}\right)$and $h_{w}(1), h_{w}\left(1^{-}\right)$, with $w=1,1^{-}$.
III.2.2. Case I: G quasidense. We will start determining the G-module maps in $M\left(X_{2}, G^{\#}\right)_{\text {sup }} \cup M\left(X_{2}, G^{\#}\right)_{\text {inf }}$ when the totally ordered group G is quasidense.

$$
\begin{aligned}
f_{1}(1) & =\sup _{G^{\#}}\{g \in G: g \cdot 1 \leq 1\}=1 \\
f_{1}\left(1^{-}\right) & =\sup _{G^{\#}}\left\{g \in G: g \cdot 1 \leq 1^{-}\right\}=\sup _{G^{\#}}\left\{g \in G: g<1^{-}\right\}=1 \\
h_{1}(1) & =\inf _{G^{\#}}\{g \in G: g \cdot 1 \geq 1\}=1 \\
h_{1}\left(1^{-}\right) & =\inf _{G^{\#}}\left\{g \in G: g \cdot 1 \geq 1^{-}\right\}=\inf _{G^{\#}}\left\{g \in G: g \geq 1^{-}\right\}=1 \\
f_{1^{-}}(1) & =\sup _{G^{\#}}\left\{g \in G: g \cdot 1^{-} \leq 1\right\}=\sup _{G^{\#}}\left\{g \in G: g^{-} \leq 1\right\}=1 \\
f_{1^{-}}\left(1^{-}\right) & =\sup _{G^{\#}}\left\{g \in G: g \cdot 1^{-} \leq 1^{-}\right\}=\sup _{G^{\#}}\left\{g \in G: g^{-} \leq 1^{-}\right\}=1
\end{aligned}
$$

Figure III.5. When G is quasidense, $f_{1^{-}}=f_{1}=h_{1^{-}}=h_{1}$
Note that, for all $w, x \in X_{2}, h_{w}(x)=f_{w}(x)=\left(g_{w}\right)^{-1} g_{x}$, thus $M\left(X_{2}, G^{\#}\right)_{\text {sup }}=M\left(X_{2}, G^{\#}\right)_{\text {inf }}$
Now, let $t \in M\left(X_{2}, G^{\#}\right)$ and we suppose that there exists $x \in X_{2}$ such that $t(x)=g \in G$.
(i) if $x=g_{x} \in G$ then $t\left(g_{x}\right)=g, t(1)=\left(g_{x}\right)^{-1} g$ and hence

$$
t(1)=h_{g_{x} g^{-1}}(1)=f_{g_{x g^{-1}}}(1)
$$

Therefore $t(u)=h_{g_{x g^{-1}}}(u)=f_{g_{x g^{-1}}}(u)$ for all $u \in G$ (see Remark 3).
Now, we show that $t\left(1^{-}\right)=\left(g_{x}\right)^{-1} g$. Indeed, if we suppose $t\left(1^{-}\right)=\alpha<$ $\left(g_{x}\right)^{-1} g$ with $\alpha \in G^{\#}$ then there is $u \in G$ such that $\alpha<u<\left(g_{x}\right)^{-1} g$ (because G is quasidense) and since t is increasing $1^{-}<u g^{-1} g_{x}<1$, which is impossible (note that $t\left(u g^{-1} g_{x}\right)=u$.

(ii) In the same way, if $x=g_{x} \cdot 1^{-} \in G^{-}$then $t\left(g_{x}^{-}\right)=g, t\left(1^{-}\right)=\left(g_{x}\right)^{-1} g$ which implies

$$
t\left(1^{-}\right)=h_{g_{x} g^{-1}}\left(1^{-}\right)=f_{g_{x g^{-1}}}\left(1^{-}\right) .
$$

Therefore $t\left(u^{-}\right)=h_{g x g^{-1}}\left(u^{-}\right)=f_{g_{x g} g^{-1}}\left(u^{-}\right)$for all $u^{-} \in G^{-}$(see Remark 3). Also, $t(1)=\left(g_{x}\right)^{-1} g$. Indeed, if we suppose $t(1)=\alpha>\left(g_{x}\right)^{-1} g$ with $\alpha \in G^{\#}$ then there is $u \in G$ such that $\left(g_{x}\right)^{-1} g<u<\alpha$ (because G is quasidense) and since t is increasing $1^{-}<u g^{-1} g_{x}<1$, which is impossible (note that $t\left(u g^{-1} g_{x}\right)=u$).
In short, if there exists $x \in X_{2}$ such that $t(x)=g \in G$ then $t=h_{w}=f_{w}$ with $w=\left(g_{x}\right) g^{-1}$.
Otherwise, $t(x) \in G^{\#} \backslash G$ for all $x \in X_{2}$.

III.2.3. Case II: G quasidiscrete. We determine the G-module maps in $M\left(X_{2}, G^{\#}\right)_{\text {sup }} \cup$ $M\left(X_{2}, G^{\#}\right)_{\text {inf }}$ when G is a quasidiscrete group. Let $g_{0}:=\min \{g \in G: g>1\}$.

$$
\begin{aligned}
f_{1}(1) & =\sup _{G^{\sharp}}\{g \in G: g \cdot 1 \leq 1\}=1 \\
f_{1}\left(1^{-}\right) & =\sup _{G^{\sharp}}\left\{g \in G: g \cdot 1 \leq 1^{-}\right\}=\sup _{G^{\#}}\left\{g \in G: g<1^{-}\right\}=g_{0}^{-1} \\
h_{1}(1) & =\inf _{G^{\#}}\{g \in G: g \cdot 1 \geq 1\}=1 \\
h_{1}\left(1^{-}\right) & =\inf _{G^{\#}}\left\{g \in G: g \cdot 1 \geq 1^{-}\right\}=\inf _{G^{\#}}\left\{g \in G: g>1^{-}\right\}=1
\end{aligned}
$$

Figure III.6. When G is quasidense, $f_{1}<h_{1}$

$$
\begin{aligned}
f_{1^{-}}(1) & =\sup _{G^{\sharp}}\left\{g \in G: g \cdot 1^{-} \leq 1\right\}=\sup _{G^{\#}}\left\{g \in G: g^{-} \leq 1\right\}=1 \\
f_{1^{-}}\left(1^{-}\right) & =\sup _{G^{\sharp}}\left\{g \in G: g \cdot 1^{-} \leq 1^{-}\right\}=\sup _{G^{\#}}\left\{g \in G: g^{-} \leq 1^{-}\right\}=1 \\
h_{1^{-}}(1) & =\inf _{G^{\sharp}}\left\{g \in G: g \cdot 1^{-} \geq 1\right\}=g_{0} \\
h_{1^{-}}\left(1^{-}\right) & =\inf _{G^{\sharp}}\left\{g \in G: g \cdot 1^{-} \geq 1^{-}\right\}=\inf _{G^{\sharp}}\left\{g \in G: g^{-} \geq 1^{-}\right\}=1
\end{aligned}
$$

Note that, $f_{1^{-}}=h_{1}$ and $h_{1^{-}}=g_{0} f_{1}=f_{g_{0}^{-1}}$. Hence, in our analysis we just consider f_{w} and h_{w}, with $w \in X_{2}$. Let $x \in X_{2}$

- If $x \in G w$ then $h_{w}(x)=f_{w}(x)$
- If $x \notin G w$ then $f_{w}(x)<h_{w}(x)$

Figure III.7. When G is quasidiscrete, $h_{1^{-}}<f_{1^{-}}$

Now, let $t \in M\left(X_{2}, G^{\#}\right)$ and suppose that there exists $x \in X_{2}$ such that $t(x)=g \in G$.
(i) if $x=g_{x} \in G$ then $t\left(g_{x}\right)=g, t(1)=\left(g_{x}\right)^{-1} g$ and hence

$$
t(1)=h_{g_{x} g^{-1}}(1)=f_{g_{x} g^{-1}}(1)
$$

Therefore $t(u)=h_{g_{x} g^{-1}}(u)=f_{g_{x} g^{-1}}(u)$ for all $u \in G$ (see Observation (3).
Now, since t is increasing, we have two possibilities for $t\left(1^{-}\right)$,
(1) $t\left(1^{-}\right)=\left(g_{x}\right)^{-1} g$ and therefore $t=h_{g_{x} g^{-1}} \in M\left(X_{2}, G^{\#}\right)_{\text {inf }}$ or
(2) $t\left(1^{-}\right)=g_{0}^{-1}\left(g_{x}\right)^{-1} g$ and therefore $t=f_{g_{x g^{-1}}} \in M\left(X_{2}, G^{\#}\right)_{\text {sup }}$

Figure III.8. We have two possibilities for $t(1)$. In both cases $t \in$ $M\left(X_{2}, G^{\#}\right)_{s u p} \cup M\left(X_{2}, G^{\#}\right)_{\text {inf }}$
(ii) if $x=g_{x} \cdot 1^{-} \in G^{-}$then $t\left(g_{x} \cdot 1^{-}\right)=g, t\left(1^{-}\right)=\left(g_{x}\right)^{-1} g$ which implies that $t\left(1^{-}\right)=h_{g_{x} g^{-1}}\left(1^{-}\right)$.

Therefore $t\left(u^{-}\right)=h_{g_{x} g^{-1}}\left(u^{-}\right)$for all $u \in G$ (see Remark 3). As in the previous analysis, we have two possibilities for $t(1)$:
(1) $t(1)=\left(g_{x}\right)^{-1} g$ and therefore $t=h_{g_{x} g^{-1}} \in M\left(X_{2}, G^{\#}\right)_{\text {inf }}$ or
(2) $t\left(1^{-}\right)=g_{0}\left(g_{x}\right)^{-1} g$ and therefore $t=f_{g_{x} g^{-1} g_{0}^{-1}} \in M\left(X_{2}, G^{\#}\right)_{\text {sup }}$.

Thus, if there exists $x \in X_{2}$ such that $t(x)=g \in G$ then $t \in M\left(X_{2}, G^{\#}\right)_{\text {inf }} \cup M\left(X_{2}, G^{\#}\right)_{\text {sup }}$. Otherwise, $t(x) \in G^{\#} \backslash G$ for all $x \in X_{2}$.
III.2.4. $M\left(X_{2}, G^{\#}\right)$: Quasidense and quasidiscrete cases. Finally, for a quasidense or qusidiscrete totally ordered group G, we analyze the G-module maps $t \in M\left(X_{2}, G^{\#}\right)$ such that $t(x)=\alpha \in G^{\#} \backslash G$ for all $x \in X_{2}$.

Figure III.9. We have two possibilities for $t\left(1^{-}\right)$. In both cases, $t \in$ $M\left(X_{2}, G^{\#}\right)_{s u p} \cup M\left(X_{2}, G^{\#}\right)_{\text {inf }}$

Suppose that t is a G-module map such that $t \notin\left(M\left(X_{2}, G^{\#}\right)_{\text {sup }} \cup M\left(X_{2}, G^{\#}\right)_{\text {inf }}\right)$, with $t(1)=\alpha \in G^{\#} \backslash G$.
(i) if $\alpha>1$ then $1=h_{1}(1)<t(1)=\alpha$. Also, t is a G-module map, and hence for any $g \in G, t(g)=g \alpha$; moreover, $t(g) \leq \alpha$ for all $g \leq 1$. If we suppose that $t\left(1^{-}\right)=\beta<\alpha$ with $\beta \in G^{\#} \backslash G$, then there is $u \in G$ such that $\beta<u<\alpha$. In this case, $u<1^{-}, t(u) \leq \beta$, but this is a contradiction because $h_{1}(g)<t(g)$ for all $g \in G$ (see Remark 3) and therefore

$$
u=h_{1}(u)<t(u) \leq \beta
$$

Therefore $t\left(1^{-}\right)=\alpha$ and so $t\left(g^{-}\right)=g \alpha$ for all $g \in G$.

We conclude that $t(x)=g_{x} \alpha$ for all $x \in X_{2}$.
(ii) For the case $\alpha<1$, we have that $t(g)=g \alpha$ for all $g \in G$. If we suppose that $t\left(1^{-}\right)=\beta<\alpha$ with $\beta \in G^{\#} \backslash G$, then there is $u \in G$ such that $\beta<u<\alpha<1$. Note that, $u<1^{-}$and hence $t(u) \leq \beta$, which is a contradiction because $u=h_{u^{-1}}(1)<$ $t(1)=\alpha$ but $t\left(1^{-}\right)=\beta<h_{u^{-1}}(1-)=u$ (see Remark 3). Therefore $t\left(1^{-}\right)=\alpha$ and so $t\left(g^{-}\right)=g \alpha$ for all $g \in G$. We conclude that $t(x)=g_{x} \alpha$ for all $x \in X_{2}$.

Lemma III.2.1.

$M\left(X_{2}, G^{\#}\right)$ is a totally ordered set.
Proof.

First, if G is complete, then $G=G^{\#}$, and
(i) when G is quasidense, $M\left(X_{2}, G\right)=M\left(X_{2}, G\right)_{s u p}=M\left(X_{2}, G\right)_{i n f}$,
(ii) when G is quasidiscrete, $M\left(X_{2}, G\right)=M\left(X_{2}, G\right)_{s u p} \cup M\left(X_{2}, G\right)_{i n f}$,
and by Theorems III.1.1,III.1.2 we conclude that $M\left(\left(X_{2}, G\right)\right.$ is a totally ordered set.
Now, suppose that G is not complete, so $G \subsetneq G^{\#}$. Let $t, r \in M\left(X_{2}, G^{\#}\right)$ be two G-module maps such that

$$
t(1)=t\left(1^{-}\right)=\alpha \quad \text { and } \quad r(1)=r\left(1^{-}\right)=\beta
$$

with $\alpha, \beta \in G^{\#} \backslash G$. Then for all $x \in X_{2}, t(x)=g_{x} \alpha$ and $r(x)=g_{x} \beta$. Note that if $\alpha<\beta$ then $g_{x} \alpha<g_{x} \beta$ for all $g_{x} \in G$ and therefore $t<r$.

Now, we want to compare the G-module map t with $t(x)=g_{x} \alpha$ and $\alpha \in G^{\#} \backslash G$ with any G-module map $k \in\left(M\left(X_{2}, G^{\#}\right)_{\text {sup }} \cup M\left(X_{2}, G^{\#}\right)_{\text {inf }}\right)$.
(i) When G is quasidense, there exists $w \in X_{2}$ such that $k(x)=h_{w}(x)=\left(g_{w}\right)^{-1} g_{x}$ for all $x \in X_{2}$. If $k(1)=\left(g_{w}\right)^{-1}<\alpha$ then $k(x)=g_{w}^{-1} g_{x}<g_{x} \alpha=t(x)$ for all $x \in X_{2}$, and so $k<t$. If $k(1)=\left(g_{w}\right)^{-1}>\alpha$ then $t(x)=g_{x} \alpha \leq g_{w}^{-1} g_{x}=k(x)$ and therefore $t<k$.
(ii) When G is quasidiscrete, $k=h_{w}$ or $k=f_{w}$ for some $w \in X_{2}$.
(1) In the case $k=h_{w}$, we have that $k(x)<t(x)$ or $t(x)<k(x)$ (the proof is the same as in the quasidense case).
(2) When $k=f_{w}$, we have that $k(1)=f_{w}(1)=\left(g_{w}\right)^{-1}$ and if $\left(g_{w}\right)^{-1}<\alpha$ then $k(x) \leq\left(g_{w}\right)^{-1} g_{x}<g_{x} \alpha=t(x)$ for all $x \in X_{2}$, and so $k<t$ (remember that $f_{w}\left(1^{-}\right)=\left(g_{0}\right)^{-1} f_{w}(1)<f_{w}(1)$ with $\left.g_{0}=\min \{g \in G: g>1\}\right)$. In the other case, $f_{w}(1)=\left(g_{w}\right)^{-1}>\alpha$, we have that the predecessor element $\left(g_{0}\right)^{-1}\left(g_{w}\right)^{-1}>\alpha$ and so $f_{w}\left(1^{-}\right)=\left(g_{0}\right)^{-1}\left(g_{w}\right)^{-1}>\alpha$. Consequently, we have that $t(x)=\alpha g_{x}<f_{w}(x)=k(x)$ for all $x \in X_{2}$ (see Figure III.10).

Figure III.10. f_{w} for all $w \in X_{2}$

Knowing the ordering of $M\left(X_{2}, G^{\#}\right)_{\text {inf }} \cup M\left(X_{2}, G^{\#}\right)_{\text {sup }}$ was one of the key facts in determining that $M\left(X_{2}, G^{\#}\right)$ is a totally ordered set.

In the following section, it is proved that $M\left(X, G^{\#}\right)$ is a totally ordered set for any G module X.

III.3. Order in $M\left(X, G^{\#}\right)$

In [14] the set $M\left(G^{\#}\right)$ of all G-module maps $\varphi: G^{\#} \rightarrow G^{\#}$ was described. In the following Lemma, we use the characterization of the G-module maps in the subsets $M^{l}\left(G^{\#}\right)$ and $M^{r}\left(G^{\#}\right)$ (see definitions and preliminaries in Chapter 1, Section I.5).

Lemma III.3.1.

Let G be a totally ordered group and let X be G-module. For all $\varphi \in M\left(X, G^{\#}\right)$ and $w \in X$, there are $\phi_{\varphi(w)} \in M^{l}\left(G^{\#}\right)$ and $\eta_{\varphi(w)} \in M^{r}\left(G^{\#}\right)$ such that for all $x \in X$,

$$
\phi_{\varphi(w)}\left(f_{w}(x)\right) \leq \varphi(x) \leq \eta_{\varphi(w)}\left(h_{w}(x)\right)
$$

where $f_{w} \in M\left(X, G^{\#}\right)_{\text {sup }}$ and $h_{w} \in M\left(X, G^{\#}\right)_{\text {inf }}$.
Proof.
Let w be an element in the G-module X. Let $x \in X$. Then for all $g \in G$ such that $g \leq f_{w}(x)$ we have $g \cdot w \leq x$, hence $g \varphi(w) \leq \varphi(x)$. Therefore $\varphi(x)$ is an upper bound of the set

$$
\left\{g \varphi(w): g \in G, g \leq f_{w}(x)\right\} .
$$

Just as before, for $g \in G$ such that $g \geq h_{w}(x)$ we have that $g \varphi(w) \geq \varphi(x)$ and therefore $\varphi(x)$ is a lower bound of the set

$$
\left\{g \varphi(w): g \in G, g \geq h_{w}(x)\right\} .
$$

Thus,

$$
\sup _{G^{\#}}\left\{g \varphi(w): g \in G, g \leq f_{w}(x)\right\} \leq \varphi(x) \leq \inf _{G^{\#}}\left\{g \varphi(w): g \in G, g \geq h_{w}(x)\right\} .
$$

We have that,

$$
\begin{aligned}
& \sup _{G^{\#}}\left\{g \varphi(w): g \in G, g \leq f_{w}(x)\right\}=f_{w}(x) \bullet \varphi(w) \\
& \inf _{G^{\#}}\left\{g \varphi(w): g \in G, g \geq h_{w}(x)\right\}=h_{w}(x) \star \varphi(w)
\end{aligned}
$$

and so, for all $x \in X$,

$$
f_{w}(x) \bullet \varphi(w) \leq \varphi(x) \leq h_{w}(x) \star \varphi(w) .
$$

Now, we consider two G module maps in $M\left(G^{\#}\right)$.

$$
\begin{aligned}
& \eta_{\varphi(w)}: G^{\#} \\
& x \mapsto G^{\#} \\
& x \star \varphi(w)
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{\varphi(w)}: G^{\#} \\
& x \mapsto \\
& G^{\#} \\
& \mapsto \bullet \varphi(w)
\end{aligned}
$$

Notice that, $\phi_{\varphi(w)}\left(f_{w}(x)\right)=f_{w}(x) \bullet \varphi(w)$ and $\eta_{\varphi(w)}\left(h_{w}(x)\right)=h_{w}(x) \star \varphi(w)$. We conclude that, for all $x \in X$,

$$
\phi_{\varphi(w)}\left(f_{w}(x)\right) \leq \varphi(x) \leq \eta_{\varphi(w)}\left(h_{w}(x)\right)
$$

Theorem III.3.1.

$M\left(X, G^{\#}\right)$ is a totally ordered set.

Proof.

We will prove that if φ_{1}, φ_{2} are G-module maps in $M\left(X, G^{\#}\right)$ then $\varphi_{1} \leq \varphi_{2}$ or $\varphi_{2} \leq \varphi_{1}$. Let $w \in X$. Then, without loss of generality, we can assume that $\varphi_{1}(w)<\varphi_{2}(w)$,

By Lemma III.3.1, for all $x \in X$,

$$
\begin{aligned}
& \phi_{\varphi_{1}(w)}\left(f_{w}(x)\right) \leq \varphi_{1}(x) \leq \eta_{\varphi_{1}(w)}\left(h_{w}(x)\right) \\
& \phi_{\varphi_{2}(w)}\left(f_{w}(x)\right) \leq \varphi_{2}(x) \leq \eta_{\varphi_{2}(w)}\left(h_{w}(x)\right)
\end{aligned}
$$

We will prove that $\eta_{\varphi_{1}(w)}\left(h_{w}(x)\right) \leq \phi_{\varphi_{1}(w)}\left(f_{w}(x)\right)$. Indeed,
(i) when $h_{w}(x) \leq f_{w}(x)$, since η, ϕ are G-module maps in $M\left(G^{\#}\right)$, we have that

$$
\begin{aligned}
\varphi_{1}(x) & \leq \eta_{\varphi_{1}(w)}\left(h_{w}(x)\right), & & \\
& \leq \eta_{\varphi_{1}(w)}\left(f_{w}(x)\right), & & \eta \text { is increasing } \\
& \leq \eta_{\varphi_{2}(w)}\left(f_{w}(x)\right), & & \varphi_{1}(w)<\varphi_{2}(w) \text { and Proposition【.2.3 (iii) } \\
& \leq \phi_{\varphi_{2}(w)}\left(f_{w}(x)\right), & & \text { and PropositionI.2.3(iv) } \\
& \leq \varphi_{2}(x) & &
\end{aligned}
$$

(ii) when $f_{w}(x)<h_{w}(x)$, by Lemmas III.1.2 and III.1.3, we have three necessary conditions:
(1.) G must be quasidiscrete,
(2.) $\operatorname{Stab}(w)=\{1\}$ and
(3.) $x \notin G w$.

In this case, $f_{w}(x), h_{w}(x) \in G$ and $h_{w}(x)=g_{0} f_{w}(x)$ with $g_{0}=\min \{g \in G: g>$ $1\}\left(h_{w}(x)\right.$ is the successor of $f_{w}(x)$ in $\left.G\right)$.

Using the previous conditions and the definition of $f_{w} \in M\left(X, G^{\#}\right)_{s u p}$, it we deduce that

$$
f_{w}(x) \cdot w<x<g_{0} f_{w}(x) \cdot w, \quad \text { for all } x \in X
$$

Moreover φ_{1}, φ_{2} are G-module maps, so for all $x \in X$

$$
\begin{aligned}
f_{w}(x) \cdot \varphi_{1}(w) & \leq \varphi_{1}(x) \leq g_{0} f_{w}(x) \cdot \varphi_{1}(w) \\
f_{w}(x) \cdot \varphi_{2}(w) & \leq \varphi_{2}(x) \leq g_{0} f_{w}(x) \cdot \varphi_{2}(w) .
\end{aligned}
$$

If we suppose that $f_{w}(x) \cdot \varphi_{2}(w)<g_{0} f_{w}(x) \cdot \varphi_{1}(w)$ then $\varphi_{2}(w)<g_{0} \cdot \varphi_{1}(w)$ because $f_{w}(x) \in G$, and $\varphi_{1}(w)<\varphi_{2}(w)<g_{0} \cdot \varphi_{1}(w)$. Similarly, because $g_{0} \in G$, we have that $g_{0} \cdot \varphi_{1}(w)<g_{0} \cdot \varphi_{2}(w)$ and therefore

$$
\varphi_{1}(w)<\varphi_{2}(w)<g_{0} \cdot \varphi_{1}(w)<g_{0} \cdot \varphi_{2}(w) .
$$

The previous inequality implies that $\varphi_{1}(w), \varphi_{2}(w) \in G^{\#} \backslash G$, because if $\varphi_{1}(w) \in$ G then its successor is $g_{0} \cdot \varphi_{1}(w)>\varphi_{2}(x)$, a contradiction. With the same argument we prove that $\varphi_{2}(x) \notin G$. Thus, there exists $u \in G$ such that $\varphi_{1}(w)<u<\varphi_{2}(w)$ and $g_{0} \cdot \varphi_{1}(w)<g_{0} \cdot u<\varphi_{2}(w)$, but $\varphi_{2}(w)<g_{0} \cdot \varphi_{1}(w)$ and this implies that $u<\varphi_{2}(w)<g_{0} \cdot u$, where $g_{0} \cdot u$ is the successor of $u \in G$, a contradiction. We conclude that $f_{w}(x) \cdot \varphi_{2}(w) \geq g_{0} f_{w}(x) \cdot \varphi_{1}(w)$ and therefore for all $x \in X$

$$
\varphi_{1}(x) \leq g_{0} f_{w}(x) \cdot \varphi_{1}(w) \leq f_{w}(x) \cdot \varphi_{2}(w) \leq \varphi_{2}(x)
$$

Theorem III.3.2.

Let G be a totally ordered group and X a G-module. $M\left(X, G^{\#}\right)$ is a G-module with the action

$$
\begin{array}{ccc}
G \times M\left(X, G^{\#}\right) & \rightarrow & M\left(X, G^{\#}\right) \\
(g, \varphi) & \mapsto & (g \varphi)
\end{array}
$$

where $(g \varphi)(x)=g \varphi(x)$ for all $x \in X$ and $\varphi \in M\left(X, G^{\#}\right)$.
Proof.
We know that $M\left(X, G^{\#}\right)$ is a totally ordered set and $M\left(X, G^{\#}\right) \neq \emptyset$ for any G-module X (remember that for any $x_{0} \in X$, the map $f_{x_{0}}: X \rightarrow G^{\#}$ defined by $f_{x_{0}}(x):=$ $\sup _{G^{\#}}\left\{g \in G: g x_{0} \leq x\right\}$ is in $\left.M\left(X, G^{\#}\right)\right)$.

Now, by the definition of the action, it is clear that $g_{1}\left(g_{2} \varphi\right)=\left(g_{1} g_{2}\right) \varphi$ and $(1 \varphi)=\varphi$ for all $g_{1}, g_{2} \in G$ and $\varphi \in M\left(X, G^{\#}\right)$. We prove that $M\left(X, G^{\#}\right)$ satisfies (iii), (iv), (v) Definition I.4.1.

Let $g, g_{1}, g_{2} \in G, x \in X$ and $\varphi_{1}, \varphi_{2} \in M\left(X, G^{\#}\right)$.
(iii) If $g_{1} \leq g_{2}$ then $g_{1} x \leq g_{2} x$ because X is a G-module. For any G-module map $\varphi \in M\left(X, G^{\#}\right)$, we have that $\varphi\left(g_{1} x\right) \leq \varphi\left(g_{2} x\right)$ because φ is an increasing map, thus $g_{1} \varphi(x) \leq g_{2} \varphi(x)$ for all $x \in X$ and therefore $g_{1} \varphi \leq g_{2} \varphi$.
(iv) Suppose that $\varphi_{1} \leq \varphi_{2}$ (this is possible because $M\left(X, G^{\#}\right)$ is a totally ordered set), then $g \varphi_{1}(x) \leq g \varphi_{2}(x)$ for all $x \in X$, because $\varphi_{1}(x)$ and $\varphi_{2}(x)$ belong to the G module $G^{\#}$. Thus $g \varphi_{1} \leq g \varphi_{2}$ for all $g \in G$ and $\varphi \in M\left(X, G^{\#}\right)$.
(v) Finally, we will prove that for all $\varphi \in M\left(X, G^{\#}\right)$, the orbit $G \varphi$ is cofinal in $M\left(X, G^{\#}\right)$, that is to say, for any $\varphi_{1} \in M\left(X, G^{\#}\right)$ we can find $g \in G$ such that $\varphi_{1} \leq g \varphi$.

If $\varphi_{1} \leq \varphi$ then $g=1 \in G$ satisfies the statement. Now, we supppose that there exists $w \in X$ such that $\varphi(w) \leq \varphi_{1}(w)$ and we consider two G-module maps
in $M\left(G^{\#}\right)$

$$
\begin{aligned}
\eta_{\varphi_{1}(w)}: & G^{\#} \\
x & \mapsto G^{\#} \\
\phi_{\varphi(w)}: & G^{\#} \\
x & \rightarrow G^{\#} \\
x & \mapsto x \bullet \varphi(w)
\end{aligned}
$$

and the G-module maps h_{w} and f_{w} in $M\left(X, G^{\#}\right)_{\text {inf }}$ and $M\left(X, G^{\#}\right)_{\text {sup }}$ respectively. $M\left(G^{\#}\right)$ is a G-module (see Theorem I.5.4) and therefore there exists $g \in G$ such that $\eta_{\varphi_{1}(w)} \leq g \phi_{\varphi(w)}$. In particular, for $h_{w}(x) \in G^{\#}$ we have

$$
\eta_{\varphi_{1}(w)}\left(h_{w}(x)\right) \leq g \phi_{\varphi(w)}\left(h_{w}(x)\right)
$$

for all $x \in X$. First, If $h_{w} \leq f_{w}$ then

$$
\eta_{\varphi_{1}(w)}\left(h_{w}(x)\right) \leq g \phi_{\varphi(w)}\left(h_{w}(x)\right) \leq g \phi_{\varphi(w)}\left(f_{w}(x)\right)
$$

By Lemma III.3.1 we have that for all $x \in X$

$$
\varphi_{1}(x) \leq \eta_{\varphi_{1}(w)}\left(h_{w}(x)\right) \leq g \phi_{\varphi(w)}\left(f_{w}(x)\right) \leq g \varphi(x)
$$

and $\operatorname{so} \varphi_{1} \leq g \varphi$.
Now, if $f_{w}<h_{w}$, then G is quasidiscrete and $g_{0} f_{w}=h_{w}$ (see Lemma III.1.3). Also, since $\eta_{\varphi_{1}(w)} \leq g \phi_{\varphi(w)}$

$$
\begin{gathered}
\eta_{\varphi_{1}(w)}\left(f_{w}(x)\right)=\eta_{\varphi_{1}(w)}\left(g_{0}^{-1} h_{w}(x)\right) \leq g \phi_{\varphi(w)}\left(f_{w}(x)\right) \\
g_{0}^{-1} \eta_{\varphi_{1}(w)}\left(h_{w}(x)\right) \leq g \phi_{\varphi(w)}\left(f_{w}(x)\right) \\
\varphi_{1}(x) \leq \eta_{\varphi_{1}(w)}\left(h_{w}(x)\right) \leq\left(g g_{0} \phi_{\varphi(w)}\left(f_{w}(x)\right) \leq\left(g g_{0}\right) \varphi(x)\right.
\end{gathered}
$$

Hence, for all $x \in X, \varphi_{1}(x) \leq\left(g g_{0}\right) \varphi(x)$ and we conclude $\varphi_{1} \leq\left(g g_{0}\right) \varphi$.

III.4. Future work: G-module maps in $M(X, Y)$

We have shown that for all G-module X the set $M\left(X, G^{\#}\right)$ is a totally ordered group with the order relation $\varphi_{1} \leq \varphi_{2}$ if and only if for all $x \in X, \varphi_{1}(x) \leq \varphi_{2}(x)$. Now, let Y be another G-module, if we consider the same order relation, is $M(X, Y)$ a totally ordered set? Is $M(X, Y)$ a G-module with the action $G \times M(X, Y) \rightarrow M(X, Y)$ given by $(g \varphi)(x):=$ $g \varphi(x)=\varphi(g x)$ for all $x \in X$ and $\varphi \in M(X, Y)$?

In the study of G - module maps, the orbit of an element $x_{0} \in X$ played an important role in comparing $r, t \in M\left(X, G^{\#}\right)$ (see Remark 3 in Chapter 3). In order to answer these questions, I am thinking to work with the following two concepts and the results obtained from them.
(i) In [8] the concept of Tight G-module to describe a G-module X that has a convex base was introduced. B is a convex base of X, when X is generated by a convex subset $B \subset X$ and for all $b_{1}, b_{2} \in B$ the orbits $G b_{1}$ and $G b_{2}$ are disjoint. For
example, the G-module X_{2} in the Section III.2.1 is a tight with convex base $\left\{g^{-}, g\right\}$ for any $g \in G$.
(ii) The topological type of an element in the G-module X was defined in [10] as follows. Let s_{0} be an element of X and for each $s \in X$, we consider

$$
\begin{aligned}
& \tau_{l}(s):=\sup _{X^{\#}}\left\{x \in G s: x \leq s_{0}\right\} \\
& \tau_{u}(s):=\sup _{X^{\#}}\left\{x \in G s: x \geq s_{0}\right\}
\end{aligned}
$$

Note that these elements of X show to what extent we can approach s_{0} with elements of the orbit of s.

The topological type of an element $s \in X$ was defined as the subset of G given by

$$
\tau(s):=\left\{h \in G: \tau_{l}(s) \leq h s_{0} \leq \tau_{u}(s)\right\} .
$$

As a first step, we could study $M(X, Y)$ in the particular case where X or Y are tight G-modules. Let G be a totally ordered group and let X be a tight G-module with a convex base B. Note the followings facts:

- The base B contains one and only one element of each of the orbits $G b$ with $b \in B$.
- Let $z, w, v \in X$ with $z<w<v$. Note that if $g w \leq v$ for some $g \in G$ then, because B is a convex subset of X, we have that $g w<z$.
- Choose v in the convex base B. For each $w \in B$, we have

$$
\begin{aligned}
& \tau_{l}(w)=\sup _{X^{\#}}\{x \in G w: x<v\} \\
& \tau_{u}(w)=\inf _{X^{\sharp}}\{x \in G w: x>v\} .
\end{aligned}
$$

If $w=v$, then $\tau_{l}(w)=\tau_{u}(w)=w$ and the topological type of w is $\tau(w)=\operatorname{stab}(v)$. If $w<v$, then $\tau_{l}(w)=w$ and for all $b \in B, \tau_{u}(w) \geq b$.
If $h \in \operatorname{stab}(v)$, then $w<v=h v \leq \tau_{u}(w)$. If $h \notin \operatorname{stab}(v)$, then $1<h$ leads to $\tau_{u}(w) \leq h w<h v$ and $h<1$ implies that $h w<h v<b$ for all $b \in B$. These facts imply that

$$
\tau(w)=\left\{h \in G: w \leq h v \leq \tau_{u}(w)\right\}=\operatorname{Stab}(v)
$$

In the same way, we show that $\tau(w)=\operatorname{stab}(v)$ when $v<w$.

- Also, in [8] the authors proved that if X is a tight G-module, then the stabilizer of an element $x \in X$ is constant convex subgroup $H \subset G$. Therefore, the topological type does not depend on the choice of $v \in B$, is constant on X.
We can to sort the elements of a tight G-module X with base B by considering the sets $g B$ for all $b \in B$. Because for all $g \in G, g B$ is also a convex base of X, we have that

$$
g_{2}^{-1} b_{i}<g_{2}^{-1} b_{j}<g_{1}^{-1} b_{i}<g_{1}^{-1} b_{j}<b_{i}<b_{j}<g_{1} b_{i}<g_{1} b_{j}<g_{2} b_{i}<g_{2} b_{j}
$$

for all $b_{i}, b_{j} \in B$ with $b_{i}<b_{j}$ and $g_{1}, g_{2} \in G$ two elements that do not belong to $\operatorname{Stab}\left(b_{i}\right)=H$ with $1<g_{1}<g_{2}$.

Thus, we can analyze the orbits of the elements of the base B of X to compare two G-module maps $r, t: X \rightarrow Y$.

REFERENCES

[1] Bachman, G. Introduction to p-adic numbers and valuation theory. Academic Press, New York-London, 1964.
[2] Berz, M. Calculus and numerics on Levi-Civita fields. In Computational Differentiation: Techniques, Applications, and Tools (Philadelphia, PA), M. Berz, C. Bischof, G. Corliss, and A. Griewank, Eds., SIAM, pp. 19-35.
[3] Clifford, A. H. Note on Hahn's theorem on ordered abelian groups. Proceedings of the American Mathematical Society 5, 6 (1954), 860-863.
[4] Comicheo, A. B. Generalized open mapping theorem for x-normed spaces. p-Adic Numbers, Ultrametric Analysis and Applications 11, 2 (Apr 2019), 135-150.
[5] Fuchs, L. Partially ordered algebraic systems. Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963.
[6] Keller, H. A. Ein nicht-klassischer Hilbertscher Raum. Math. Z. 172, 1 (1980), 41-49.
[7] Moreno, H. M. On analytic functions in an ordered field with an infinite rank valuation. p-Adic Numbers, Ultrametric Analysis and Applications 12, 1-2 (2020), 310-321.
[8] Ochsenius, H., and Olivos, E. G-modules with a convex base. Contemporary Mathematics (01 2018), 251-260.
[9] Ochsenius, H., Olivos, E., and Perez-Garcia, C. Wim Schikhof: our colleague and friend. In Advances in non-Archimedean analysis, vol. 665 of Contemp. Math. Amer. Math. Soc., Providence, RI, 2016, pp. 199-249.
[10] Ochsenius, H., and Schiкhof, W. H. Banach spaces over fields with an infinite rank valuation. In p-adic functional analysis (Poznań, 1998), vol. 207 of Lecture Notes in Pure and Appl. Math. Dekker, New York, 1999, pp. 233-293.
[11] Ochsenius, H., and Schikhof, W. H. Lipschitz operators on Banach spaces over Krull valued fields. In Ultrametric functional analysis, vol. 384 of Contemp. Math. Amer. Math. Soc., Providence, RI, 2005, pp. 203-233.
[12] Ochsenius, H., and Schikhof, W. H. A new method for comparing two norm Hilbert spaces and their operators. Indag. Math. (N.S.) 21, 1-2 (2011), 112-126.
[13] Olivos, E., and Schikhof, W. H. Extending the multiplication of a totally ordered group to its completion. In Advances in non-Archimedean analysis, vol. 551 of Contemp. Math. Amer. Math. Soc., Providence, RI, 2011, pp. 231-242.
[14] Olivos, E., and Schiкhof, W. H. Algebra and topology on the Dedekind completion of a totally ordered abelian group. Indag. Math. (N.S.) 24, 1 (2013), 291-304.
[15] Ribenboim, P. The theory of classical valuations. Springer Monographs in Mathematics. Springer-Verlag, New York, 1999.
[16] Rudin, W. Principles of mathematical analysis / Walter Rudin, 3d ed. ed. McGraw-Hill New York, 1976.
[17] Shamseddine, K. Analysis on the Levi-Civita field and computational applications. Applied Mathematics and Computation 255 (2015), $44-57$.
[18] Solèr, M. P. Characterization of Hilbert spaces by orthomodular spaces. Comm. Algebra 23, 1 (1995), 219-243.
[19] Ugarte, F. J. Estructura de los grupos abelianos ordenados. Pro Mathematica 29, 57 (2016), 105-128.

