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Resumen

La distribución Birnbaum-Saunders (BS) ha sido extensamente estudiada y apli-
cada. En un modelo de regresión, la respuesta media condicionada a valores de va-
riables explicativas es descrita . Sin embargo, si la respuesta sigue una distribución
asimétrica, la media no es una buena medida de centralidad para resumir los datos y
la mediana debeŕıa ser usada. En ese caso, un modelo de regresión cuantil parece ser
más apropiado para relacionar la respuesta de interés a las variables explicativas. La
precisión de un estimador de la media (o mediana) puede ser mejorada si una com-
ponente espacial es considerada en el modelado. Proponemos modelos de regresión
cuantil para datos independientes y también con dependencia espacial basados en la
distribución BS. Estimamos sus parámetros usando el método de verosimilitud máxima
y presentamos sus propiedades asintóticas para modelos de regresión cuantil BS para
datos independientes. Asimismo, derivamos métodos de diagnóstico para evaluar la
pertinencia de las suposiciones del modelo y detectar casos potencialmente influyentes.
Ilustramos los resultados obtenidos con datos reales para mostrar sus aplicaciones po-
tenciales y comparamos los modelos BS y gaussiano. Los resultados numéricos indican
un buen desempeño de la regresión cuantil BS, demostrando que la distribución BS es
una buena elección cuando se modelan datos que tienen soporte positivo y asimetŕıa.

Palabras claves: análisis de datos; influencia local; método de verosimilitud
máxima; modelos lineales generalizados; modelos espaciales; regresión de la mediana;
software R; residuos.



Abstract

The Birnbaum-Saunders (BS) distribution has been largely studied and applied.
In a regression model, the mean response conditional to values of explanatory variables
is described. However, if the response follows a skew distribution, the mean is not a
good centrality measure to summarize the data and the median should be used. In this
case, a quantile regression model seems to be more suitable for relating the response of
interest to explanatory variables. Accuracy of an estimator of the mean (or median)
may be improved if a spatial component is considered in the modeling. We propose
quantile regression models for independent data and also with spatial dependence based
on the BS distribution. We estimate their parameters by using the maximum likelihood
method and present their asymptotic properties for BS quantile regression models
with independent data. Also, we derive diagnostic techniques to assess the suitability
of the model assumptions and to detect potentially influential cases. We illustrate
the obtained results with real data to show their potential applications and compare
BS and Gaussian models. The numerical results report an adequate performance of
the approach to quantile regression based on the BS distribution indicating that this
distribution is a good modeling choice when dealing with data that have both positive
support and asymmetry.

Keywords: data analysis; generalized linear models; local influence; maximum like-
lihood method; median regression; R software; residuals; spatial models.
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Chapter 1

Preliminaries

1.1 Summary

In this chapter, we give an introduction and bibliographical review for our study. Next,
the relation between the BS and standard normal distributions is described and the
probability density and cumulative distribution functions for the univariate BS case
are presented. Then, we establish a new parameterization of the BS distribution based
on its quantiles. Thus, we introduce the multivariate BS distribution and propose
a reparameterization based on the quantiles of the marginal distributions associated.
Hence, we mention aspects related to motivations, aims and products of this thesis.

1.2 Introduction and bibliographical review

Life distributions are often positively skewed, unimodal and two-parameter models,
in addition to having positive support; see Marshall and Olkin (2007) and Saunders
(2007). A life distribution that has received a considerable attention in recent decades
is the BS model. It was originated from a problem of material fatigue and has been
largely applied to reliability and fatigue studies; see Birnbaum and Saunders (1969)
and Leiva and Saunders (2015). The BS distribution relates the total time until the
failure to some type of cumulative damage normally distributed. This attention for
the BS distribution is due to its attractive properties and its relationship with the
normal distribution. Extensive work has been done on the BS distribution with regard
to its properties, inference and modeling. Its natural applications have been mainly
focussed on engineering. However, today they range diverse fields including business,
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environment, industry and medicine; see Lio et al. (2010), Leiva et al. (2011, 2014a,c,
2015a,b); Leiva (2016); Leiva et al. (2016b, 2017, 2018), Lillo et al. (2018), Marchant
et al. (2013a,b, 2016a,b, 2018), Saulo et al. (2013, 2015, 2019), Rojas et al. (2015),
Wanke and Leiva (2015), Leão et al. (2017b, 2018b), Leiva and Saulo (2017), Desousa
et al. (2018) and Leiva et al. (2018), for some of its more recent applications. For a
comprehensive treatment on this model, its computational implementation, and details
about new applications in fields beyond engineering, see the book by Leiva (2016) and
the review article by Balakrishnan and Kundu (2019).

A random variable with BS distribution can be considered as a transformation
of another random variable with standard normal distribution. Then, because all
random variable following the BS distribution may be represented by another basis
random variable, generalizations of this distribution might be obtained changing the
distribution of this basis random variable. Diverse arguments can be used for sup-
porting this change, which allows more general classes of models to be constructed.
Several extensions and generalizations of the BS distribution have been conducted
by an international and transdisciplinary group of researchers. The first extension of
the BS distribution is attributed to Volodin and Dzhungurova (2000). Then, Dı́az-
Garćıa and Leiva (2005) introduced the generalized BS (GBS) distribution based on
elliptical distributions. Owen (2006) proposed a three-parameter extension of the BS
distribution. Vilca and Leiva (2006) derived a BS distribution based on skew-normal
models. Gómez et al. (2009) extended the BS distribution from the slash-elliptic model.
Guiraud et al. (2009) deducted a non-central version of the BS distribution. Leiva et al.
(2009) provided a length-biased option of the BS distribution. Ahmed et al. (2010)
truncated the BS distribution. Kotz et al. (2010) performed mixture models related
to the BS distribution. Vilca et al. (2010) and Castillo et al. (2011) developed the
epsilon-skew BS distribution. Balakrishnan et al. (2011) considered BS mixture distri-
butions. Cordeiro and Lemonte (2011) defined the beta-BS distribution. Leiva et al.
(2011) modeled wind energy flux using a shifted BS distribution. Athayde et al. (2012)
viewed the BS distributions as part of the Johnson system, allowing location-scale BS
distributions to be obtained. Santos-Neto et al. (2012, 2014, 2016) reparameterized
the BS distribution obtaining interesting properties. Saulo et al. (2012) presented the
Kumaraswamy-BS distribution. Fierro et al. (2013) generated the BS distribution from
a non-homogeneous Poisson process. Lemonte (2013) studied the Marshall-Olkin-BS
(MOBS) distribution. Bourguignon et al. (2014) derived the power-series BS class of
distributions. Martinez et al. (2014) introduced an alpha-power extension of the BS dis-
tribution. Leiva et al. (2016b) proposed a zero-adjusted BS distribution. Bourguignon
et al. (2017) derived the transmuted BS distribution.

Common regression models provide an estimate of the mean response given cer-
tain values of the explanatory variables. However, as mentioned, if the response varia-
ble follows a skew distribution, the mean is not a good central tendency measure to
summarize the data. Quantile regression models were proposed by Koenker and Bas-
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sett (1978), who extended the median regression model attributed to Laplace (1818),
generalizing the ordinary sample quantiles in the regression setting. The quantile re-
gression aims at estimating either the conditional median or other quantiles of the
response. Quantile regression models for the BS distribution do not exist in the litera-
ture; see Noufaily and Jones (2013) for a generalized gamma quantile regression, with
the gamma distribution being a direct competitor of the BS distribution. In particular,
we are interested in modeling the median of the BS distribution by regression. In the
BS distribution, the median is one of its parameters, so that its modeling by quantile
regression seems natural; see Leiva et al. (2014b) and Santos-Neto et al. (2016) for mo-
deling using a mean-based reparameterization of the BS distribution, whereas Saulo
et al. (2019) did a comparison between models based on the mean and median of the
BS distribution.

Accuracy of an estimator of the mean (or median) may be improved if a spatial
component is added in the modeling. A first idea of spatial quantile regression was
proposed by Kostov (2009). Trzpiot (2013) performed a work about spatial quantile
regression and proposed a general model based on the conditional quantile function.
McMillen (2013) showed variants of the spatial quantile regression. Garcia-Papani et al.
(2017, 2018a,b) introduced BS spatial models and their diagnostics for the conditional
mean. Stochastic processes are needed when modeling data spatially, which have not
been proposed for BS distributions, so that derivation of a BS process is also an open
problem. For stochastic processes, we need to know he corresponding finite dimensional
multivariate distributions, which have been proposed and studied for BS distributions
by Caro-Lopera et al. (2012), Kundu et al. (2013), Vilca et al. (2014), Jamalizadeh and
Kundu (2015), Khosravi et al. (2015), Kundu (2015a,b), Lemonte et al. (2015), Sánchez
et al. (2015), Marchant et al. (2016a,b) and Garcia-Papani et al. (2017, 2018a,b).

1.3 Background

If Z ∼ N(0, 1), then the random variable T defined as

T =
β

4

(
αZ +

√
α2Z2 + 4

)2

(1.1)

follows a BS distribution with parameters of shape α > 0 and scale β > 0, which
is denoted by T ∼ BS(α, β). The random variable T has positive support and the
transformation given in (1.1) is one-to-one, which allows us to establish that

Z =
1

α

(√
T/β −

√
β/T

)
∼ N(0, 1).
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The probability density and cumulative distribution functions of T are expressed re-
spectively as

fT (t) =
1

2αβ
√

2π

[√
β/t+

√
(β/t)3

]
exp

[
− 1

2α2

(
t

β
+
β

t
− 2

)]
, t > 0,

FT (t) = Φ

[
1

α

(√
t/β −

√
β/t
)]

, t > 0,

where Φ is the standard normal cumulative distribution function. Given q ∈ (0, 1) and
based on (1.1), note that the q × 100th quantile of the BS distribution is defined as

Q = tq =
β

4

(
αzq +

√
α2z2

q + 4
)2

=
β

4
γ2
α, (1.2)

where
γα = αzq +

√
α2z2

q + 4 (1.3)

and zq is the q× 100th quantile of the standard normal distribution. Note that Q > 0.
Let the random vector V = (V1, . . . , Vn)> ∈ Rn follow a multivariate normal

distribution, denoted by V ∼ Nn(µ,Σ), with mean vector µ = (µi) ∈ Rn and variance-
covariance matrix Σ = (σjk) ∈ Rn×n, with rank(Σ) = n. The probability density
function of V is given by

fV (v;µ,Σ) = (2π)−n/2 |Σ|−1/2 exp

(
−1

2
[v − µ]>Σ−1[v − µ]

)
, v = (v1, . . . , vn)> ∈ Rn

(1.4)
and its cumulative distribution function is denoted by FV (v;µ,Σ). When the mean
vector is zero, that is µ = 0n×1, with 0n×1 being an n × 1 vector of zeros, we use
the notation φn and Φn for the n-variate normal probability density and cumulative
distribution functions, respectively.

The random vector T = (T1, . . . , Tn)> ∈ Rn
+ follows a multivariate BS distri-

bution with parameters α = (α1, . . . , αn)> ∈ Rn
+, β = (β1, . . . , βn)> ∈ Rn

+ and
Γ ∈ Rn×n if Ti = T (Vi;αi, βi), for i = 1, . . . , n, where T is given in (1.1) and
V = (V1, . . . , Vn)> ∈ Rn ∼ Nn(0n×1,Γ), with Γ ∈ Rn×n being the correlation ma-
trix of V . Hence, we denote the n-variate BS distribution by T ∼ BSn(α,β,Γ).
Thus, the cumulative distribution function and probability density function of T are,
respectively, defined by

FT (t;α,β,Γ) = Φn(A; Γ), (1.5)

fT (t;α,β,Γ) = φn(A; Γ) a(t;α,β), t = (t1, . . . , tn) ∈ Rn
+, (1.6)

where A = A(t;α,β) = (A1, . . . , An)>, with Aj = A(tj;αj, βj),

a(t;α,β) =
n∏
j=1

a(tj;αj, βj), (1.7)
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and both A(tj;αj, βj) and a(tj;αj, βj) are given by

A(tj;αj, βj) =
1

αj

[√
tj/βj −

√
βj/tj

]
, (1.8)

a(tj;αj, βj) =
d

dtj
(A(tj;αj, βj)) =

1

2αjβj

[{
βj
tj

}1/2

+

{
βj
tj

}3/2
]
. (1.9)

1.4 Motivation of the thesis

According to the review of literature discussed in the Section 1.2 and the background
presented in Section 1.3, we have mainly the next motivations to develop this thesis:

(1) Since there are not studies about quantile regression models for independent
data based on the BS distribution, we propose to formulate models in this line
and to realize a study on parameters estimation by the maximum likelihood (ML)
method, asymptotic properties and simulation of residuals. In addition, analytics
of local influence is derived.

(2) Because of the non-existence in the literature of BS spatial quantile regression
models, we propose to formulate models in this line for correlated-spatially data.
We are interested in carrying out estimation of parameters and diagnostics by
using the global and local influence techniques.

1.5 Objectives of the thesis

Based on Section 1.4, the objectives of this work are:

(1) To formulate quantile regression models based on the univariate BS distribution.

(2) To develop BS spatial quantile regression models.

(3) To derive influence diagnostics for the formulated models.

(4) To evaluate the proposed results by simulations.

(5) To apply BS quantile regression models to real-world data.

(6) To implement the methodology obtained in the R software.
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1.6 Products of the thesis

This thesis led to the following products:

(1) Sánchez, L., Leiva, V. (2018). A quantile regression model for the Birnbaum-
Saunders distribution. X Simposio Nororiental de Matematicas, Bucaramanga,
Colombia.

(2) Sánchez, L., Leiva, V. (2018) Diagnostics on a Birnbaum-Saunders quantile
regression model. III International Workshop on Data Science, Vina del Mar,
Chile.

(3) Sánchez, L., Leiva, V., Galea, M., Saulo, H. (2020). Birnbaum-Saunders quan-
tile regression and its diagnostics with application to economic data. Applied
Stochastic Models in Business and Industry, pages in press.

(4) Sánchez, L., Leiva, V., Galea, M., Saulo, H. (2020). Birnbaum-Saunders Quan-
tile Regression Models with Application to Spatial Data. Under review.

(5) Sánchez, L., Leiva, V., Galea, M., Saulo, H. (2020). Global and local diag-
nostic analytics for a geostatistical model based on Birnbaum-Saunders quantile
regression with different distance measures. Under review.

1.7 Organization of the thesis

This thesis is organized as follows. In Chapter 2, we formulate BS quantile regression
models for data whose observations are independent. Parameter estimation, residuals,
local influence diagnostic analytics, and illustrations with real data are provided. In
Chapter 3, we introduce BS spatial quantile regression models once again considering
parameters estimation, diagnostics of global and local influence and illustrations with
real data. In Chapter 4, we establish the conclusions and further research to be de-
veloped. Appendixes contain the corresponding Fisher information and perturbation
matrices for inference and diagnostics in the BS spatial regression model.



Chapter 2

BS quantile regression models
for independent data

2.1 Summary

In this chapter, we introduce a class of quantile regression models based on the BS
distribution, which allows us to describe positive and asymmetric data when a quan-
tile must be predicted using covariates. We use an approach based on a quantile
parameterization to generate the model, permitting us to consider a similar framework
to generalized linear models, providing wide flexibility. The methodology proposed
includes a thorough study of theoretical properties and practical issues, such as pa-
rameter estimation by ML method and diagnostic analytics based on local influence
and residuals. The performance of the residuals is evaluated by simulations, whereas
an illustrative example of income data is conducted using the methodology to show its
potential for applications. The economic implications of our investigation are discussed
in the final section.

2.2 Introduction

The study of the BS distribution has received growing interest and a considerable
amount of work is available; see the recent publications by Leiva (2016), Balakrishnan
and Kundu (2019) and references therein, which summarize most of the works to the
date. BS spatial models and their diagnostics for the conditional mean have been
developed; see Garcia-Papani et al. (2017, 2018a,b). However, no quantile regression
models based on the BS distribution have been derived.

12
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Diagnostic analytics plays a relevant role in statistical modeling, which can be
classified in global and local techniques. Residuals are well-known and often used as
measures of global influence and for detecting the model adequacy (Krzanowski, 1998;
Leiva et al., 2016), whereas the local influence technique is currently very popular.
This technique allows us to evaluate the local effect of perturbations on the estimates
of parameters and then to detect potentially influential cases in different models; see,
for example, Santana et al. (2011) and Tapia et al. (2019).

The main objective of this chapter is to formulate quantile regression models
based on the BS distribution and its diagnostics. We use a quantile parameterization to
generate the new model, which allows us to consider a similar framework to generalized
linear models, providing wide flexibility; see also the works by Mitnik and Baek (2013)
and Noufaily and Jones (2013) for similar parameterizations but not identical. Note
that it is not possible to make comparison between our model and that proposed by
Noufaily and Jones (2013) because are models postulated in different contexts. In any
case, future research about this issue is mentioned in the final section.

The remainder chapter is organized as follows. Section 2.3 presents the BS distri-
bution in its original parameterization and a new parameterization of it which allows us
to model a quantile. In Section 2.4, we formulate the regression model and provide es-
timation based on the ML method. In Section 2.5, we derive diagnostic analytics based
on the local influence technique. Section 2.6 proposes four types of residuals for the BS
quantile regression model and then we evaluate their performance by using Monte Carlo
simulations. In Section 2.7, we also apply the obtained results to household income
data, including formulation, estimation, inference and diagnostic analytics to illustrate
the potential of the new model. In Section ??, we discuss economic implications of our
illustrative example. In Section 2.9, we present concluding remarks.

2.3 A BS distribution parametrized by its quantiles

Consider T ∼ BS(α, β). Let q ∈ (0, 1) be a fixed number and the transformation
(α, β) 7→ (α,Q) be one-to-one, where Q is defined in (1.2). Then, we can define
a parameterization of the BS model based on Q so that the associated cumulative
distribution and probability density functions can be written, respectively, as

F (t) = Φ

[
1

αγα

√
4Q

t

(
tγ2
α

4Q
− 1

)]
, t > 0,

fT (t) =
1

αγα
√

8πQt

(
γ2
α

2
+

2Q

t

)
exp

[
− 2Q

α2γ2
αt

(
tγ2
α

4Q
− 1

)2
]
, t > 0, (2.1)
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where γα is given by (1.3). Hence, under this parameterization, we write T ∼ BS(α,Q).
The mean and variance of T are, respectively, given by

E[T ] =
4Q

γ2
α

(
1 +

α2

2

)
, Var[T ] =

16Q2α2

γ4
α

(
1 +

5

4
α2

)
.

Figure 2.1 displays some shapes of the probability density function of T ∼
BS(α,Q) defined in (2.1). From Figures 2.1 (a), (d) and (g), observe that the pa-
rameter α modifies the skewness and kurtosis of the model, as expected since it is a
shape parameter. From Figures 2.1 (b), (e) and (h), note that, as Q increases, the
kurtosis decreases, also as expected because it is a quantile parameter so that, as it in-
creases, less kurtosis is detected. Also there is more concentration around the quantile
as α decreases and therefore the variability decreases. Furthermore, notice that, when
α increases, the variance increases exponentially for the first and second quartiles –see
Figures 2.1 (c) and (f)–, whereas it increases in a controlled way for the third quartile
–see Figure 2.1 (i)–.

2.4 A BS quantile regression model

Let T1, . . . , Tn be independent random variables, where Ti ∼ BS(α,Qi), for i = 1, . . . , n,
and t = (t1, . . . , tn)> be their associated observations. Then, we define a statistical
model based on (2.1) by the systematic component

h(Qi) = ηi = x>i β, i = 1, . . . , n, (2.2)

such that Qi = h−1(x>i β), where β = (β0, β1, . . . , βp−1)>, for p < n, is a vector of
unknown regression parameters to be estimated, and x>i = (1, xi1, . . . , xi(p−1)) repre-
sents the values of p covariates. In the model defined from (2.2), the link function h
is invertible, has a positive support and at least twice differentiable. Examples of link
functions are h(u) = logk(u) and h(u) = a

√
u with a, k being positive integer numbers.

Also, can be considered h(u) = u, that is, the identity function, with R+ as domain of
h.

The log-likelihood function of the model given in (2.2) for θ = (β>, α)> is
`(θ; t) = `(θ) =

∑n
i=1 `i(Qi, α; ti), where

`i(Qi, α; ti) = `i(Qi, α) = −1

2
log(8πti)− log(αγα)− 1

2
log(Qi)

+ log

(
γ2
α

2
+

2Qi

ti

)
− 2Qi

α2γ2
αti

(
tiγ

2
α

4Qi

− 1

)2

. (2.3)

The score functions for βj, with j = 0, 1, . . . , p − 1, and α are, respectively, expressed
as

˙̀
βj =

∂`(θ)

∂βj
=

n∑
i=1

(
− 1

2Qi

− 2

α2γ2
αti

+
γ2
αti

8α2Q2
i

+
4

tiγ2
α + 4Qi

)
︸ ︷︷ ︸

zi

1

h′(Qi)︸ ︷︷ ︸
ai

xij,
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Figure 2.1: Plots of the BS probability density function for Q = 1.0 (left) and α = 1.0
(center), for q = 0.25 (a)-(b); for q = 0.50 (d)-(e); as well as for q = 0.75 (g)-(h); and
of the BS variance against α for Q = 2.0 (right) with q = 0.25 (c), q = 0.50 (f) and
q = 0.75 (i).

˙̀
α =

∂`(θ)

∂α
=

n∑
i=1

[
−(γα + αγ′α)

αγα
+

2tiγαγ
′
α

tiγ2
α + 4Qi

− (γαγ
′
αα− γ2

α)ti
4Qiα3

− 2

α3
+

4Qi(γα + αγ′α)

(αγα)3ti

]
︸ ︷︷ ︸

bi

(2.4)
where h′ is the derivative of h and γ′α is the derivative of γα. Thus, we can write (2.4)
in matrix form as

˙̀
β = ( ˙̀

βj) = X>D(a)z, ˙̀
α = tr(D(b)),
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where X> = (x1, . . . ,xn), with xi being defined in (2.2), for i = 1, . . . , n, z =
(z1, . . . , zn)> and D denotes the diagonalization operator of a vector, such that
D(·) = diag(·), with a = (a1, . . . , an)> and b = (b1, . . . , bn)>. Then, the score vector
is ˙̀

θ = ( ˙̀
β, `α)>.

The elements of the associated Hessian matrix are expressed as

῭
βlβj =

∂2`(θ)

∂βl∂βj
=

n∑
i=1

[
∂2`i(Qi, α)

∂Q2
i

(
dQi

dηi

)2

+
∂`i(Qi, α)

∂Qi

(
∂

∂Qi

dQi

dηi

)
dQi

dηi

]
︸ ︷︷ ︸

ci

xijxil,

where
∂`i(Qi, α)

∂Qi

= zi,
∂2`i(Qi, α)

∂Q2
i

=
1

2Q2
i

− 16

(tiγ2
α + 4Qi)2

− γ2
αti

4α2Q3
i

,

dQi

dηi
= ai,

∂

∂Qi

(
dQi

dηi

)
= − h′′(Qi)

(h′(Qi))2
,

with h′′ being the second derivative of h. Hence, we can group the expressions obtained
in matrix form as ῭

ββ = X>D(c)X, where c = (c1, . . . , cn)>. Furthermore, we have

῭
βjα =

∂2`(θ)

∂βj∂α
=

n∑
i=1

[
− 8tiγαγ

′
α

(tiγ2
α + 4Qi)2

+
(γαγ

′
αα− γ2

α)ti
4α3Q2

i

+
4(γα + αγ′α)

(αγα)3ti

]
︸ ︷︷ ︸

mi

aixij,

which can be represented in matrix form as ῭
βα = X>D(a)m, where m =

(m1, . . . ,mn). In addition, we get

῭
αα =

∂2`(θ)

∂α2

=

n∑
i=1

{
−A+ Bi

ti
(tiγ2

α + 4Qi)2
+ 2[γ3

αγ
′′
α − γ2

α(γ′α)2]

(
ti

tiγ2
α + 4Qi

)2

− Citi +
6

α4
+Di

1

ti

}
︸ ︷︷ ︸

ri

,

where γ′′α is the second derivative of γα and

A =
(2γ′α + αγ′′α)(αγα)− (γα + αγ′α)2

(αγα)2
, Bi = 8Qi[(γ

′
α)2 + γαγ

′′
α],

Ci =
1

4Qi

[
α2(γ′α)2 + α2γαγ

′′
α − αγαγ′α − 3γαγ

′
αα + 3γ2

α

α4

]
,

Di = 4Qi

[
(2γ′α + αγ′′α)(αγα)− 3(γα + αγ′α)2

(αγα)4

]
.

In matrix notation, we can write ῭
αα = tr(D(r)), where r = (r1, . . . , rn)>.
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The associated expected Fisher information Kθθ = E[− ῭
θθ] can be expressed in

form matrix as

Kθθ =

(
Kββ Kβα

Kαβ Kαα

)
,

where Kββ = X>D(v)X, with v = (v1, . . . , vn)>, whose elements are

vi =

[
16Vi(θ)− 1

2Q2
i

+
1

α2Q2
i

(
1 +

α2

2

)]
1

[h′(Qi)]2
−[

1

2Qi

+
1

2α2Qi

(
1 +

α2

2

)
− 4Wi(θ)

]
· h

′′(Qi)

[h(Qi)]3
; (2.5)

Kβα = K>αβ = X>D(a) s, with s = (s1, . . . , sn), whose elements are

si = 8γαγ
′
αUi(θ)− (γαγ

′
αα− γ2

α)

α3γ2
αQ

2
i

(
1 +

α2

2

)
− (γα + αγ′α)

α3γαQi

(
1 +

α2

2

)
;

and Kαα = tr(D(u)), for u = (u1, . . . , un)>, whose elements are

ui = A−BiUi(θ)−2[γ3
αγ
′′
α−γ2

α(γ′α)2]Si(θ)+Ci
4Qi

γ2
α

(
1 +

α2

2

)
− 6

α4
−Di

γ2
α

4Qi

(
1 +

α2

2

)
,

with

Si(θ) =

∫ ∞
0

(
t

tγ2
α + 4Qi

)2

fTi(t) dt,

Ui(θ) =

∫ ∞
0

t

(tγ2
α + 4Qi)2

fTi(t) dt,

Vi(θ) =

∫ ∞
0

1

(tγ2
α + 4Qi)2

fTi(t) dt,

Wi(θ) =

∫ ∞
0

1

tγ2
α + 4Qi

fTi(t) dt.

To estimate the model parameters by the ML method, we solve the equations ˙̀ = 0.
However, no closed-form expressions for the ML estimates are available. Following
the definitions in Leiva et al. (2014b) and Santos-Neto et al. (2016), we can write the
iterative algorithm

θ(m+1) = (X̃>W̃ (m)X̃)−1X̃>W̃ (m)z∗(m), m = 0, 1, 2, . . . ,

which uses the Fisher scoring method, where

X̃ =

(
X 0
0 1

)
,

W̃ =

(
D(v) D(a)s
s>D(a) tr(D(u))

)
,

z∗(m) = X̃θ(m) + (W̃ (m))−1

(
D(a)(m) 0

0 tr(D(b))(m)

)(
z(m)

1

)
.
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Under usual regularity conditions, the asymptotic distribution of θ̂ is θ̂ ∼̇Np+1(θ,Σθ),
where ∼̇ means ‘approximately distributed’ and Σθ is the asymptotic variance-

covariance matrix of θ̂; see Cox and Hinkley (1974). This matrix can be obtained
by using the inverse expected Fisher information matrix K−1

θθ and estimated by replac-

ing θ̂ at θ. Thus, an approximate 100 × (1 − ξ)%, confidence region for θ is defined

as by (θ̂ − θ)>Σ̂−1
θ (θ̂ − θ) ≤ χ2

1−ξ(p + 1), for θ in Rp+1, where χ2
1−ξ(p + 1) is the

(1− ξ)× 100th quantile of the chi-squared distribution with p + 1 degrees of freedom

and Σ̂θ is a consistent estimator of Σθ. Therefore, it is possible to construct asymp-
totic 100× (1− ξ)% confidence bands for the linear predictor Q(xpred) = h−1(x>predβ),
∀xpred ∈ Rp, where xpred is an arbitrary p× 1 vector. Note that the asymptotic distri-

bution of β̂ is given by β̂ ∼̇Np(β,Σβ), where Σβ is the asymptotic variance-covariance

matrix of β̂, which can be obtained appropriately from Σθ. Then, an approximate
100× (1− ξ)% confidence region for Q(xpred) is expressed as{
h−1

[
x>predβ̂ −

√
χ2

1−ξ(p)
(
x>predΣ̂β xpred

)1/2
]
, h−1

[
x>predβ̂ +

√
χ2

1−ξ(p)
(
x>predΣ̂β xpred

)1/2
]}

,

where Σ̂β = (X>V̂ X)−1, with V̂ = D(v̂)−D(â)ŝ[tr(D(û))]−1ŝ>D(â), xpred ∈ Rp

and 0 < ξ < 1.

2.5 Local influence analytics

The influence local technique examines the effect of small perturbations in the data
and/or the model assumptions on the estimated parameters. The likelihood distance

(LD) is expressed by LD(ω) = 2[`(θ̂) − `(θ̂ω)], where θ̂ω is the ML estimate of θ
for a perturbed model and ω = (ω1, . . . , ωn)> is a perturbation vector. Cook (1986)
studied the local behavior of LD(ω) around the non-perturbed vector ω0, such that

LD(ω0) = 0. The normal curvature for θ̂ at the direction d, with ‖d‖ = 1, is defined

as Cd(θ̂) = 2|d>∆> ῭−1

θ̂θ̂
∆d|, where ῭

θ̂θ̂ is the Hessian matrix of `(θ) evaluated at θ̂

and ∆ is a (p+ 1)×n perturbation matrix also evaluated at θ̂ and at ω = ω0, so that
its elements are given by

∆ij =
∂2`ω(θ)

∂θi∂ωj

∣∣∣∣
θ=θ̂,ω=ω0

, i = 0, 1, . . . , p, j = 1, . . . , n, (2.6)

and with `ω(θ) being the log-likelihood function associated with the model perturbed
by ω. For the model (2.2), the elements of ῭

θθ are ῭
ββ = X>D(c)X, ῭

βα = ῭
αβ =

X>D(a)m and ῭
αα = tr(D(r)). We consider the direction dmax as the eigenvector

associated with the largest eigenvalue of the matrix

B = −∆> ῭−1

θ̂θ̂
∆. (2.7)
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The index plot of dmax may be considered to detect cases that are potentially influential
on θ̂. If our interest is only on the vector β̂, then the normal curvature at the direction
d is given by Cd(β̂) = 2|d>∆>[ ῭−1

θ̂θ̂
− ῭

1]∆d|, where the (p+ 1)× (p+ 1) matrix ῭
1 is

expressed as

῭
1 =

(
0 0

0 ῭−1
α̂α̂

)
.

To study local influence on α̂, the normal curvature in the direction of d is defined by
Cd(α̂) = 2|d>∆>( ῭−1

θ̂θ̂
− ῭

2)∆d|, where the (p+ 1)× (p+ 1) matrix ῭
2 is expressed as

῭
2 =

(
῭−1

β̂β̂
0

0 0

)
.

The vector d = ein, where ein is an n×1 vector of zeros, with one at the ith position, is
other relevant direction. In that case, the normal curvature, called total local influence
of the case i, is calculated by Ci = 2|einBein| = 2|Bii|, where Bii is the ith diagonal
element of B defined in (2.7). Lesaffre and Verbeke (1998) proposed to pay attention
to those cases with Ci > 2 C̄, where C̄ =

∑n
i=1 Ci/n.

Case-weight perturbation Let ω = (ω1, . . . , ωn)> be a weight vector. In this case,
the perturbed log-likelihood function is defined by `ω(θ) =

∑n
i=1 ωi`i(Qi, α), where

`i(Qi, α) is given in (2.3), with 0 ≤ ωi ≤ 1, for i = 1, . . . , n. Hence, the perturbation
matrix is expressed as ∆ = [δ1, . . . , δn], where for ai, bi and zi are given previously, we
have

δi =

(
xiaizi
bi

)
, i = 1, . . . , n.

Note that ∆ must be evaluated at θ = θ̂ and ω = ω0 = (1, . . . , 1)>.

Response perturbation We consider now an additive perturbation on the response i by
making ti(ωi) = ti + ωisTi , where ωi ∈ R and sTi is a scale factor often represented by
the sample SD of T , for i = 1, . . . , n. Then, under the scheme of response perturbation,
the log-likelihood function is given by `ω(θ) =

∑n
i=1 `ωi(Qi, α), where

`ωi(Qi, α) = −1

2
log[8πti(ωi)]− log(αγα)− 1

2
log(Qi)

+ log

[
γ2
α

2
+

2Qi

ti(ωi)

]
− 2Qi

α2γ2
αti(ωi)

[
ti(ωi)γ

2
α

4Qi

− 1

]2

.

Hence, the column vectors of the matrix ∆ are expressed as

δi =

(
xiaiψiϑi
τiϑi

)
, i = 1, . . . , n,
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with ∆ being evaluated at θ = θ̂ and ω = ω0 = (0, . . . , 0)> so that

ψ̂i =
2

α̂2γ2
α̂t

2
i

+
γ2
α̂

8α̂2Q̂2
i

− 4γ2
α̂

(tiγ2
α̂ + 4Q̂i)2

,

τ̂i = 2γα̂γ
′
α̂

[
tiγ

2
α̂ + 4Q̂i − γ2

α̂ti

(tiγ2
α̂ + 4Q̂i)2

]
− γα̂γ

′
α̂α̂− γ2

α̂

4Q̂iα̂3
− 4Q̂i(γα̂ + α̂γ′α̂)

(α̂γα̂)3t2i
,

ϑ̂i = sTi ,

where γα̂ is γα evaluated at α̂.

Perturbation of a continuos covariate Consider now an additive perturbation on a
particular continuous covariate, namely xt, for t = 1, . . . , p − 1, by making xti(ωi) =
xti +ωisXt , where sXt is a scale factor, which can be the sample SD of Xt, and ωi ∈ R,
for i = 1, . . . , n. Then, under the scheme of covariate perturbation, the log-likelihood
function is given by `ω(θ) =

∑n
i=1 `ωi(Qi, α), where

`ωi(Qi, α) = −1

2
log(8πti)− log(αγα)− 1

2
log[Qi(ωi)]

+ log

[
γ2
α

2
+

2Qi(ωi)

ti

]
− 2Qi(ωi)

α2γ2
αti

[
tiγ

2
α

4Qi(ωi)
− 1

]2

,

with Qi(ωi) = h−1[x>i (ωi)β] and x>i (ωi) = (1, xi1, . . . , xti(ωi), . . . , xi(p−1))
>. Hence, the

perturbation matrix assumes the form

∆ =

(
∆β

∆α

)
,

where ∆ = (∆βij) is a p× n matrix with elements, when j 6= t, expressed as

∆βij = sXβta
′
ixijqi + sXβtxija

2
i

[
1

2Q2
i

− 16

(tiγ2
α + 4Qi)2

− γ2
αti

4α2Q3
i

]
,

with qi = zi, whereas, when j = t, it is given by

∆βit = sXaiqi + sXβta
′
ixitqi + sXβtxita

2
i

[
1

2Q2
i

− 16

(tiγ2
α + 4Qi)2

− γ2
αti

4α2Q3
i

]
,

where a′i is the derivative of ai defined in (2.4). In addition, ∆α = (ζ1, . . . , ζn), where

ζi = sXβtaimi. Recall that ∆ must be evaluated at θ = θ̂ and ω = ω0 = (0, . . . , 0)>.

Perturbation of the parameter α Here α is perturbed as αi = α/ωi, with ωi > 0 and
then the perturbed log-likelihood function is `ω(θ) =

∑n
i=1 `ωi(Qi, αi), where

`ωi(Qi, αi) = −1

2
log(8πti)− log(αiγαi)−

1

2
log(Qi)

+ log

(
γ2
αi

2
+

2Qi

ti

)
− 2Qi

α2
i γ

2
αi
ti

(
tiγ

2
αi

4Qi

− 1

)2

, i = 1, . . . , n.
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Hence, the column vectors of ∆ are expressed as

δi =

(
xiai$i

ϕi

)
,

where $ = ($1, . . . , $n)> and ϕ = (ϕ1, . . . , ϕn)>, with $i = −αmi and ϕi = −ri α−
bi, for i = 1, . . . , n, with ∆ being evaluated at θ = θ̂ and ω = ω0 = (1, . . . , 1)>.

2.6 Simulation study

Note that an important aspect to be considered in all regression is the use of residuals
to evaluate the model adequacy. In non-normal models, the identification of a suitable
residual is not an easy task. We consider one of the possible simulation studies for our
model based on the residuals. Comments on other possible simulation studies regarding
our model are mentioned in the final section. Also, note that we are assessing the
adequacy of these residuals to our BS quantile regression model and not in a general
context. Therefore, this study is relevant and necessary to our model and not to others.
Thus, in order to evaluate the fit of the our model to a data set, we consider the four
following types of residuals proposed in the literature.

Pearson type residual First, we use a modification of the standardized Pearson resid-
ual given by

r
(1)
i =

ti − Q̂i√
(1− hi)V̂ar[Ti]

=
γ̂2
α(ti − Q̂i)

4Q̂iα̂
√

(1− hi)(1 + 5α̂2/4)
, i = 1, . . . , n, (2.8)

where α and Qi are defined in (2.1) and (2.2), respectively, and hi is the ith element of
the matrix H = D(v̂)1/2X(X>D(v̂)X)−1X>D(v̂)1/2, which is equivalent to the hat
matrix of regression but for generalized linear models.

Deviance type residual Second, we consider a deviance type residual, replacing the
mean by the quantile, expressed as

r
(2)
i =

sgn(ti − Q̂i)
√
Di√

1− hi
, i = 1, . . . , n, (2.9)

where Di = 2[`(θ̃) − `(θ̂)], with θ̃ being the ML estimate of θ under the saturated

model (with n parameters), θ̂ is the ML estimate of θ under the model of interest (with
p parameters) and sgn(z) denotes the sign of z.

Likelihood residual Third, we derive a likelihood residual, which is a combination of
the two previous residuals, given by

r
(3)
i = sgn(ti − Q̂i)

{
hi[r

(1)
i ]2 + (1− hi)[r(2)

i ]2
}1/2

, i = 1, . . . , n, (2.10)

with its elements previously defined.
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Randomized quantile residual Fourth, we employ also the randomized quantile resid-
ual proposed by Dunn and Smyth (1996). In our case, this residual is given by

r
(4)
i = Φ−1(F (ti; α̂, Q̂i)), i = 1, . . . , n, (2.11)

where F is the BS CDF defined in (2.1). This residual follows approximately a normal
standard distribution.

A simulation is performed to evaluate the distributions of r(1), r(2), r(3) and r(4)

formulated in (2.8), (2.9), (2.10) and (2.11), respectively. In this simulation study, we
use the regression model

h(Qi) = β0 + β1xi, i = 1, . . . , 100, (2.12)

considering the logarithm (log) and identity link functions, with β0 > 0 and β1 > 0 to
guarantee Qi > 0 in the case of the identity link. The true values of the parameters
are taken as β0 = 0.3 and β1 = 0.5, whereas α ∈ {0.2, 0.5, 1.0}, which indicates low,
moderate and high asymmetry. Note that, using the identity link function, we have
that Qi ∈ [0.30, 0.80], whereas for the log link function, we have that Qi ∈ [1.35, 2.23].
Other ranges for Qi need other values for β0, β1 and other link functions so that is a
limitation of this simulation study. We assume that the values of the covariate Xi are
generated from a uniform distribution in the interval (0, 1). The number of Monte Carlo
replications is 5000. Using the relation Qi = h−1(β0 + β1xi), we calculate the values of
Qi. In each of the 5000 replications, we obtain the observations t = (t1, . . . , t100)> from
the BS distribution with parameters α and Qi, for i = 1, . . . , 100. Then, the model
given in (2.12) is fitted using the implemented functions in the R software.

Statistical behavior of r(1), r(2), r(3) and r(4) can be graphically viewed when
comparing the empirical distribution of the residuals and the standard normal distri-
bution. We use a quantile against quantile (QQ) plot with simulated envelope to make
this comparison; see Atkinson (1985). Figures 2.2 and 2.3 display QQ plots with these
envelopes, one for each 5000 residuals r(1), r(2), r(3) and r(4), using log and identity
links, with α ∈ {0.2, 0.5, 1.0}. We observe that the QQ plot with simulated envelope
of r(1) shows that it is further away from the diagonal line and outside of the envelope,
which says us that this residual is not suitable for the proposed model. The QQ plots
associated with r(2), r(3) and r(4) are adequately over the diagonal and inside of the
envelope, indicating that these residuals follows approximately a standard normal dis-
tribution, at least when α is in [0.2; 1.0], showing their adequacy for the BS quantile
regression model. A study when the number of observations is greater than n = 100,
namely n = 200 and n = 500, provides similar results than for n = 100. Other study
for q = 0.1 and q = 0.9 with n = 100 reports that the residuals r(1), r(2) and r(3) do
not follow a normal distribution, but r(4) does. Due to reasons of space, the obtained
results are omitted here. Then, we recommend the use of r(4) for this model.
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(c) r(1), h = log, α = 1.0
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(d) r(1), h = id, α = 0.2
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(e) r(1), h = id, α = 0.5
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(g) r(2), h = log, α = 0.2
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(j) r(2), h = id, α = 0.2
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Figure 2.2: Plots of the indicated residual, link function and value of α with simulated
data.
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(a) r(3), h = log, α = 0.2
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(b) r(3), h = log, α = 0.5
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(c) r(3), h = log, α = 1.0
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(d) r(3), h = id, α = 0.2
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(e) r(3), h = id, α = 0.5
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(f) r(3), h = id, α = 1.0
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(g) r(4), h = log, α = 0.2
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(i) r(4), h = log, α = 1.0
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(j) r(4), h = id, α = 0.2
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Figure 2.3: Plots of the indicated residual, link function and value of α with simulated
data.
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2.7 Ilustrative example

In economic scenarios, as the behavior of household income, the data can be follow a
skew distribution and (as it is known) the mean is not a good central tendency measure
to summarize the data, but, for example, the median is. Also, our interest can be study
a quantile of the distribution of the data.

A motivation to consider a BS quantile regression model comes from a real data
set corresponding to Chilean household income in the year 2016, collected by the
National Institute of Statistics, Chile, which are available at:

http://www.ine.cl/estadisticas/ingresos-y-gastos/esi/base-de-datos.

For an illustrative purpose in order to show potential applications of our model,
we focus on a data subset which considers n = 100 cases randomly selected from
the full data set. In this data subset, the response variable (T ) is the household
income, whereas the covariates to be considered in our analysis are: the total number
of persons in the home work force (X1), the total income due to salaries (X2), the total
income due to independent work (X3), the total income due to retirements (X4), the
total income due to pensions (X5), and the total income due to public subsidy (X6).
These covariates were selected from the full data set (which contains 107 variables
including T,X1, . . . , X6) based on economical and statistical criteria in relation to the
response variable. All incomes are expressed in thousands of Chilean pesos; see http:

//www.bancocentral.cl for its equivalence in American dollars.
Table 2.1 provides a descriptive summary of the household income that includes

sample median, mean, standard deviation (SD), coefficients of variation (CV), skew-
ness (CS) and kurtosis (CK), as well as minimum (t(1)) and maximum (t(n)) values.
Figure 3.2 shows the histogram as well as usual and adjusted boxplots of the household
income; for details of the adjusted boxplot for asymmetric data, see Rousseeuw et al.
(2016). Also, Figure 2.5 displays scatterplots of household income and each one of the
covariates.

Table 2.1: Descriptive statistics for Chilean income data (in thousands of Chilean
pesos).

median mean SD CV CS CK t(1) t(n) n

698.80 938.10 837.52 0.89 2.45 11.03 70 5369.90 100

Based on Table 2.1 and Figures 3.2-2.5, observe the following aspects. First, from
the histogram displayed in Figure 3.2(a), note that the values of the household income
have an empirical distribution which is unimodal and positively skewed, justifying the
use of an asymmetric distribution for the response variable. Second, the boxplots
presented in Figure 3.2(b) show some atypical cases for the household income which
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Figure 2.4: Histogram (a) and boxplots (b) for Chilean income data.

we analyze in next subsection. Third, from the scatterplots and correlations displayed
in Figure 2.5, linear relationships between some variables are detected as well as some
evidence of non-constant variance for T . Note that X5 and X6 have a low correlation
with T , reason why we discard them in our illustrative data analysis. In addition, we
detect a relatively high correlation between X1 and X2 so that we discard X1 as well
due to possible collinearity problems and also because it has less correlation with T
than X2. Therefore, we propose to use X2, X3 and X4 for illustrating the BS quantile
regression model, which has characteristics and properties suitable for describing the
median of the data, the non-constant variance and the asymmetry detected in these
data.

Based on previous subsection, we assume the response Ti ∼ BS(α,Qi). We
consider the logarithm, square root and identity link functions for the systematic
component of the regression model on the median, which are expressed as: (L1)
log(Qi) = x>i β; (L2)

√
Qi = x>i β; (L3) Qi = x>i β, with β > 0; for i = 1, . . . , 100,

where β = (β0, β2, β3, β4)> is the regression coefficient vector and x>i = (1, xi2, xi3, xi4)
is the observed value of Xi. We emphasize that the median regression is used as it is a
robust measure of centrality for right-skewed distributions; see Hao and Naiman (2007,
p. 57) and Davino et al. (2014, p. 76). We fit the BS model by using the command
bsreg.fit() that we have implemented in the R software. The values of the corrected
Akaike information criterion (AIC) and of the log-likelihood function (in parenthesis)
for the model with indicated link functions are: (L1) 1502.116 (-745.739); (L2) 1411.67
(-700.516); and (L3) 1396.313 (-692.837). With these values, we establish that the
identity link function should be used in the modeling, as conjectured in Subsection
??. The ML estimates for the model parameters with link function (L3), approximate
estimated standard errors (SEs) and their significance at 5% are reported in Table 2.2,
where X2, X3 and X4 are identified as significant to explain T . Therefore, we consider
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Figure 2.5: Scatters plots and correlations between each pair of variables for Chilean
income data.

the model given by

Qi = β0 + β1x2i + β2x3i + β3x4i, i = 1, . . . , 100. (2.13)

Additionally, we estimate the model for q = 0.1, 0.25, 0.75 and 0.9 obtaining
satisfactory fittings such as with the median so that, due to reasons of space, the
obtained results are omitted here. Therefore, we decide to continue our illustration
with the BS-median model.

Distributional assumption of the model given in (2.13) is verified by the QQ
plot with envelope for the residual r(4) in Figure 2.6(a). This figure shows that the
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residuals follow approximately a standard normal distribution so that the assumption
that the response variable follows a BS distribution does not seem to be unsuitable.
In addition, no unusual features are detected by the plot of residuals presented in
Figure 2.6(b), solving the problem of non-constant variance detected in subsection
previous, but five outlying cases (#13, #27, #32, #80 and #87) are identified, which
are analyzed in the diagnostic study presented next. When comparing our model with
the normal regression model (where as known the mean is equal to the median), a
better performance is detected in favor of the BS quantile regression model, based on
the QQ plots with envelope for the residuals displayed in Figure 2.6(a) and (b) (in the
case of the normal regression model, we use the usual standardized Pearson residual).
Comparison of our model with other similar models based on, for instance, the gamma,
lognormal or Weibull distributions (Noufaily and Jones, 2013) is not possible because
this implies to derive models using such distributions with identical parameterizations
to that used in our approach, which are not available in the literature.

Suitability of the identity link function used in the model given in (2.13) is
verified by employing z2 = η̂ + v̂∗ � ẑ, such as in Leiva et al. (2014b), where v̂∗ =
(1/v̂1, . . . , 1/v̂n)>, with vi being defined in (2.5) and � being the Hadamard product.
The plot of ẑ2i against η̂i is utilized to verify the adequacy of the link function, where
a linear tendency is requested. According to Figure 2.6(c), it is possible to note such
a linear tendency, and therefore the identity function link is suitable for our model.

Table 2.2: Estimate, SE and significance at 5% of the indicated parameter for Chilean
income data.

β̂0 β̂2 β̂3 β̂4 α̂

Estimate 198.0903 1.0440 1.1090 1.0865 0.3646
SE 22.3166 0.0871 0.1502 0.1759 0.0087
Significance yes yes yes yes yes

Diagnostics based on the local influence technique for the BS quantile regres-
sion model given in (2.2) are displayed in Figure 2.7, which shows index plots of Ci.
From there, cases #13, #27, #32, #80 and #87 are detected as potentially influ-
ential. Also, we analyze index plots of lmax, but the results are similar to those
presented for the index plots of Ci, so that we omit these results here. Figure 2.7
presents plots of Ci against X2i, which indicate that small values of X2 have a mod-
erate influence on the estimates; see for example case #87. Impact on the model
inference is analyzed for three cases (#13, #80 and #87) identified as more po-
tentially influential in the diagnostic analytics. Then, we remove the sets of cases
{#13}, {#80}, {#87}, {#13, #80}, {#13,#87}, {#80,#87},{#13,#80,#87} and re-
estimate the model parameters. Relative changes (RCs) in the parameter estimates
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Figure 2.6: QQ plot with envelope of the residual r(4) for the BS median model (a)
and of the standardized residual for the normal regression model (b); index plot of r(4)

(c) and plot of ẑ2 against η̂ for the model fit with identity link (d) based on Chilean
income data and the BS quantile regression model.

and in their associated estimated SEs, by using the income data, are calculated as

RCθj(i) =

∣∣∣∣∣ θ̂j − θ̂j(i)θ̂j

∣∣∣∣∣× 100%, RCSE(θ̂j)(i)
=

∣∣∣∣∣ ŜE(θ̂j)− ŜE(θ̂j)(i)

ŜE(θ̂j)

∣∣∣∣∣× 100%,

where θ̂j(i) and ŜE(θ̂j)(i) denote the ML estimates of θj and of the estimated SE of the
associated estimator, respectively, obtained after removing case i, for j = 1, . . . , 5 and
i = 1, . . . , 100, with θ1 = β0, θ2 = β2, θ3 = β3, θ4 = β4, θ5 = α. Table 2.3 reports these
RCs, from where the largest values of RCs are identifed when removing simultaneously
the cases #80 and #87, which influences importantly on all parameters, with RCs until
approximately 21%. However, no inferential changes are found. The results presented
in this table show that the diagnostic measures derived in this study identify potentially
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influential cases, but these do not affect the inference of the model. We can conclude
that the diagnostic analytics based on the local influence technique confirm that the
BS quantile regression model presented in (2.13) is stable to the atypical cases detected
and suitable for modeling the income data.

Table 2.3: RCs (in %) of ML estimates and of the associated estimated SEs for the
indicated removed case(s), and respective p-values using Chilean income data and the
BS quantile regression model.

Removed cases β0 β1 β2 β3 α

None RC(θ̂) - - - - -

RC(ŜE) - - - - -
p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

{13} RC(θ̂) 9.46 2.98 2.41 4.74 5.63

RC(ŜE) 3.41 4.66 4.99 4.84 9.80
p-value < 0.01 < 0.01 < 0.01 0.01 < 0.01

{80} RC(θ̂) 7.61 2.4 3.59 3.85 3.24

RC(ŜE) 3.58 2.7 2.04 2.77 5.48
p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

{87} RC(θ̂) 10.19 3.22 4.84 5.17 5.00

RC(ŜE) 7.01 4.57 3.65 4.64 8.68
p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

{13, 80} RC(θ̂) 1.51 0.53 0.98 0.88 8.37

RC(ŜE) 0.52 6.80 6.64 7.02 14.23
p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

{13, 87} RC(θ̂) 0.50 0.08 1.9 0.14 10.04

RC(ŜE) 2.48 8.57 8.2 8.76 17.14
p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

{80, 87} RC(θ̂) 20.92 6.70 10.31 10.87 9.84

RC(ŜE) 13.54 8.95 7.06 9.10 16.80
p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

{13, 80, 87} RC(θ̂) 11.27 3.48 7.00 5.67 14.09

RC(ŜE) 7.65 12.06 10.86 12.24 23.66
p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
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Figure 2.7: Index plots of Ci for β (a) and α (b) under case-weight perturbation; for β
(c) and α (d) under response perturbation; for β (e) and α (f) under perturbation of
the parameter α; for β (g) and α (h) under covariate perturbation X2, using Chilean
income data and the BS quantile regression model.
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2.8 Economic implications

Quantile regression allows us to carry out a deeper analysis of the determinants of
household income when compared to traditional ordinary least squares (OLS) regres-
sion, since such determinants may have different magnitude across income strata. Table
2.4 reports the estimated coefficients for various BS quantile regression models as well
as for the OLS regression. In a quantile regression, the estimated coefficient is inter-
preted as the change in the q×100th percentile of the household income corresponding
to a unit change in the covariate, whereas, in the OLS regression, the change is in the
mean household income; see Hao and Naiman (2007, p. 57).

The results of Table 2.4 report that all the covariates affect positively the
household income, as expected. Note that the effects of all the covariates increase
with the household income (higher quantiles) in the BS quantile regression model.
For example, an increase of one thousand Chilean pesos in salaries (X2), increases
the 10th percentile (q = 0.10) of the houlsehold income by an amount of $657.1
Chilean pesos. In addition, it increases by $1,659.1 Chilean pesos the 90th percentile
(q = 0.90) of the houlsehold income. In other words, the effect of the salaries increases
for individuals with higher household income (higher quantiles). As mentioned, see
http://www.bancocentral.cl for the equivalence between Chilean pesos and Ameri-
can dollars.

Note also from Table 2.4 that the estimated coefficient for the total income due
to independent work (X3) in the BS quantile regression model for q = 0.25 is 0.8681,
which is less than the estimated coefficient in the mean regression model (OLS), which
is 0.9918. This suggests that while an increase of one thousand Chilean pesos of income
due to pensions gives rise to an average increase of $991.8 in household income. Observe
that the increase would not be substantial for most of the population. Similarly, the
estimated coefficient for the total income due to retirements (X4) in the BS median
regression model is 1.0865, which is greater than the corresponding estimated coefficient
in the mean regression model.

In general, we can conclude that economic analyses are more informative using
quantile regression. In the present example, the BS quantile regression model provided
a thorough tool to analyses income data.
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Table 2.4: OLS regression and BS quantile regression estimated coefficients (p-values
in parentheses) at five different quantiles with household income data.

BS quantile regression OLS
q = 0.10 q = 0.25 q = 0.50 q = 0.75 q = 0.90

β̂0 124.7264 155.0139 198.0903 251.4492 314.7382 126.7358
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (< 0.001)

β̂2 0.6571 0.8170 1.0440 1.3369 1.6591 49.9244
(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)

β̂3 0.6974 0.8681 1.1090 1.4218 1.7629 0.9918
(<0.001) (<0.001) (<0.001) (< 0.001) (<0.001) (< 0.001)

β̂4 0.6840 0.8498 1.0865 1.3923 1.7259 1.0689
(<0.001) (<0.001) (<0.001) (< 0.001) (<0.001) (< 0.001)

2.9 Concluding remarks

In this chapter, we proposed an approach to quantile regression modeling based on the
BS distribution. This approach used a quantile parameterization, which allowed us to
consider a similar framework to generalized linear models, providing flexibility in the
modeling. The ML method was considered for estimating the model parameters and
for carrying out inference on these parameters. A diagnostic analytics based on the
local influence technique under different perturbation schemes and a residual analysis
were also conducted. The performance of four types of residuals was evaluated by sim-
ulations, with a randomized quantile residual being identified as the most suitable for
our model. A data analysis of the new model was performed with Chilean household
income data. Comparison of our model with the normal regression model reported a
better performance in favor of the BS quantile regression model. This analysis showed
an adequate performance of the approach, providing evidence that the BS distribu-
tion is a good modeling alternative for dealing with positive data and an asymmetric
behavior, as the income data.



Chapter 3

BS spatial quantile regression
models

3.1 Summary

In spatial regression, the mean of the response variable is modeled using explanatory
variables. Typically, this modeling considers Gaussianity assuming the response fol-
lows a symmetric distribution. However, when this assumption is not satisfied, it is
useful to suppose distributions with the same asymmetric behavior of the data, such
as the BS distribution. In this chapter, we propose a geostatistical model based on BS
quantile regression and its diagnostics by using the global and local influence. A new
quantile parameterization is proposed here. The estimation of parameters and its local
influence are conducted by the ML method. We consider global influence based on the
Cook distance to compare with the local influence, in both cases to detect influential
observations, whose detection and removal can modify the conclusions of a study. We
illustrate the proposed methodology applying it to environmental data, which shows
this situation. A comparison with Gaussian spatial regression is also conducted.

3.2 Introduction

Standard regression models describe the mean response given certain values of the
explanatory variables. Nevertheless, if the response variable has a asymmetrical distri-
bution, the mean is not a suitable centrality measure to summarize the data. Quantile
regression was proposed by Koenker and Bassett (1978), extending the median regres-

34
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sion model to the ordinary quantiles by means of the regression context. We focus
and propose to model the median or other quantiles of the BS distribution by regres-
sion. Considering a spatial component in the modeling may improve the accuracy of
an estimator of the mean (or median); see Diggle and Ribeiro (2007). A first idea
of spatial quantile regression was suggested by Kostov (2009). Trzpiot (2013) derived
a spatial regression model using the quantile function; see McMillen (2013) for some
variants of spatial quantile regressions. Garcia-Papani et al. (2017, 2018a,b) introduced
BS spatial models for the mean, which need multivariate BS distributions; see, for ex-
ample, Kundu (2015b), Lemonte et al. (2015), Sánchez et al. (2015), Marchant et al.
(2016a,b) and Garcia-Papani et al. (2017, 2018a,b). In the best of our knowledge, spa-
tial BS quantile regression and its local influence diagnostics not have been formulated
to the date.

As we have said, diagnostic analytics have a important part in statistical mo-
deling. The Cook distance and residuals are well-known and often used as measures
of global influence for detecting the model adequacy; see Krzanowski (1998) and Leiva
et al. (2016). However, the local influence technique is very common to detect poten-
tially influential cases in different models; see, for example, Dı́az-Garćıa et al. (2003),
Santana et al. (2011) and Garcia-Papani et al. (2017). Detection and removal of po-
tentially influential cases can modify the conclusions of a study.

This chapter has as objective to propose a geostatistical model based on
Birnbaum-Saunders quantile regression and its global and local influence diagnostics.
We use a new quantile parameterization to generate the model, which permits us to
consider a similar framework to generalized linear models, providing wide flexibility.
A comparison with Gaussian spatial regression is performed, but with other natural
competing models, as gamma, lognormal or Weibull, it is not possible because such
models based on our new parameterization are not available in the literature.

In Section 3.3, we establish a new parameterization of it to model a quantile.
Section 3.4 proposes the model and provides estimation of its parameters based on the
ML method. In Section 3.5, tools for model checking are discussed. In Section 3.6, we
derive global influence measures based on the Cook distance for detecting influential
potentially observations. Section 3.7 introduces the local influence technique for the
new model including two schemes of perturbation. Next, we illustrate the proposed
methodology in Section 3.8 considering an example related to environmental data.
Some conclusions are given in Section 3.9. All the numerical calculations were carried
out with the aid of the R software; see R-Team (2018). Mathematical details of some
results are provided in the appendix.

3.3 A parameterization of the multivariate BS distribution

Let T = (T1, . . . , Tn) ∼ BSn(α,β,Γ) and q ∈ (0, 1) is a fixed value. Then, we have a
new parameterization of the n-variate BS distribution by the transformation expressed
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as (α,β,Γ) 7→ (α,Q,Γ), where Qi and βi are related by (1.2), for the marginal
distribution of Ti, Qi being the q-th quantile of the BS(αi, βi) distribution, for all
i = 1, . . . , n. This new parameterization of the n-variate BS distribution is denoted by
T ∼ BSn(α,Q,Γ), with distribution function and density given, respectively, by

FT (t;α,Q,Γ) = Φn(Ã; Γ), t = (t1, . . . , tn) ∈ Rn
+,

fT (t;α,Q,Γ) = φn(Ã; Γ) ã(t;α,Q), t = (t1, . . . , tn) ∈ Rn
+, (3.1)

where Ã = (Ã1, . . . , Ãn)>, for

Ãj =
1

αjγαj

√
4Qj

tj

(
tjγ

2
αj

4Qj

− 1

)
, ã(t;α,Q) =

n∏
j=1

1

αjγαj
√

4Qjtj

(
γ2
αj

2
+

2Qj

tj

)
,

and γαj being defined in (1.3).

Theorem Let T = (T1, . . . , Tn) ∼ BSn(α,Q,Γ), with α = (α1, . . . , αn) and Q =
(Q1, . . . , Qn). Then,

(i) Ti ∼ BS(αi, Qi), for i = 1, . . . , n.

(ii) (Ti, Tj) ∼ BS2(αij,Qij,Γij), where αij = (αi, αj), Qij = (Qi, Qj) and Γij is the
2 × 2 matrix with diagonal of ones and each one of its other elements equal to
element (i, j) of the matrix Γ.

Proof Both results are deduced from Kundu et al. (2013) and using the new
parametrization of the BS distribution. 2

Theorem Let T = (T1, T2) ∼ BS2(α,Q,Γ), with α = (α1, α2), Q = (Q1, Q2) and
Γ = (ρij). Then,

(i) E(T1T2) =
4Q1Q2

γ2
α1
γ2
α2

(4 + 2(α2
1 + α2

2) + α2
1α

2
2(1 + 2ρ2

12)).

(ii) Cov(T1, T2) = 8ρ2
12

α2
1α

2
2 Q1Q2

γ2
α1
γ2
α2

.

(iii) Corr(T1, T2) = 2ρ2
12

α1α2√
4 + 5α2

1

√
4 + 5α2

2

.

Proof These three results are obtained from Saulo et al. (2019) and using the new
parametrization of the BS distribution.2

From Figure 3.1, note that some shapes of the density expressed in (3.1) with
n = 2 are shown, varying the parameter α (a, b, c) and varying the parameter Q (plots
d, e, f).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Reparameterized 2-variate BS density plots for (a) αi = 0.5, (b) αi = 0.8,
(c) αi = 1.5, with Qi = 1.0, and (d) Qi = 0.5, (e) Qi = 0.8, (f) Qi = 1.5, with αi = 1.0,
for i = 1, 2 and ρ = 0.9.
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3.4 Formulation and estimation of the spatial model

To describe data dependent spatially, assume the stochastic process T = {T (s); s ∈
D} defined on D. We consider that T is stationary and isotropic, and that for spatial
locations in si, with i = 1, . . . , n, the quantile function of the process may be formulated
as

Q(T (si)) = Qi = h−1(ηi) = h−1(x>i β), i = 1, 2, . . . , n, (3.2)

with h being a strictly monotone function of positive support and at least twice differ-
entiable. Observe that x>i = (1, xi2, . . . , xip) are the values of p explanatory variables,
with xij = xj(si), for j = 2, . . . , p, that is, xij is the value of the explanatory variable
Xj at si. Here, β = (β1, β2, . . . , βp)

>, for p < n, corresponds to a vector of regression
coefficients to be estimated. In addition,

(T (s1), . . . , T (sn)) = (T1, . . . , Tn) ∼ BSn(α1n×1,Q(β),Γ), α > 0,

with 1n×1 being an n × 1 vector of ones and Γ being an n × n (non-singular) scale-
dependence matrix.

Also, we suppose that the dependence over space is established by means of the
n × n scale matrix already mentioned, which is symmetric, non-singular and positive
definite. We observe Γ is proportional to Cov(T (si), T (sj)) and depends only on the
Euclidean distance between si and sj, meaning

Cov(T (si), T (sj)) = C(si, sj) = C(hij), si, sj ∈D, (3.3)

with hij = ‖si−sj‖. Further, we suppose the function C given in (3.3) is established by
the spatial dependence parameter ϕ = (ϕ1, ϕ2, ϕ3)> defined by Γ = ϕ1In + ϕ2R(ϕ3),
with In being the n × n identity matrix, ϕ1 ≥ 0, ϕ2 ≥ 0 being the nugget effect and
partial sill, respectively, ϕ3 ≥ 0 is the spatial dependence radius, while R(ϕ3) = rij is
an n×n symmetric matrix, with main diagonal elements equal to one; see Mardia and
Marshall (1984). Here, R(ϕ3) depends on the covariance function used to model the
dependence over space. If the family of Matérn model is used, we get

rij =

 1, i = j,

1
2δ−1Γ(δ)

(
hij
ϕ3

)δ
Kδ

(
hij
ϕ3

)
, i 6= j,

(3.4)

with Γ being the usual gamma function, Kδ being the modified Bessel function of the
third kind of order δ, and δ being a shape parameter; see Gradshteyn and Ryzhik
(2000). If the family of power exponential models is used, for i 6= j, we have rij =
exp(−(hij/ϕ3)p), with the shape parameter 0 < p ≤ 2. Table 3.1 provides particular
cases of the family Matérn.

It is known that not all parameters in the covariance function (3.4) are con-
sistently estimable under the fixed-domain asymptotic framework. In effect, the pa-
rameters ϕ2 and ϕ3 cannot be estimated consistently when the underlying process is
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observed in a bounded region of Rd for d ≤ 3 Zhang (2004); Genton and Zhang (2012).
However, Zhang (2004) also showed that if one fixes ϕ3 at an arbitrary value, then the
ML estimator for ϕ = ϕ2/ϕ

2δ
3 is consistent. The parameter ϕ is called microergodic

parameter Stein (1999). Genton and Zhang (2012) showed that these same estima-
tion problems remain for elliptically contoured random fields. In the present paper,
to remove the identifiability problem, we impose restrictions on the parametric space.
Specifically, we assume that the parameter ϕ3 is fixed a priori Zhang (2004); Zhang
and Wang (2010), and we use an alternative parameterization of the Matérn function
suggested by Stein (1999) and given by

C(hij) = %1δij +
%2

2δ−1Γ(δ)
(hij%3)δKδ(hij/%3), hij ≥ 0, i, j = 1, . . . , n

with %1 = ϕ1, %2 = ϕ2/ϕ
2δ
3 and %3 = ϕ3. In this case, Γ = %1In + %2R, where now the

n× n matrix R has elements rij defined as

rij =

1, if i = j,
1

2δ−1Γ(δ)
(hij%3)δKδ(hij/%3), hij > 0,

for i, j = 1, . . . , n.

Table 3.1: Special cases of the Matérn covariance function.

Smooth parameter Covariance Model

δ = 1/2 C(h) = ϕ2 exp(−h/ϕ3) Exponential

δ = 1 C(h) = ϕ2(h/ϕ3)Kδ(h/ϕ3) Whittle

δ →∞ C(h) = ϕ2 exp(−(h/ϕ3)2) Gaussian

For the spatial model formulated in (3.2), with φ = (%1, %2) and %3 > 0 being a
fixed value, the corresponding parameter estimates can be estimated by the ML method
using the log-likelihood function for θ = (β>,φ>, α)> based on the observations t =
(t1, . . . , tn) defined as

`(θ) = −n
2

log(2π)− 1

2
log(|Γ|)− 1

2
Ã>Γ−1Ã+ log(ã), (3.5)

where Q = Q(β), Ã = Ã(t;α1n×1,Q), ã = ã(t;α1n×1,Q) and Γ = Γ(φ, α,β). By
the derivative of (3.5), with respect to θ allows us to obtain the (p+3)×1 vector given
by

˙̀(θ) =

[(
∂`(θ)

∂β

)>
,

(
∂`(θ)

∂φ

)>
,

(
∂`(θ)

∂α

)>]>
=
(

˙̀
β1 , . . . ,

˙̀
βp , ˙̀

%1 ,
˙̀
%2 ,

˙̀
α

)>
,
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being

˙̀
βj = −Ã>Γ−1 ∂Ã

∂βj
+

∂

∂βj
[log(ã)]

˙̀
%j = −1

2
tr

(
Γ−1 ∂ Γ

∂%j

)
+

1

2
Ã>Γ−1 ∂Γ

∂%j
Γ−1Ã

˙̀
α = −Ã>Γ−1∂Ã

∂α
+

∂

∂α
[log(ã)],

where ∂Ã/∂βj = (∂Ãk/∂βj) and ∂Ã/∂α = (∂Ãk/∂α), with

∂Ãk
∂βj

= − 1

αγα
√
tkQk

(
tkγ

2
α

4Qk

+ 1

)
1

h′(Qk)
xkj,

∂Ãk
∂α

=

√
4Qk

tk

{
− 1

(αγα)2
(γα + αγ′α)

(
tkγ

2
α

4Qk

− 1

)
+

γ′αtk
2αQk

}
,

∂

∂βj
[log(ã)] =

n∑
i=1

(
− 1

2Qi

+
4

tiγ2
α + 4Qi

)
1

h′(Qi)
xij,

∂

∂α
[log(ã)] = − n

αγα
(γα + αγ′α) +

n∑
i=1

2tiγαγ
′
α

tiγ2
α + 4Qi

,

and ∂Γ/∂%1 = In, ∂Γ/∂%2 = R(%3). To estimate θ, ˙̀(θ) = 0(p+3)×1 must be solved.

As this system does not have an analytical solution, θ̂ must be obtained with iterative
procedures for non-linear systems; see Nocedal and Wright (1999) and Lange (2001).

Note that the Hessian matrix ῭(θ) for the BS spatial regression (3.2) is a (p +
3)×(p+3) diagonal block matrix. The Hessian matrix is obtained by taking the second
derivative of (3.5), with respect to the corresponding parameters, and is given by

῭(θ) =



∂2`(θ)

∂β∂β>
∂2`(θ)

∂β∂φ>
∂2`(θ)

∂β∂α
∂2`(θ)

∂φ∂β>
∂2`(θ)

∂φ∂φ>
∂2`(θ)

∂φ∂α
∂2`(θ)

∂α∂β>
∂2`(θ)

∂α∂φ>
∂2`(θ)

∂α2

 =

 ῭
ββ

῭
βφ

῭
βα

῭
φβ

῭
φφ

῭
φα

῭
αβ

῭
αφ

῭
αα

 , (3.6)

where the p×p, p×2 and 2×2 sub-matrices ῭
β, ῭

βφ = [῭φβ]> and ῭
φ, respectively, have

elements detailed in Appendix A. Therefore, for the BS spatial regression model, the
(p+ 2)× (p+ 2) expected Fisher information matrix, obtained from (3.6), is expressed
as

K(θ) = E(−῭
θ) =

Kββ Kβφ Kβα

Kφβ Kφφ Kφα

Kαβ Kαφ Kαα

 ,
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where Kββ = E(−῭
ββ), Kφφ = E(−῭

φφ) and Kβφ = (Kφβ)> = E(−῭
βφ) are p × p,

2×2 and p×2 sub-matrices, whereasKβα = (Kαβ)> = E(−῭
βα) andKφα = (Kαφ)> =

E(−῭
φα) are p× 1 and 2× 1 vectors, respectively.

3.5 Model checking

In order to evaluate the fit of the spatial model, we consider a property of the BSn
distribution related to the Mahalanobis distance, which may be used to validate the
model in practice. Let

ui = Ã>(i)Γ
−1Ã(i), i = 1, . . . n, (3.7)

where Ã(i) = (Ã1(i), . . . , Ãn(i))
>, with

Ãj(i) =
1

αjγαj

√
4h−1(x>j β̂(i))

tj

(
tjγ

2
αj

4h−1(x>j β̂(i))
− 1

)
, j = 1, . . . n,

and β̂(i) being the ML estimate of β obtained using the data set without the observation

i. A Newton-Raphson one-step approximation to θ̂(i) can be obtained by

θ̂(i) = θ̂ + (−H(i)(θ̂))−1U(i)(θ̂), i = 1, . . . n,

where H(i)(θ) and U(i)(θ) are the Hessian matrix and score vector of the BS spatial
model with its parameters estimated by the ML method without the observation i.
Then, under the assumption

T ∼ BSn(α1n×1,Q(β); Γ),

we know that ui defined in (3.7) is an observation from the χ2 distribution with n− 1
degrees of freedom, for i = 1, . . . , n. Thus, by using the Wilson-Hilferty approximation
?, for i = 1, . . . , n, we have that

zi =

(
ui
n−1

)1/3 −
(

1− 2
9(n−1)

)
(

2
9(n−1)

)1/2
(3.8)

is an observation from a standard normal distribution. Hence, a QQ plot for zi given
in (3.8) can be used to evaluate the model fit. Besides the approximation of Wilson-
Hilferty, the randomized quantile residual defined by Dunn and Smyth (1996) may be
employed to evaluate the fit of the BS spatial log-linear model. In the case of this
model, such a residual is given by

ri = Φ−1 (F (ui)) , i = 1, . . . , n, (3.9)

where Φ−1 is the inverse of the N(0, 1) CDF and F is the χ2(n− 1) CDF. Because the
randomized quantile residual has a N(0, 1) distribution, a QQ plot of ri defined in (3.9)
may also be employed for evaluating the model fit.
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3.6 Global influence diagnostics

A global influence technique of case-deletion is based on the likelihood distance (LD)
and established as

LDi(θ) = 2(`(θ̂)− `(θ̂(i))), i = 1, . . . , n, (3.10)

where ` is the log-likelihood function, and θ̂, θ̂(i) are, respectively, the ML estimates of θ
considering the full data set and the data set without the case i; see Cook et al. (1988).
The expression (3.10) measures the change in the LD with estimated parameters when
the case i is deleted and may be employed as global influence technique to assess the
potential influence of this case.

The Cook distance (CD) is other global influence technique based on case deletion
and an alternative to the measure defined in (3.10). This has been generalized to several
non-normal models; see Desousa et al. (2018). The usual expression for the CD is given
by

CDi(θ) = (θ̂ − θ̂(i))
>M(θ̂ − θ̂(i)), i = 1, . . . , n, (3.11)

whereM is an appropriately chosen positive definite matrix, which can be, for example,
the inverse of the asymptotic covariance matrix. Thus, a measure based on the CD
defined in (3.11) is stated as

CD
(1)
i (θ) = (θ̂ − θ̂(i))

>[−῭
(i)(θ̂)](θ̂ − θ̂(i)), i = 1, . . . , n, (3.12)

where

῭
(i)(θ) =

∂`2
(i)(θ)

∂θ∂θ>
,

with `(i) being the log-likelihood function obtained after deleting the case i. Note that

M = [−῭
(i)(θ̂)],

defined in (3.11) is the inverse of [−῭
(i)(θ̂)]−1 that is an estimate of the asymptotic

covariance matrix. If n is too large, the computation of ῭
(i)(θ̂) may became difficult

and, in this case, ῭(θ̂) can be used instead of ῭
(i)(θ̂); see De Bastiani et al. (2018).

Then, an alternative measure of global influence based on the CD defined in (3.12) is
given by

CD
(2)
i (θ) = (θ̂ − θ̂(i))

>[−῭(θ̂)](θ̂ − θ̂(i)), i = 1, . . . , n. (3.13)

Other measure based on the CD defined in (3.13) uses the first order approxi-

mation θ̂ − θ̂(i) ≈ ῭−1
(i) (θ̂) ˙̀

(i)(θ̂), which considers a Taylor expansion around θ̂, until
the second order term, and the one-step-late Newton-Raphson estimate. This third
measure based on (3.13) is expressed as

CD
(3)
i (θ) =

(
˙̀
(i)(θ̂)

)> (
῭
(i)(θ̂)

)−1 (
˙̀
(i)(θ̂)

)
, i = 1, . . . , n, (3.14)
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where

˙̀
(i)(θ̂) =

∂`(i)(θ)

∂θ
.

Other alternative measures based on the CD and similar to (3.14) can be seen in

Garcia-Papani et al. (2018b). In many cases CDi(θ) is preferred to LD(θ̂(i)), because
of its heavier computational burden. A large value of CD(i)(θ) means that the case i
is potentially influential. A definition of what is large has been an unresolved aspect,
but Cook et al. (1982) established this depends on the problem.

3.7 Local influence diagnostics

Again, we use the elements defined in the Section 2.5, which are, in fact, applicable to
our spatial model. Specifically, we consider the direction dmax and the normal curvature
associate to the case i, that is, Ci, for detecting cases that are potentially influential
on θ̂.

In addition to the normal curvature of Cook (1987), other measures of local
influence have been studied and employed. Poon and Poon (1999) defined the conformal
curvature as

Bi =
Ci

trB
, i = 1, . . . , n, (3.15)

which demands similar work of computation than for Ci. The measure indicated in
(3.15) is a standardized measure because is invariant under conformal reparameteriza-
tion. Hence, it is not difficult to establish a cut-off point for it. According to Poon and
Poon (1999), if for the case i we obtain

Bi > 2
n∑
i=1

Bi

n
= 2B̄, i = 1, . . . , n,

where B̄ is the arithmetic mean of the basic conformal curvatures, that is, of B1, . . . , Bn,
then the case i is potentially influential. Another cut-off point implies consider the case
i as potentially influential if

Bi > B̄ + 2SD(B), i = 1, . . . , n,

where SD(B) is the standard deviation (SD) of B1, . . . , Bn.

Perturbation scheme in the response We assume the perturbation

Tω(s) = T (s) +Aw,

where A is a symmetric, non-singular matrix and ω = (ω1, . . . , ωn) ∈ Rn is a pertur-
bation vector. It is clear that ω0 = 0n×1 is the non-perturbation vector. In this case
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perturbation scheme, the perturbed log-likelihood function is given by

`(θ|ω) = −n
2

log(2π)− 1

2
log(|Γ|)− 1

2
Ã>ωΓ−1Ãω + log(ãω), (3.16)

where Ãω = (Ã1(ω), . . . , Ãn(ω))> and ãω = ã(t(ω);α,Q), with

Ãk(ω) = A(tk(ω);α,Qk), k = 1, . . . , n.

Zhu et al. (2007) established that the perturbation ω is appropriate if and only if
G(θ|ω0) = cIn, where c > 0 and

G(θ|ω) = E[ ˙̀(θ|ω) ˙̀>(θ|ω)],

with ˙̀(θ|ω) = ∂`(θ|ω)/∂ω. Obtaining the matrix G(θ|ω0) can be a very difficult. In
this paper, we assume that the form of A to obtain an appropriate perturbation ω is
the same obtained in Garcia-Papani et al. (2018b), that is,

A =

(
α

4
Γ1/2 − 1

α
Γ−1/2

)−1

, (3.17)

where Γ1/2 is the square root matrix of Γ, that is, Γ1/2Γ1/2 = Γ. For details of
computations for this square root matrix, see De Bastiani et al. (2015). Therefore, we
assume that an appropriate perturbation scheme for the response is given by

Tω(s) = T (s) +

(
α

4
Γ1/2 − 1

α
Γ−1/2

)−1

ω.

Perturbation in a continuous explanatory variable Now, we consider a perturbation
scheme in a single continuous explanatory variable, labelled as Xl namely, and the
other explanatory variables are not perturbed. Thus, we have

xl,w(s) = xl(s) +Aw, xj,w(s) = xj(s), j 6= l, j = 1, . . . , p,

where w ∈ Rn and w0 = 0n×1. Therefore, in this case perturbation scheme, the
perturbed log-likelihood function is given by

`(θ|ω) = −n
2

log(2π)− 1

2
log(|Γ|)− 1

2
Ã>ωΓ−1Ãω + log(ãω), (3.18)

where Ãω = (Ã1(ω), . . . , Ãn(ω))> and ãω = ã(t;α,Q(ω)), with

Ãk(ω) = A(tk;α,Qk(ω)), k = 1, . . . , n.

Once again, in order to obtain the matrix A for an appropriate perturbation in Xl

can be a hard work. As in the case of the response perturbation with A given in
(3.17), we assume that the most appropriate explanatory variable perturbation scheme
is expressed as

xt,ω(s) = xt(s) +

(
α

4
Γ1/2 − 1

α
Γ−1/2

)−1

ω.

Details of the ∆ matrix given by (2.6) for the two perturbations considered are shown
in Appendix B.
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3.8 Illustrative example

The methodology presented in this chapter is illustrated considering an environmental
data set related to key nutrients in the soil. The data set belongs to 82 locations of an
area in Brazil, which contain levels of magnesium (Mg) affecting the development of
the root system and calcium (Ca) and competing with Mg for absorption of nutrients.
With the matrix of coordinates corresponding to these data, we construct the distance
matrix indicated in (3.3). Considering to the model of Matérn family, with %1 = 0.3482,
%2 = 2.71× 10−7, %3 = 1086.751 (which are estimated using the weighted square linear
method) and δ = 1.0, we generate a scale matrix and, with it, an observation from
the multivariate BS model of dimension 82, considering the values β0 = 0.3691 and
β1 = 0.1782, with a square root link function, and α = 0.2673. For the explanatory
variables, we consider the vector of Ca values in the environmental data.

Descriptive statistics for the response with environmental dat are: median =
1.84054; mean = 1.9015; SD = 0.8567; coefficient of variation = 0.4505; skewness
= 1.1822; kurtosis = 5.1592; minimum = 0.5448; maximum = 4.911; and n = 82.
This summary shows the asymmetric behavior of the response variable, which is also
observed in the histogram of Figure 3.2 (a), whereas the boxplot (b) of the values of
the response T allows us to observe four outliers, which are #4, #12, #47 and #67.
The directional variogram of Figure 3.2(c) indicates that there is no preferred direction,
meaning an omni-directional semi-variogram is suitable. Hence, we can consider the
associated stochastic process as isotropic.
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Figure 3.2: Histogram (a), boxplot (b) and semi-variogram (c) for the response variable with
environmental data.

We estimate the spatial dependence parameters assuming a variogram model in
the Matérn family with δ = 1.0. We suppose that

(T (s1), . . . , T (sn)) = (T1, . . . , Tn) ∼ BSn(α1n×1,Q(β),Γ),
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considering three cases for the link function h defined in (3.2), that is, logarithm, square
root and identity functions, which are expressed as

log(Qi) = x>i β,√
Qi = x>i β,

Qi = x>i β, i = 1, . . . , 82,

with β = (β0, β1)> being the regression coefficient vector and x>i = (1, xi1) being the
value of Xi.

In order to compare spatial regression models, we employ the Schwarz Bayesian
information criterion (BIC) and corrected Akaike information criterion (CAIC) defined
as

BIC = d log(n)− 2`(θ̂), CAIC = 2d− 2`(θ̂) +
2d2 + 2d

n− d− 1
,

where d is the number of model parameters, n the dimension of the data set, and `(θ̂)

corresponds to the log-likelihood function for θ for the model evaluated at θ = θ̂. BIC
and CAIC use the log-likelihood function and penalize a model with more parameters.
When small information is obtained from a model in relation a specific data set, then
a higher value is obtained for this model being it less adequate. This, a better model is
that with a less value for BIC or CAIC; see Ferreira et al. (2012). Table 3.2 reports the
values of the log-likelihood function, CAIC and BIC for the model with link functions
defined in (3.19). Also, we compare the models given in (3.19) with the Gaussian spatial
regression model applied to the data set, which considers the description of the mean (or
equivalently the median) with identity link function; see last row of the Table 3.2. Only
when the model Gaussian is compared with the BS case with identity link function, its
values are better. From this table, we conclude that the BS spatial quantile regression
model with square root link function should be used. The ML estimates of the selected
model parameters and their corresponding estimated asymptotic standard errors (in

parentheses) are: β̂0 = 0.2527(0.5720), β̂1 = 0.1576(0.3483), %̂1 = 0.2893(0.7920),
%̂2 = 9.40 × 10−8(3.06 × 10−12) and α̂ = 0.2758(0.3027). With this information, the

estimated model is Q̂i = (0.2527 + 0.1576xi1)2, for i = 1, . . . , 82, while the scale-
dependence matrix is estimated as

Γ̂ = 0.2893I82 + 9.40× 10−8R(86875.55),

with R(%3) defined in (3.4) for δ = 1.0 and evaluated at %̂3 = 86875.55.
Having estimated the spatial parameters, we can calculate the relative nugget

effect (RNE) as

RNE =
%1

%1 + %2%2δ
3

.
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Table 3.2: Values of log-likelihood, CAIC and BIC for indicated models with environ-
mental data.

Model `(θ̂) CAIC BIC

BS - logarithm link -17.0303 44.8500 56.0942
BS - square root link -12.9637 36.7169 47.9610
BS - identity link -37.3900 85.5694 96.8135
Gaussian -36.7378 81.9950 91.1024

This indicates the degree of spatial dependence (see Cambardella et al., 1994) following
this RNE: if RNE < 0.25, the data present a strong spatial dependence; if 0.25 <
RNE < 0.75, the data indicate an average spatial dependence; and if RNE ≥ 0.75, the

data show a weak spatial dependence. For our environmental data, we have R̂NE =
0.0004, which means that an strong spatial dependence is presented. Therefore, this
supports the use of the spatial model suggested in our research.

The quantile versus quantile (QQ) plot of the residuals transformed by the
Wilson-Hilferty approximation (see Marchant et al., 2016b) is shown in Figure 3.4(a).
An alternative to evaluate to fit of the model could be employ the randomized quantile
residual defined by Dunn and Smyth (1996). Observe that most of the residuals are
inside of the bands (at 1%). When the observations #11 and #25 are removed, a
better fit is detected and almost every point is inside the envelope; see Figure 3.4(b).
Thus, the BS spatial quantile regression model seems to be appropriate to describe
the environmental data. However, if we use a heavy-tailed asymmetric distribution,
such as the BS-Student-t model, we could obtain a better fitting. This implies a new
research line for this work.
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Figure 3.3: QQ plots for transformed residuals with environmental data.
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Figure 3.4(c) presents the potentially influential cases in the ML estimates of the
parameter vector θ considering the CD as criterion of global influence. It is possible
to see that cases #4 and #13 are potencially influential for the estimate of θ because
their values of CD are outside of the bands.
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Figure 3.4: plots of the CD with environmental data.

For the local influence study, we assume two types of scheme: (i) perturbation
in the response; and (ii) perturbation in the explanatory variable X. We consider
three measures of local influence: (i) the absolute value of the components of dmax; (ii)
normal curvature in the direction of basis vectors (Ci); and (iii) conformal curvature in
the same direction (Bi). Figure 3.5 displays the local influence graphs corresponding
to perturbations in the response and explanatory variable X. Note that cases #4
and #13 detected in the global influence plots are not locally influential by the plots
associated with dmax, Ci and Bi when either the response or explanatory variable are
perturbed. For perturbation in the response, we can observe that four cases (#7, #11,
#28 and #81) are detected as potentially influential points in two plots. The plots
associated with explanatory variable perturbation again detect cases #7, #11 and #81
as potentially influential; see plots (f) and (g). Observe that only the outlier #4 is
detected as potentially influential in plots of diagnostics, that is, in spatial statistics,
an influential point is not necessarily an outlier and viceversa.

We study the RC when the cases detected as potentially influential are removed,
that is, cases #4, #7, #11, #13 and #81, which are the points detected for the most
of the plots in Figures 3.4(c) and 3.5. We consider removing individual cases and
combinations of them. The impact of the influential cases on the parameter estimates
is evaluated by computing

RCθj(Ik)
=
∣∣∣(θ̂j − θ̂j(Ik))/θ̂j

∣∣∣× 100%,

where θ̂j(Ik) is the ML estimate of θj after removing the set Ik, for j = 1, . . . , 5 and
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Figure 3.5: Perturbation in the response for dmax (a), Ci (b) and Bi (c) and perturbation
in the regressor for dmax (d), Ci (e) and Bi (f) with environmental data.

k = 1, . . . , 31, with θ1 = β0, θ2 = β1, θ3 = φ1, θ4 = φ2, θ5 = α. The RCs in the
parameter estimates obtained by considering the data with removed cases are presented
in Table 3.3. In all cases, the RCs are larger for the parameters φ1 and φ2, with a more
pronounced change for φ2. Also, observe that, in all cases, the α parameter varies
more than the parameters β0 and β1. From this table, we conclude that removing the
potentially influential cases changes the spatial dependence of the data, because the
variance, that is φ1 + φ2, involves the values of φ2 and φ1. Therefore, removal of these
influential cases modify the spatial dependence and then our predictive model can be
affected altering the conclusions of the study.
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Table 3.3: RC of ML estimates for the indicated parameter and removed cases.

Removed case(s) β0 β1 φ1 φ2 α

#4 12.6620 25.3177 71.7022 8.70× 109 48.1703
#7 13.2343 25.6437 80.9952 5.84× 109 76.9562
#11 3.3467 30.0718 81.6095 5.65× 109 75.2459
#13 10.0901 25.9289 79.7180 6.24× 109 70.5713
#81 8.4974 26.7649 75.4347 7.55× 109 59.9401
#4,#7 15.9962 24.6032 71.8327 8.66× 109 45.3186
#4,#11 0.8139 29.1265 76.6311 7.19× 109 55.5973
#4,#13 12.8796 24.8727 74.8085 7.75× 109 52.9534
#4,#81 11.5588 25.6413 69.8460 9.27× 109 44.4082
#7,#11 0.0524 29.3297 78.4446 6.63× 109 58.4609
#7,#13 13.3166 25.2482 75.0938 7.66× 109 50.5123
#7,#81 12.4580 25.8690 74.8004 7.75× 109 54.6182
#11,#13 3.2636 29.6689 79.8486 6.20× 109 62.4288
#11,#81 7.8047 31.3709 80.2035 6.09× 109 69.5418
#13,#81 8.5076 26.3895 80.6544 5.95× 109 75.6726
#4,#7,#11 2.6465 28.3643 75.4187 7.55× 109 48.4652
#4,#7,#13 16.1583 24.1749 76.0150 7.38× 109 53.2131
#4,#7,#81 15.6057 24.7173 69.5971 9.35× 109 40.7535
#4,#11,#13 0.6465 28.6897 82.3491 5.43× 109 73.5712
#4,#11,#81 4.9677 30.3450 72.3805 8.49× 109 43.7327
#4,#13,#81 11.6564 25.2312 71.4906 8.77× 109 44.6538
#7,#11,#13 0.0746 28.9446 80.8501 5.89× 109 62.9117
#7,#11,#81 3.6430 30.4025 81.7136 5.62× 109 72.8290
#7,#13,#81 12.4002 25.5139 80.9331 5.86× 109 73.0851
#11,#13,#81 7.8703 31.0100 81.4499 5.70× 109 69.8762
#4,#7,#11,#13 2.7511 27.9460 83.0843 5.20× 109 73.2831
#4,#7,#11,#81 0.7074 29.3445 72.8199 8.36× 109 41.8980
#4,#7,#13,#81 15.6331 24.3282 69.8930 7.16× 109 37.6196
#4,#11,#13,#81 4.9412 29.9484 76.7024 5.77× 109 51.6835
#7,#11,#13,#81 3.7878 30.0646 81.2223 9.26× 109 65.2296
#4,#7,#11,#13,#81 0.7615 28.9716 80.9607 5.85× 109 64.1229

3.9 Concluding remarks

In this chapter, we have formulated spatial regression to model a quantile of a response
variable that follows the Birnbaum-Saunders distribution. We have proposed a new
parameterization of the multivariate Birnbaum-Saunders distribution to formulate the
new model. Its fit has been evaluated using the Wilson-Hilferty approximation based
on residuals of this new spatial quantile regression model. In addition, we have derived
diagnostics techniques to detect observations that can be global or locally influential
in a potential manner. In the last case, we have considered two perturbation cases,
that is, schemes for the response and continuos explanatory variables. Furthermore,
we have applied the derived methodology to an environmental data set, showing the
suitability of the Birnbaum-Saunders spatial quantile regression models when consider
strictly positive data with a distribution which is asymmetric to the right. An relevant
aspect of the proposed methodology in this research is that detection of influential
cases and their removal can modify the spatial dependence and then the predictive
model may be affected altering the conclusions of the study.



Chapter 4

Discussion

4.1 Summary

In this brief chapter, we present conclusions and discuss aspects not treated in this
thesis entitled “Birnbaum-Saunders quantile regression models”. This is based on the
two main achievements of this work, that is, to propose Birnbaum-Saunders quan-
tile regression models based on the Birnbaum-Saunders distribution and to develop a
methodology associated with them for independent data and for correlated-spatially
data. At the end, product of this study, we delineate potential ideas for future research.

4.2 Conclussions and limitations

In this thesis, first, we have proposed quantile regression based on the Birnbaum-
Saunders distribution with independent observations. We have established a new pa-
rameterization of the univariate Birnbaum-Saunders distribution based on its quantiles.
For the new model, we have developed (i) parameter estimation using the maximum
likelihood method, (ii) asymptotic inference for the estimators, (iii) diagnostic analytics
based on the local influence technique, (iv) residuals, and (v) conducted a simulation
study to evaluate performance of these residuals. We have applied the methodology to
a income data set. A limitation of our proposal is that covariates can affect simultane-
ously the quantiles and shape parameter. Another limitation is that a comparison of
our model with other similar models based on, for instance, the gamma, lognormal or
Weibull distributions (Noufaily and Jones, 2013) is not possible because this implies
to derive models using such distributions with identical parameterizations to that used
in our approach, which are not available in the literature.
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In second place, we have formulated spatial quantile regression models consider-
ing a new parameterization of the multivariate Birnbaum-Saunders distribution. We
have developed (i) estimation of parameters with the maximum likelihood method,
(ii) global and local influence techniques, and (iii) an illustrative example through an
environmental data set, showing the potential applications of these models. An as-
pect that was not developed, and necessary for conduct inference, is the study of the
asymptotic behavior and performance of maximum likelihood estimators. It is known
the difficulty of the asymptotic frameworks for spatial data, because there being at
least two relevant frameworks. The behavior of these frameworks can be very dis-
tinct when estimating the spatial dependence parameters; see Zhang and Zimmerman
(2005). In addition of this difficulty, there are not works in the literature for the case
of the Birnbaum-Saunders distribution.

4.3 Future research

We are considering to study some new aspects related to this thesis in future works.
For instance,

(1) As mentioned, covariates can affect simultaneously the quantiles and shape pa-
rameter of the Birnbaum-Saunders distribution. Then, this topic will studied in
a future investigation following the line of the recent work of Ventura et al. (2019)
about joint modeling of two parameters

(2) How our models perform and the statistical evaluation of the estimation process
by means of Monte Carlo simulations.

(3) A comparison of our model with other similar models based on, for instance, the
gamma, lognormal or Weibull distributions.

(4) An exploration of the novel quantile regression approach proposed in this work
considering other distributions.

(5) Cobb-Douglas and tobit type models can be considered in the context of the
present investigation; see Desousa et al. (2018), Cysneiros et al. (2019) and De
la Fuente-Mella et al. (2020). The use of censored data can be also of interest to
be analyzed; see Villegas et al. (2011) and Leão et al. (2018b).

(6) A study of the asymptotic behavior and performance of maximum likelihood
estimators for the Birnbaum-Saunders spatial quantile regression model.

(7) Studying Birnbaum-Saunders-Student-t spatial quantile regression models is a
relevant work because the parameter estimation in spatial quantile regression mo-
dels can be affected by atypical cases. That is due to the Birnbaum-Saunders dis-
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tribution is based on the normal distribution. Therefore, considering Birnbaum-
Saunders-Student-t models can decrease their effects; see Athayde et al. (2019).

(8) Adding random effects by mixed models may produce a more refined Birnbaum-
Saunders spatial quantile regression model and also closer to reality; see Villegas
et al. (2011).



Appendix A: Fisher information
matrix for the BS spatial model

To obtain the Fisher information matrix, −῭(θ) must be evaluated at θ = θ̂. For the
BS spatial regression model presented in (3.2), the elements of Hessian matrix can be
expressed as

῭
βjβl = −

(∂Ã
∂βl
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(
Γ−1 ∂Γ

∂%l
Γ−1

)
∂Ã
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and
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In addition, the p × 1 and 3 × 1 vectors ῭
βα = [῭αβ]> and ῭

φα = [῭αφ]>, respectively,
have elements given by
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Appendix B: Elements of
perturbation matrices for the BS

spatial model

For the model defined by (3.2), we have

∂`(θ|ω)

∂ωj
= −Ã>ωΓ−1∂Ãω

∂ωj
+

∂

∂ωj
[log(ãω)] . (4.20)

The corresponding (p+3)×n perturbation matrix is given by ∆ =

(
∂`2(θ|ω)

∂θrωj

)
, where

r = 1, · · · , p+ 3 and j = 1, . . . , n, with θ1 = β1, . . . , θp = βp, θp+1 = φ1, θp+2 = φ2 and
θp+3 = α. The elements of this matrix are given by

∂`2(θ|ω)

∂βr∂wj
= −

(∂Ãω
∂βr

)>
Γ−1∂Ãω

∂ωj
+ Ã>ωΓ−1 ∂

2Ãω
∂ωj∂βr

+
∂

∂βr

(
∂ log(ãω)

∂ωj

)
,

∂`2(θ|ω)

∂φr∂wj
= −

(∂Ãω
∂φr

)>
Γ−1∂Ãω

∂ωj
+ Ã>ω

∂Γ−1

∂φr

∂Ãω
∂ωj

+ Ã>ωΓ−1 ∂
2Ãω

∂ωj∂φr

 (4.21)

+
∂

∂βr

(
∂ log(ãω)

∂ωj

)
,

∂`2(θ|ω)

∂α∂wj
= −

(∂Ãω
∂α

)>
Γ−1∂Ãω

∂ωj
+ Ã>ωΓ−1 ∂

2Ãω
∂ωj∂α

+
∂

∂α

(
∂ log(ãω)

∂ωj

)
.(4.22)
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Perturbation in the response:
In the case of perturbation in the response, we have

∂Ãk(ω)

∂ωj
= a(tk(ω);α,Qk) · Akj

∂Ãk(ω)

∂βr
= − 1

αγα
√
tk(ω)Qk

(
tk(ω)γ2

α

4Qk

+ 1

)
1

h′(Qk)
xkr

∂2Ãk(ω)

∂ωj∂βr
=

(
− γ2

α

4Qk

+
1

tk(ω)

)
1
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√
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1
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xkrAkj

∂
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α
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where
∂Γ−1

∂φr
= −Γ−1 ∂Γ

∂φr
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∂A
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= A

(
1

α2
Γ−1/2 +

1

4
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A and to calculate

∂Γ1/2

∂φr
,

see De Bastiani et al. (2015).

Perturbation in the covariate:
The elements defined in (4.22) has as components the next expressions
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∂ωj

)
= βl

n∑
k=1

{[
1

2Q2
k(ω)

∂Qk(ω)

∂α
− 4

2tkγαγ
′
α + 4∂Qk(ω)

∂α

(tkγ2
α + 4Qk(ω))2

]
1

h′(Qk(ω))
Akj

+

[
− 1

2Qk(ω)
+

4

tkγ2
α + 4Qk(ω)

]
·
(
− h′′(Qk(ω))

(h′(Qk(ω)))2

)
∂Qk(ω)

∂α
Akj

+

[
− 1

2Qk(ω)
+

4

tkγ2
α + 4Qk(ω)

]
1

h′(Qk(ω))

∂Akj
∂α

}
where ρrl = 1, if r = l and ρrl = 0, if r 6= l, Zkr = 1 for r = 1, Zkr = Xkl(ω), if r = l,
and Zkr = Xkr, for r 6= 1, l
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Dı́az-Garćıa, J.A., Galea, M., Leiva, V. (2003). Influence diagnostics for elliptical multi-
variate linear regression models. Communications in Statistics: Theory and Methods,
32:625–641.
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